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We construct three (large, reduced) incidence algebras whose semigroups of mul- 
tiplicative functions, under convolution, are anti-isomorphic, respectively, to the 
semigroups of what we call partitional, permutational and exponential formal 
power series without constant term, in infinitely many variables x = (x,, x2,...), 
under plethysm. We compute the Mobius function in each case. These three 
incidence algebras are the linear duals of incidence bialgebras arising, respectively, 
from the classes of transversals of partitions (with an order that we define), par- 
titions compatible with permutations (with the usual refinement order), and linear 
transversals of linear partitions (with the order induced by that on transversals). 
We define notions of morphisms between partitions, permutations and linear par- 
titions, respectively, whose kernels are defined to be, in each case, transversals, 
compatible partitions and linear transversals. We introduce, in each case, a pair of 
sequences of polynomials in x of binomial type, counting morphisms and 
monomorphisms, and obtain expressions for their connection constants, by sum- 
mation and Mobius inversion over the corresponding posets of kernels. 0 1987 
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INTRODUCTION 

In [N-R], a set-theoretic interpretation was given for the plethysm of 
formal power series, in the variables x = (x1, x2,...), of the form 

f(x) = C a,x%ut(~), 
i 

which we call partitional formal power series. These are the appropriate 
generating functions for enumerating structures built (equivariantly) on 
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partitions of finite sets. In that theory of partition&, the plethysm is 
obtained via the notion of transversals of a partition, which play a role 
similar to that of partitions in Joyal’s theory of species (cf. [J]), The main 
disadvantage of the purely set-theoretic approach is the absence of a con- 
venient way of dealing with negative coehicients and inversion of the 
operations of composition (ordinary or plethystic): there are no inverse 
species of partitionals. In the case of partitions and composition of 
exponential formal power series in one variable, the gap is bridged by 
Doubilet, Rota and Stanley’s large, reduced incidence algebra of partitions 
(cf. [D-R-S]). 

The present work stems from one of Rota’s characteristic insights: the 
prima facie rather preposterous proposition of finding an order on trans- 
versals that gives rise to an incidence algebra for the plethysm of par- 
titional formal power series (without constant term). This the author is still 
amazed to have found to be possible. 

More recently, Bergeron (cf. [B]) developed a set-theoretic inter- 
pretation, in the spirit of [N-R], for the plethysm of formal power series in 
x with denominators aut’(L), which we call permutational formal power 
series. These are suitable for the enumeration of structures built 
(functorially) on permutations of finite sets. In Bergeron’s theory, the role 
of transversals is played by partitions which are compatible with a given 
permutation. The methods we developed for finding the incidence algebra 
in the partitional case were rather easily adaptable to the permutational 
case, yielding an incidence algebra for the plethysm of permutational for- 
mal power series. 

Finally, in the same vein as [N-R] and Joyal’s linear species (cf. [J])) 
the author has developed a theory of linear partitionals (whose inclusion in 
the present work would be unnecessarily digressive) that gives a set- 
theoretic interpretation of the plethysm of formal power series in x with 
denominators A!, which we call exponential The ordering of the 
corresponding linear transversals induced by that of transversals, yields the 
plethystic incidence algebra in this case. 

In these three Joyal-type theories, the morphisms of the underlying 
categories of partitions, permutations and linear partitions (of finite sets) 
are always and only isomorphisms. In the present work we extend these 
sets of morphisms and define their kernels so that these are elements of the 
corresponding posets of transversals, compatible partitions and linear 
transversals. This allows us, in each case, to carry out the program of [J- 
S] for the pairs of sequences of polynomials in x of binomial type which 
count morphisms and monomorphisms, thus finding expressions for the 
connection constants, which we propose as the plethystic analogues of the 
Stirling numbers of first and second kind, by summation and differentiation 
(Mobius inversion) over the posets of kernels. 
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In the construction of the three plethystic incidence algebras we have 
made systematic use of Schmitt’s (cf. [S]) recent elegant theory of 
incidence coalgebras of families of posets, which streamlines the construc- 
tions and elucidates the general character of certain properties thereof. 

The computation of the Mobius functions of these plethystic incidence 
algebras, which give plethystic inverses of the generating functions of the 
zeta functions, can be carried out, surprisingly enough, by using basic 
theorems of [R] in a rather elegant way, one of the payoffs of the fairly 
laborious analysis of the structure of intervals in the corresponding posets. 

Among the possible offspring of the present work is a Lagrange-like 
inversion formula for the plethysm, which could result from an 
understanding of how cancellations take place in Schmitt’s beautiful for- 
mula for the antipode of incidence Hopf algebras. Another related one is 
the development of a plethystic umbra1 calculus. Our Proposition 1.5 seems 
to suggest that the Frobenius operators (the terminology was proposed by 
Rota, in the spirit of [M-R] should play a rather important role, which at 
present is unclear to the author. Of the three bialgebras we construct, that 
of linear transversals seems to be the most amenable to such further 
developements. 

I. PRELIMINARIES 

Tn this section we give the basic terminology, notation and facts about 
partitions that will be extensively used throughout this work. For the sake 
of the reader’s intuition and perspective we summarize the construction of 
the (large, reduced) incidence bialgebra of partitions (which we view as the 
classical case) along the lines that will be followed in the construction of 
three bialgebras related to plethysm in the subsequent sections. This point 
of view is sketched in [J-R] and has been more fully developed recently in 
[S]. For completeness’ sake we start with pertinent coalgebraic definitions 
and end by stating basic definitions and facts about plethysm. 

1.1. Incidence Coalgebras 

Let K be a field. A K-coalgebra is a K-vector spade C with linear maps 

E: C-+K 

A: C-+COC, 

called augmentation (or counit) and diagonalization (or comultiplication), 
respectively, such that if 

I: c-+c 

is the identity map, we have: 



ON THE COMBINATORICS OF PLETHYSM 215 

1. Counitary property: (E 0 I) 0 d = (10 E) 0 d = 1, where we identify 
C with KQC and CQK. 

2. Coassociativity: (A Q I) 0 A = (I@ A) 0 A. 

If, furthermore, C is also a K-algebra with multiplication map ,B: 
C@ C--t C and unit map q: K -+ C, then the structure (C, A, E, p, q) is a 
bialgebra if A and e are algebra maps: 

A(l)=l@l, A(XY) = A(x) A(Y)> 

E(l)= 1, 4XY) = 4x) E(Y). 

Now let (A, pa, qA) be a K-algebra and let (C, A, E) be a coalgebra. Let 
R = Mod,(C, A) be the K-vector space of K-linear maps from C to A. 
Define the convolution off, g E R by 

f*s:=PAO(fQg)~A. 

Then R becomes a K-algebra with the structure maps 

Let (H, A, E, p, ye) be a bialgebra, and view R = Mod,(H, H) as a K- 
algebra with convolution as above. When 1= id, is a unit of R, its inverse 
(with respect to convolution) S is called the antipode of H, and N is called 
a K-Hopf algebra. 

We refer the reader to [A] for further details. 
The incidence coalgebra C(P) of a poset (P, < ) over a field K (of charac- 

teristic zero) is the vector space spanned by the indeterminates [x, y] for 
all intervals (or segments) [x, y] in P. The augmentation E and the 
diagonalization d are defined by 

if x=y, 
otherwise, 

A [x, y] = 1 [X, Zl @ [Z, VI. 
x<i-.sy 

The incidence algebra I(P) (over K) of P is the linear dual C(P)* = 
Mod,(C(P), K). This coincides with the usual definition of 1(P) (cf., v. gr., 
CR]) since, for f, gE C(P)*, we have 

f*dx> VI = (f@g)oA[Ix, yl= c f[x, 23 dz, ~1, 
Y < i < .,’ 

the usual definition of convolution in I(P). 
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1.2. Partitions 

For a more detailed discussion of partitions we refer the reader to 
[N-R]. 

A partition of a set E (which, in the sequel, will always be finite) is a set 
of non-empty, mutually disjoint subsets of E whose union is E. We denote 
by LT[E] the lattice of partitions of E under the refinement ordering: n < IS 
if every block of n contained in a block of CT (a, n: E LT[E]). Note that 
LT[ @] = (@ >. We denote by 0 and ‘i (or oE and jE) the minimum and 
maximum elements, respectively, of Z7[E]. If E # 0, we have 

&= ((x} XEE}, 

I,= (E}. 

We denote by 7~ A G and n v CT the meet and join, respectively, in 
(Z7[E], <). We have 

If TC E IICE] and D s E, then the restriction of the partition TC to the set D 
is the partition T-c~EJJ[D] defined by 

~,={B~D:Bwc,B~D#@}. 

In the sequel we shall often consider restrictions 7tD, where D is a union of 
blocks of TC (typically, D will be a block of a coarser partition); in this case 
we have 

If rc, CT E l7[E] and n < O, then the quotient partition g//n. is the partition 
of the set n defined by 

CT/Z := (7~~: BECJ}. 

Note that [CJ/TC[ = 101. 
If rc E U[E], we denote by mIT the equivalence relation on E whose 

quotient set (of equivalence classes) is 7~; i.e., for x, y E E, 

In terms of equivalent relations, the join of two partitions TC, o E Z7[E] 
can be characterized as follows: for X, y E E, x-~ v D y whenever there is a 
finite sequence zO,..., z, of elements of E such that 

where each relation wk is either N,, or -X. 
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Two partitions 71, c E l7[E] commute if, for all x, y E E, we have 

Two partitions rc and G of the same set are said to be independent if every 
block of rc meets every block of (T. 

The following useful proposition expresses the relationship between the 
concepts of commutativity and independence of partitions. 

PROPOSITION 1.1 (Dubreil and Jacotin; cf. [D-J] or [N-R]). Let 
n, 0 E IICE]. Then z and CJ commute if, and only zy, for every B E z v 6, the 
restrictions xg and rsg are independent partitions of the set B. 1 

If 71 E IICE] we refer to the pair (E, rc) simply as a partition. Two par- 
titions (E, rc) and (F, a) are isomorphic if there is a bijection f: E * P 
between the underlying sets which sends blocks of 7~ to blocks of cx for all 
BEcf(B)= (f( 1 x : x E B) E 0. The isomorphism class of a partition (E, n) 
is uniquely determined by the multiset of positive numbers ( 1 BI : BE z}, or, 
equivalently, by its multiplicity function, i.e., the sequence A= (A,, A,,,..) 
defined by 

Ai := number of blocks of size i of 71. 

Thus, we call the sequence I the class of the partition (E, x), and write 

cl(E, n) := cl(7c) := 2 

The number of automorphisms of a partition of class i depends only on 
;1 and equals 

aut(l) := n (i!“g&!). 
i>l 

If A is a class (i.e., A= (A,, AZ,...), ;li E N, /zi = 0 for all but finitely many ?sg 
we set 

The sum of two classes A and p is defined by 

(A + /-L)j= ;Zi + /l-i. 

The direct sum of two partitions (E, 7~) and (F, C) is defined as 
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where the sums on the right-hand side are direct sums (disjoint unions) of 
sets. Clearly, we have 

c1(71+ B) = cl(7c) + cl(o). 

We set 

0 := (0, O,...), 

6, := (iqn, l), 6(n, 2) )... ), where 6(x, u) = i 
if x=y 
if x#y 

nA := (d,) n/i,,...). 

1.3. The Classical Case: 
The Large Reduced Incidence Bialgebra of Partitions 

The concept of large reduced incidence algebra was introduced in [D-R- 
S]. The present coalgebraic approach is detailed in [S], and will be used in 
the subsequent chapters for its convenience and generality. 

Consider the class (in the set-theoretic sense) of all the intervals of all the 
lattices of partitions of finite sets. Call it P. We shall define an (order-com- 
patible) equivalence relation N on P whose equivalence classes (types) will 
be identified with monomials in the variables x = (x1, x,,...). We define a 
product of types which correspond to the usual algebra structure of K[x]. 
Using the ordering of the segments, we endow K[x] with a bialgebra struc- 
ture. The dual K[x]* is isomorphic to the large reduced incidence algebra 
of [D-R-S]. We sketch a proof of Theorem 5.1 of that paper relating mul- 
tiplicative functions under convolution with formal power series in one 
variable under composition. This proof, which avoids incidence coefficients, 
foreshadows the corresponding proofs relating convolution and plethysm 
in the next chapters. 

The crucial fact in the definition of N is the natural factorization 
theorem for intervals of partitions. 

THEOREM 1.2 (Natural factorization of intervals of partitions). Let 
7c, r~ E K&E], z 6 6. Then there is a natural isomorphism (of posets) 

where the product on the right is the usual product of posets. 

Proof: The isomorphism is 

P-'(PB/"B:BE~). 1 
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We define the class of an interval [rc, a] E P to be the multiplicity 
function of the multiset (17cn,/ : BE cr} of positive numbers, which turns out 
to be cl(cr/rr): 

cl[rc, o] := cl(o/n). 

We define the equivalence relation - on P by 

[I% gl N lI71’9 0’1 iff cl[rc, o] = cl[rc’, (r’]. 

It is easy to see that the relation - satisfies Smith’s criterion for order- 
compatibility (cf. [D-R-S, Prop. 4.1]), viz.: 

PROPOSITION 1.3. If [TC, CJ] N [n’, 0’1 then there is a bijection 4: 
[n, o] + [TX’, 0’1 such that, far all p E [YE, 01, we have 

and 

The type of a segment [rr, o] E P is the equivalence class typ[n, C] of 
[n, o] under -. 

Let x = (x,, x,,...) be a sequence of formal variables, and let X be a field 
of characteristic zero. If L = (1,) a,,...) is a class, set 

x1 := xf1xp.. . 

If [n, o] E P, we identify typ[n, o] with the monomial xc’CR,u7. Note that 
typ[@, @J =x0 = 1. 

We define augmentation and diagonalization maps on K[x] by 

if I=Oorn6, (HEN), 
otherwise, 

and 

Ax” = c typCn, PI0 typb, 01, 
PE [%a1 

where [n, 01 is any segment of type x’. Note that Proposition 1.3 is exactly 
what is needed to ensure that A us well defined. A straightforward com- 
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putation (cf. [S]) show that the counitary and coassociative properties 
hold. Thus, (K[x], d, E) is a coalgebra. 

We define the product of types by 

typ[n, a] typ[d, 0’1 = typ[71+ d, (r + 0’1. 

It is easy to see that this well defined, and that it coincides with the usual 
algebra structure of K[x]. Also, if [rc, 01, [rr’, 0’1, [n”, a”] E P and 

[n, a] - [n’ + d’, CT’ + CT”], 

then there is a bijection 

c/3: [7L’, a’] x [7f, o”] -+ [n, o] 

such that 

CT (bw, P”)l - Cn’ + n”, P’ + $‘I 

and 

[qqp’, p”), a] - [p’ + p”, CT’ + CT”]. 

Under these circumstances, a straightforward computation (cf. [S]) shows 
that d and E are algebra maps. Thus, ([K[x], d, E) (with the usual algebra 
structure) is a bialgebra. Localizing at x1 makes it into a Hopf algebra (cf. 
PI). 

The linear dual K[x]* is isomorphic ‘to K[[y]], the vector space of 
formal power series in the variables y. The isomorphism is 

f -+ c F(x”) yi, 
I 

where the sum is over all classes A. 
f is multiplicative if it is an algebra map from K[x] to K, i.e., 

f E Alg,(K[x], K). In this case f is determined by the values f(xn) (n 2 l), 
or, equivalently, by the exponential formal power series (in one variable x) 

FAX) = c f(x,) x”/n! 
?I>1 

THEOREM 1.4 (Doubilet, Rota, and Stanley; cf. [D-R-S]). The con- 
volution of multiplicative functions is multiplicative, and 
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Proof. That Alg,(B, K) is closed under convolution when B is a 
bialgebra is a general fact: if J g E Alg,(B, K) then 

f*g=(fOg) o A, 

and tensor product and composition of algebra maps are algebra maps. 
If [n, o] E P and cl[n, a] = ,I, we set 

f(T 0) := f(tYPC% fll), 

and if 1El = n we set 

f(E) := f&J 

Conversely, if a rule E -+ f( E) E K assigns a scalar to every non-empty finite 
set so that f(E) depends only on II?\, then it defines a unique multiplicative 
function f by 

fbJ : = f(E), [El =n>O. 

Given two multiplicative functions f and g, detine a multiplicative 
function f i g (not to be confused with f + g, the usual addition in 
K[x]*) by the rule 

(f-i- g)(E) := f(E)+g(EL 

and a multiplicative function f. g (same caveat) by the rule 

f*g(E) := c f(E,) g(Ed, 

where the sum on the right ranges over all ordered pairs (E,, E2) of non- 
empty subsets of E such that E, n E, = @ and E, v E, = E. Then, it is easy 
to see that we have 

Ff i- ,(x1 = F’x) + F,(x), 

and 

Fpg(x) = F’x) F,(x). 

Also, define a multiplicative function y,( f ) (n > 1) by the rule 

y,(f)(E) := c f&, ~1, 
n. E fl,CEl 

582al46J2.5 
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where U,[E] := (x E Z7[E]: lnl =n}. If f’” is the nth power of f with 
respect to the product just defined, then we have 

f’“(E) = c fi f(Ei), 
El+ ‘.’ t/Z,=,!? i=l 

where the sum is over all ordered n-tuples (El,..., E,) non-empty, mutually 
disjoint subsets of E whose union is E. It follows from the definitions and 
Theorem 1.2 that 

f(% xl = I-I f(B). 
Bell 

Therefore we see that F y,cfj(~) = (l/n!) Ff..(x) = (l/n!) FAX)“. 
Let h = f * g. Then: 

W)=f*gW= 1 .!-&9&,~) 

=,;, g(xn) c f(4 n) 

= j, g&J ‘i:zL 

So, if h,(E) : = gb4 y,(f W), then 

(the infinite sum is well defined since, for each E, almost all the h,(E) are 
zero), and thus 

1.4. Plethysm 

F-e ,W = F/z(x) = 1 f’/&) 
iI>1 

= n;, dx,) Ff(-W~! 

, 

= IF,(F’W I 

Let K be a field of characteristic zero, and let x = (x,, x2,...) be an 
infinite sequence of (countably many) formal variables. Consider the 
algebra K[ [xl] of formal power series in the variables x. For each IZ > x 
define the nth Frobenius operator F,: K[ [xl] + K[ [xl] by 

FAX) := f(x,, ~2n, xw.). 

Note that F, F,,, = F,, = F, F,, . 
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The plethysm of formal power series f, g E K[[x]] with g(o) = 0 is the 
f.p.s. f [g] defined by 

flkl =W, g, Fz g, -F3 g,--). 

This operation arises in the context of Polya theory (cf., v.gr., [J]) and is 
related to Littlewood’s plethysm of symmetric functions (cf., e.g., [M] or 
[J-K]) as follows: if t = (tl, t?,...) is a new set of variables and p,(t)= 
C,>, t; (n>l) and f~K[[x]] has bounded degree, then T(t) := 
“f”(PlO)~ Pz(tL) is a symmetric function of bounded degree, and 

~fMr=ml~ 

where the plethysm on the right is Littlewood’s. 
As we shall see in the following sections, plethysm plays a role analogous 

to that of the composition of f.p.s. in one variable. 

PROPOSITION 1.5. In the usual topoZogy of K[[x]], the continuous 
algebra endomorphisms q5 which commute with the Frobenius operators F,, 
(N 2 1) are exactly those of the form 

arf=fcgl> 
where g=#x,. 

Proof. If q5 is a continuous algebra endomorphism commuting with the 
F,'s, we have 

dxn = dF,x, = Fndx, = Fn g, 

so, if f = x2 a, x2, 

qSf=c aA(F, g)“’ (F,g)“z... =f[g]. 

Conversely, if #f =f [g] then clearly g = 4x 1, 4 is a continuous algebra 
endomorphism, and 

@‘nf = V’nf Kg1 = F’nf)(F, g, J’z g,-..) ==flr;,g, J’zn cc-1 

=f(FJ, g> Fnf’z c-1 

=f(F, g(x,> ~zn,...), Fz &n, ~~rz,...L) 

=f CglcL x zn>-+)=Fn(f Cgl)=~ndt I 

Finally, observe that plethysm is associative, that f[xl] =A and that if 
g(O)=0 then x,[g]=g. Thus, the set {fEK[[x]]:f(O)=O} forms a 
semigroup under plethysm. 
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II. THE PARTITIONAL CASE 

2.1. Transversals 

The concept of transversal of a partition was introduced in [N-R]. It 
plays for partitions and plethysm a role similar to that played by partitions 
for sets and composition (substitution). In particular, it can be thought of 
as a notion of “partition of a partition.” Here we define an ordering of the 
transversals that further extends this analogy and proves that the plethysm 
of partitional formal power series in infinitely many variables is related to 
an incidence algebra, a fact whose consequences are yet to be fully 
developed. 

Let (E, 6) be a partition. An ordered pair (z, .t.) of partitions of E is said 
to be a transversal of 0, and the triple (a, X, z) is called a transversal, if the 
following conditions hold: 

(1) 7c < 6, 
(2) 7ln/\=o, 

(3) the partitions 72: and z commute, and 

(4) rJvz=nvz. 

The reader can visualize this concept as follows. If (E, G, z, z) is a trans- 
versal, then the elements of E can be arranged in a collection of matrices 
whose rows are the blocks of 7 and whose columns are the blocks of 7~ 
(because of (2), (3) and Proposition l.l), the blocks of (T being unions of 
columns (by (1)) of the same matrix (by (4)). The matrices are the blocks 
of r~ v z = 7~ v z. One such collection of matrices is said to be a represen- 
tation of the transversal (a, 71, z). Conversely, if a triple (0, rc, z) of par- 
titions of the same set admits one such representation, then the triple is a 
transversal. Observe that the representation of a transversal is not unique: 
rows and columns can be arbitrarily relabeled in each matrix. However, if B 
is known, any representation compatible with Q defines a unique transver- 
sal of cr. 

If (a, n, z) is a transversal and B v z = z v 7 = 1, then it is called a small 
transversal of length Jz 1. 

Let T[o] be the set of all transversals of c. Observe that the triples 

a:= O”:= (O,~,O) 

and 

T:= -I”:= (c&O,?) 

are always in T[a]. 
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We define the direct sum (or disjoint union) of transversals by 

(E, cr’, d, 7’) -t (F, a2, n2, z”) := (Ef F, r+ + 02, 7~’ + rc2, 21 + TV), 

which is clearly a transversal, as can be seen by considering represen- 
tations. 

Let (E, G’, rc, T) be a transversal. If B C_ E is a union of blocks of 0, we 
define the restriction of (0, z, z) to B by 

which is again a transversal since it has a representation. 
Observe that (G., 71, z) = C,, ((T, rc, z)~ for any p 3 CT v z. 
Define an auxiliary ordering in T[o] by 

(0, n, 2) 6’ (6 n’, z’) iff 7-r 3 E’ and z d z’. 

The relation d ’ is clearly an ordering. 
Define a relation < in T[o] by 

iff (a, z, z) 6’ (0, E’, z’) and 7t’ and z commute. 

PROPOSITION 2.1. ( T[cT], d ) is a poset with minimum 8” and maximum 
-0 1 . 

Proof. The only non-trivial thing to verify is the implication that 
(0, n’, r’) d (g, 71, z) < (cr, n2, r2) + z2 and t’ commute. 

It follows from the antecedent of this implication that 

7c2 v T1 < (7c v 7’) .A (n” v z) (1) 

since the left-hand side is liner than both terms of the meet on the right. 
Let BE z2 v z’, and let A E $+, EE rb. By Proposition 1.1, all we need to 

show is AnE#%. 
By (l), BcCnD, where CETC v Al, D~7-c~ v z. Since n2<q there is 

dEzc with AcA. Since z’<r, there is ,!?ErD with Eci? Since rc and r1 
commute, we have 

%#EnJcB, 

and since 7c2 and z commute, we have 

%#EnAcB. 

If A n E = @, then A intersects a block E, E zh, El f-E, EE ,!?. Therefore 2 
intersects both E and E,, so 12 n El > 1, contradicting 7~ A z = 6. 1 



226 OSCAR A. NAVA Z. 

The poset (T[a], < ) is not ranked in general (e.g., T[ (1,2/3, 4/5}] is 
not ranked). Nor is it a lattice (e.g., T[ ( (l,..., 8 > >] is not a lattice; thanks 
to M. Haiman for this observation). 

The author cannot think about this ordering except in terms of the 
operations on transversals to be described shortly. 

PROPOSITION 2.2 (The “local” character of < ). (a) If p > rr v r’, then 

(0, 71’9 z’) d (6 n, z) ifs VB E p: (0, 7t’, z’), < (a, zn, z)~ 

(b) If t = (rs, rc, z) is a transversal and p > o and for each BE p we are 
given a transversal sB= (gB, #, z”) such that sB< t,, then CBEp sB< t. 

Proof: (a) Since p >, rc, clearly rc’ > rc iff VB E p: ni 3 7tg. Since p 2 z’, 
clearly z’ 6 r iff VBE~: z; d zs. By Proposition 1.1, since p > n v z’ we 
have: 7~ and r’ commute if VBE~: rrg and z& commute. 

Part (b) follows from (a) by observing that if CBEp sB = : (o., z’, z’), then 
by construction r’ < p, so p 3 o v z’ 2 7c v z’. 1 

The ordering of transversals can be visualized with the aid of the follow- 
ing operations. Let t = (B, X, z) be a transversal. The descending operations 
are of two kinds: 

(1) Splitting. Given a partition p 3 cr, the result of splitting t 
according to p is the transversal CBEp ((TV, nB, rg) = (a, 7c, z A p). 

If odp Q B v z (i.e., IpJ = 10 v zj + 1 and o<p do v 2) then splitting t 
according to p is an elementary splitting. The visual effect of an elementary 
splitting is to split into two matrices, by a vertical cut, one of the matrices 
(with conveniently relabeled columns) of a representation of t. 

(2) Thinning. This operation affects only t,, where B is the chosen 
block of r~ v r, so we shall assume CJ v z = 1 in order to simplify notation. 
Let n be a common divisor of all the )7tJ for C E cr. An n-thinning consists 
of choosing a small transversal (71, Z) of length n of the partition ~/rc, and 
then forming the transversal (n’, r’) of c whose components are defined by 

and 

where 7” is defined by 
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A representation of (rr’, r’) can be obtained by replacing the entries of a 
- - 

representation of (rc, r), which are blocks of rc, by the corresponding 
columns of a representation of (n, t). 

If n is prime then an n-thinning is an elementary thinning. 
Note that the effect of any descending operation can be achieved by a 

sequence of elementary descending operations. 

PROPOSITION 2.3. Let t’= (0, Y?, 6’) E T[cJ], i = 1, 2. Then t’ d t2 ijf there 
is a sequence of descending operations transforming t2 into t’. 

Proof. That descending operations produce finer transversals follows 
easily from the definitions and Proposition 2.2. 

Now assume t’ < t2. Split t* according to p = cr v r1 3 cr to get CBEp t’,. 
Since t’ = CB EP ti, if we show that we can thin t$ to get t!+ we are done. 

Thus, we have reduced to the case t’ < t*, B v r1 = rrl v r1 = o v r2 = 
rz2 v r2 = ‘i. Then, in every block of 7c2 v rl, no two blocks of 71’ are in the 
same block of rcl (otherwise x1 A r1 # 6, as in the proof of Proposition 2.1) 
and no two blocks of r1 are in the same block of t2 (otherwise r2 A x2 # 6). 
From this it follows that there are representations of t’ and t2 consisting of 
matrices for the blocks of rc* v r1 aligned vertically in the case of t’ and 
horizontally in the case of t*, so the desired thinning is possible. More 
precisely, we thin t* according to the small transversal (a/x2, 5, Z) defined 
by 7( = n’/n*, ? = (7~’ v z’)/rc’. 1 

COROLLARY 2.4 (The cover relations in Tccr]). Let t’, t*E T[oJ. Then 
t’ G t2 iff t’ is the result of performing an elementary descending operatiorz 
on t2. m 

COROLLARY 2.5. Let t’= (0, xi, ri) E T[o], i= 1,2, t’ < t*, and 
G v T* = 1. Then there is a natural poset isomorphism 

(b: [t’, t2] N T[(o v ?)/(n’ v z’)] 

ProoJ The isomorphism can be described as follows. Let 
0 = (cr v z’)/(rc” v r’). Choose representations of t1 and t2 consisting of 
matrices for the blocks of rc2 v rl, aligned horizontally in a single row in 
the case of t*, and vertically in possibly several separate columns in the 
case of t’ (cf. proof of Proposition 2.3). Then, given in T[O], substitute the 
entries of the matrices of a representation of t by the corresponding 
matrices for the blocks of ?t2 v rl, thus obtaining a representation of a 
transversal t E [t’, t2]. The correspondence 
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is the desired isomorphism, which can also be described by 

ii = (n v  z’)/(7c’ v  7’) and z= (z v 7c2)/(7c2 v 7’). l 

THEOREM 2.6. (The Natural Factorization of Intervals of Transver- 
sals). Let t’= (0, z’, 7’) E T[o] (i= 1,2), t’ < t2. Then there is a naturaZ 
poset isomorphism 

[t’, t2] N n T[(o v z’)B/(7L2 v T’)J. 
BEdVr2 

ProoJ: By Proposition 2.2, the correspondence 

t)(t)= (t,: BEG v z’) 

defines a natural isomorphism of posets 

I//: [tl, t2] ik: n L-t;, t2,]. 
BEOV~~ 

Now use Corollary 2.5. 1 

COROLLARY 2.7. (Upper and lower intervals in T[o]). Let 
t = (c, x, T) E T[o]. Then 

[I@, tl= n TL-o,I~iJ, 
BEUVT 

and 

[t, I”] 2: T[(o v z)/z]. i 

2.2. The Large Reduced Incidence Bialgebra of Transversals 

Let T be the class (in the set-theoretic sense) of all the intervals of all the 
posets of transversals of partitions of finite sets. Given [t’, t2] E T, define 
M[t’, t2] to be the multiset of the classes of the partitions appearing in the 
natural factorization of [t’, t*] (cf. Theorem 2.6); i.e., if t’= (a, rc’, 8) 
(i = 1, 2), then 

M[t’, tq := {cl((o v &?/(7? v rl)J: BE6 v r’}. 

Define an equivalence N on T by 

IIS, fl - Cs’, t’l iff M[s, t] = M[s’, t’]. 
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Just as for partitions (Proposition 1.3), we clearly have 

PROPOSITION 2.8. If [s, t] - [s’, t’] then there is a bijection I$: [s, tj -+ 
[s’, t’] such that, for all u E [s, t], we have 

and 

CUT flN C&u), d(t)l. I 

Note that M[s + s’, t -t- t’] = M[s, t] u M[s’, t’], a union of multisets 
(i.e., we add multiplicities). As in the case of partitions, we clearly have 

PROPOSITION 2.9. Zf [s, t], [s’, t’], Es”, t”] E T and [s, tf - 
[s’ -t s”, t’ + t”], then there is a bijection 

$4: [s’, t’] x [s”, f”] -+ [s, t] 

such that 

[s, qqu’, u”)] - [s’ + SV) 24’ t u”] 

and 

[is(u’, U”), t] - [u’ f U”, t’ + t”]~ I 

Let K be a field of characteristic zero. Let X be a set of formal variables 
x2, one for each class ,!. = (1,) A,,...) # 0. Let K[X] be the usual K-algebra 
of polynomials in the variables X. If h4 is a finite multiset of classes, define 
X”rzK[X] to be the monomial 

where M(1) is the multiplicity of 3, in M. Observe that 22”‘” M’ = X”XM’ 
and X0= 1. 

Identify the equivalence class of [s, t] E T under N with X”rs,r7, and 
define augmentation and diagonaiization maps 

E: K[X] -+ K 

d: K[X] -+ K[X] @ K[X] 

i 

1 
E(M) = 

if M= (zr or M= {6,, 6,,..., G,)(M(G,)arbitrary) 

0 otherwise, 
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and 

where [s, t] is any segment with M[s, t] = M. 
Proposition 2.8 and 2.9 ensure that the genera1 results of Schmitt apply 

(cf. [S]), so we have 

THEOREM 2.10. Let B(T) be the structure (K[X], A, E) with the usual 
algebra structure. Then B(T) is a bialgebra, and localizing at x6, makes it 
into a Hopf algebra. 1 

The dual B(T)* = Mod, (B(T), K) is the (large, reduced oncidence 
algebra of transversals. As a vector space, it is isomorphic to the vector 
space K[ [Xl] of formal power series in the variables X. 

A function f E B( T)” is multiplicative if it is an algebra map, i.e., 
f~Alg,(K[Xl, K). As we saw in the proof of theorem 1.4, Alg,(K[X], K) 
is closed under convolution; it is in fact a semigroup, since the convolution 
in B(T)* is associative (by the coassociativity of d) and its identity is E (by 
the counitary property), which is multiplicative. 

A multiplicative function f~ B( T)* is determined by the values f(xj,) 
(x1. E X), or, equivalently, by the partitional generating function 

W(X)= C fCxj.) x”laWA), 
if0 

a formal power series in the new variables x = (x,, x,,...) without constant 
term. 

We can now state the main result. 

THEOREM 2.11. Let f, g E Alg,(K[X], K). Then 

W*g)=GgCGfl, 

i.e., the semigroup of multiplicative functions of B( T)*, under convolution, is 
anti-isomorphic to the semigroup of partitional formal power series in the 
variables (x1, x,,...) without constant term, under plethysm. 

Proof For f~ B( T)* and [s, f] E T, write 

f( [s, t]) : = f(x”‘sz”). 

For f multiplicative, define, for c a partition of class 1# 0, 

fto) I= f(n) := f([au, iq). 
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Conversely, if a rule 0 *f(o) E K assigns a scalar to every non-empty 
partition so that f(o) depends only on cl(o), then it defines a unique mul- 
tiplicative function f by 

f(xJ : = f(o), cl(o) = n # 0. 

Given a family { fj: i E I} of multiplicative functions such that, for. every 
2 # 0, j”,(n) = 0 for almost all i E 1, define a multiplicative function CiE, f; 
by the rule 

( 1 
pi (0) := c “fi(fl). 

ial 

This sum is not to be confused with the usual sum in B(T)*. Clearly we 
have 

G cJ;.=c Gfi. 
iSI iSI 

Define a product (different from convolution) in Alg,(K[X], K) by the 
rule 

f.g(a) := c f(o,) g(od, o,+crz=c7 
where the sum ranges over all ordered pairs (gl, CT*) of non-empty par- 
titions such that g1 + rr2 = cr. Since the number of such pairs with cl(o,) = p 
and cl(a,) =,v is 

A! aut(L) 
&!=aut(p) aut(v) 

if p t v = 1, 

0 otherwise, 

it is easy to see that 

Kf. g) = (Gf)(Gg). 

It follows that f’“, the nth power of f with respect to this product, is 
given by the rule 

f’“(a) = c f(a,)...f(o?A 
(w,....atd 

where the sum ranges over all ordered n-tuples (cl,..., B,) with 
(21+ *.. + o, = (T. Thus, if we define a multiplicative function y,( f ) by 

Y,(f)(o) := c f(~l)~..f(@,), 
iUl.....O,} 
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where the sum ranges over all (unordered) n-element sets (Go,..., a,} such 
that g1 + . ‘. + gn = CJ, then 

and therefore 

@n(f)= (GfY/n!. 

Let ;1 be a class and n 3 1. The nth Verxhiebung of ;1 is the class A{“} 
defined by 

j&h”’ := 
a kin if nl k, 

0 otherwise. 

Let T,[o] be the set of all small transversals of c of length ~1. If 
(n, z) E T,[o] and cl(o/n) = ,U then cl(a) = pin}. An elementary counting 
argument (cf. [N-R]) shows that if cl(a) =,uIn) then IT,[o]l = (l/n!) 
nk, 1 ((knYlk!Yk. 

Given a multiplicative function f and it 2 1, define a multiplicative 
function f iJ2) by the rule 

fqT):= c f(o/n). 
(%t) E rfllIa1 

Then it is clear that 

f:"'(+ 

1 

(l/n!) n ((knY/k!Ykf(~L) if R=p{“), 
k>1 

0 otherwise. 

A straightforward computation then shows that 

Gf{“l(x) = (l/n!) Gf(x,, xzn,...) 

= (l/n!) F,,GJ; 

where F, is the nth Frobenius operator (cf. Section 1.4). 
Define the (upper) class of a transversal t = (0, x, z) as the class of the 

partition (a v 7)/z: 

cl(t) : = cl((0 v 7)/z). 

Given a class 1# 0, define 

T*[a] := {tET[fT]:Cl(t)=a). 
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Given a multiplicative function f and a class 1, # 0, define f EL] by the 
rule 

Note that by Corollary 2.7 we have 

f %) = c .fm”, tl). 
f E Tj,[o] 

It follows from the definitions that if A = k6, then 

p1 =yJpl). 

Next, observe that for an arbitrary i # 0 we have i = Cke I /2,6,, where 
I= (k: R,#O), and 

Therefore: 

Gf CA] = n @-bbdkl = 

ktl 
,rlr, u/~k!M(~kGfYw”k 

= (l/aut(;l)) n (F,Gf )““. 
k>l 

Finally: 

so 

G(f*g)=G c g(i)f["' 
( A#0 > 

=,;, dWfcA1 

= i;. g(a) ,Fl (h$?f)ik/a'Jt(~) 

=W@-I. I 
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We next compute the MGbius function p of B(T)* by combinatorial 
methods, thus obtaining a combinatorial interpretation (and computation) 
of the plethystic inverse of the formal power series exp En+ 1 x,/n! - 1, 
which is the generating function G[ of the zeta function of B(T)*. Since p is 
multiplicative, it suffices to compute ~(1) := p( T[o]) (where cl(c) = A) for 
all classes A # 0. 

The main tool is the following theorem of Rota (cf. Theorem 2 of CR]). 
Let P be a poset. A (dual) closure on P is a function x+X of P into itself 
which is order-preserving and such that X < x and 2 = X for all x E P. 

THEOREM 2.12 (Rota). Let P be a finite poset with minimum 6 and 
maximum Î, and let x + X be a (dual) closure on P such that 7 < 1. Let a E P. 
Then 

where pp is the Miibius function of P. 1 

First we prove that if 1= (,I,, &,...) has more than one non-zero entry, 
then ~(2) = 0. Let (E, g) be a partition of class 2. Choose k such that 
& # 0. Let (Ek, ok) be the partition defined by 

(Tk := (BEo: IBI =k}, 

and let C be the difference set 

C:= E-E,. 

Define p E IIl[E] by 

p := (C, q. 

Clearly, p 3 0. By hypothesis, p < lE. 
Define a (dual) closure I + i on T[o] by 

t : = the splitting of t according to p. 

Sincep<~2,,~<i”.Leta=8”.Then {tET[o]:i=a=~“)={8u). Soby 
Theorem 2.12 we get p(n) = 0. 

We are left with the case in which d has only one non-zero entry. So let 
,I= k6,. We treat the case k > 1 first. Let o be a partition of class 
a= (k + 1) 6,. Then d consists of k f 1 blocks B,, B, ,..., B,, each of size n. 

Define p E I7[E] by 

p=(B,,B,u ... uBk). 
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Clearly, 0 < p < LiE. Define a dual closure t -+ t on T[E] as before. Clearly 
ivig. Let a := @=I?. 

If t = UG and t # 0” then t has the form t = (rr, CT, z), where z is such that a 
representation of t Iooks like 

II II . . . q 
all blocks BI ,..., Bk except some block B, 8, and BCJ 

so cl(t) : = cl((c v z)/z) = kc5,, and the number of such transversals is easily 
seen to be k. n! Corollary 2.7 and Theorem 2.12 then give us 

o= C p(t,iy=p(Opy+ 1 A4 X0) (t: t-=0} {t#zi: i=B} 
=p((k+1)6,)+k+n!p(kd,). 

From this recursion (in k) we get 

p(kd,) = (- l)k-’ (k- l)! n!k-‘p(Gn). 

Finally, we compute ~(6,) using Hall’s theorem (cf. [R, Prop. 61). Let 
fl=lE, (El=n. Leti”=t,>t,> ... > t, = Ua be a k-chain in T[G], where 
tj = (cr, 7t,, rj). Then tj is an n,-thinning of tj- i, where 

We say that the chain has type (n,, n2,..., rrk). Observe that the type is an 
ordered factorization of n into k factors. Using the formula for the number 
of small transversals of given length of a partition (cf. proof of Theorem 
2.11) and the definition of thinning, we obtain that the number of chains in 
T[o] of type (n 1 ,..., nk) is n!/n, ! . . . n k! Hall’s theorem then gives 

,u(6,)= C (-l)kn!/n,!*..n,!, 
h.--4%) 

i.e., 

p(&J/n!= c (-l)~/nl!Yzk!, 
(nt....mc) 

where the sum ranges over all ordered factor&&ions of n. Recognizing the 
right-hand side as the Dirichlet-convolution inverse of the function 
n 4 l/n!, we get the following recursion for the ~(6,)‘s: 
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We can now easily compute Gp and get 

G(g) = log fl (1 + x,)~@~)‘~!. 
?l>l 

2.3. Morphisms between Partitions 

In this section we define a notion of morphisms between partitions, 
whose kernels are transversals. The resulting category of partitions has as 
isomorphisms the usual ones, viz., those described in Section 1.2. In the 
spirit of [J-R-S], we introduce two sequences of polynomials in x 
(indexed by classes) which count morphisms and monomorphisms, prove 
that they are of “binomial type”, and find expressions for the connection 
constants by summation and differentiation (Mobius inversion) over the 
poset of transversals, thus obtaining partitional analogues for P, (x), and 
the Stirling numbers of first and second kind. 

First we must go back to the classical case. If 8 E + F is a function 
between (finite) sets, the kernel off is the partition ker f of E whose blocks 
are the fibers f -l(y) (y E F) of J: Note that f is injective iff ker f= 6,. 
Also, if D c E, ker f 1 D = (ker f)D. In general, ker g 0 f 3 ker J: 

If f: E -+ F and z < ker f, we define a function 

(fin) : = f(x), any xEB(BEn). 

Observe that ker(f/rc) = (ker f )/rc, that f/n is injective iff ker f= rc, and 
that the correspondence f --+ f/7c is a bijection between the set of functions 
f: E -+ F with ker f 2 rc, and the set of functions f: rc + F. 

Now let (E, 0) and (R, p) be partitions A morphism f: (E, CJ) -+ (R, p) is a 
pair f = (J; 7~) consisting of 

(1) a function f: E -+ R such that 

l (VB E o)(f(B) E p), i.e., f sends blocks of c onto blocks of p, and 

l (VB--W’Y~~YY=~W (If-‘WnBl = If-‘(YJnBl)~ i.e., 

for all BE 0, f 1 B is an n-to-one function for some n; 

(2) a partition n~n[E] such that 

. 7cQa 

l for all BE Z, f 1 B is injective, and 

l (VB E ~r)U-(B) E PI 
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We denote by Mor(o, p) or Mor((E, c), (F, p)) the set of morphisms 
f: (4 0) -+ (K PI. 

We define the kernel ker f of f = (f, n) to be the pair of partitions 
(n, ker f). It follows easily from the definitions that ker f E T[o]. 

If D E E is a union of blocks of c, we define the restriction f j D of f to D 
by 

fl D := (flD, nD)EMor(aD, PI. 

Note that ker fi,= (ker f)D. 
A morphism f = (f, n) is a monomorphism if f is injective. Clearly, in 

such case ker f = @. We denote by Mon(o, p) or Mon((E, o), (F, p)) the 
set of monomorphisms. 

Next we define the composition of morphisms. Let f = (h xl): (E, CT) -+ 
(F, p) and g = (g, 7~): (F, p) --$ (G, w) be morphisms. Then their com- 
position h = g 0 f is the pair h = (h, rc), where h = g of and n: E D[E] is 
defined in terms of equivalence relations (cf. Section 1.2) by 

x- ,Y iff x N ,,Y andf(~)-,~fbd. 

It is straightforward that h E Mor(a, CO), and that this composition is 
associative. Also, notice that ker(g 0 f) >, ker f, which can be seen by observ- 
ing that, for each BE o v kerf, (ker f)B = ker f lB is a thinning of 
ker(gof)(.= (ker gof),, and then using Proposition 2.2(a). 

Although the strictly categorical aspects of this theory lie beyond the 
scope of the present work, we shall make use of the following fact: 

PROPOSITION 2.13. The disjoint union of partitions is the direct sum in 
the category of partitions and morphisms. 

Proof. Let {(Ei, oi): iE 1} be a finite set of partitions. Let (E, 0) : = 
Cicl (Ei, (TJ, and for each iEl let h = (hi, oEi): (Ej, oi) + (E, O) be defined 
by hi(x) =x (x E I&). 

Then, given a partition p, the correspondence 

ij:f-+(fi=flE,:ieI) 

is clearly a bijection 

I+!I: Mor(a, p) 2: n Mor(o,, p) 
is/ 

such that fohj=fi. g 

The author believe that in this category direct products do not exist, an 
obvious candidate having failed. 

582a/46/2-6 
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PROPOSITION 2.14. Let (E, a), (F, p) be partitions, and let t, = 
(7co, To) E T[o]. Let 

Mor@(a, p) : = {f E Mor(o, p): ker f 3 to>, 

Mor,,(o, p) : = {f E Mor(o, p): ker f = to>. 

Then there is a natural bijection 

q5: Mor’O(a, p) N Mor((a v z,)/z,, p) 

whose restriction gives a bijection 

Mor,,(o, P) = Mon((a v  dh, ~1, 

ProoJ Given f = (A 7-c) E Mor@(o, p), define 

d(f) := c.L 3, 

where 

f:= fl%, 

ii := (7c v z,)/zo. I 

Observe that if ker f = t and ker 4(f) = i then the correspondence t -+ i is 
the natural isomorphism of Corollary 2.7. We define, for f E Mor”(o, p), 

f/t, : = d(f) E Mor((ci v rO)/zO, p). 

COROLLARY 2.15. There is a natural bijection 

Mor(o, p) N c Mon((a v z)/z, p). 
C&C) E ToI 

ProojI The bijection is 

f = (f, n) -+ (ker f, f/ker f). m 

PROPOSITION 2.16. Let cl(o)=il, cl(p)= {. Then 

(a) ~~(5) := lMor(o, p)l = n (z & i-,);n3 
n>l 

(b) ~~(0 := lMon(a, PII = n n!“n(i;,),+ 
n>l 

where (m), := m(m- l)... (m-n-k 1) is the usual lowerfactorial. 
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Proof. Part (b) follows easily from the definitions. 

(a) Since 0 =CBEO I,, by Proposition 2.13 we have 

Mor(o, p) N n Mor(l,, p). 
BE0 

Clearly, Mod,, P) = CsEp Mor(l,, lc), a disjoint union of sets. If IBl = n 
and (Cl =d, then Mor(l,, I,-)= @ unless din. If d/n, by Corollary 2.15 
(Mor(l,, I,-)1 = lTd[TB]l d! = n!/(n/d)! The result follows. @ 

PROPOSITION 2.17. The polynomial sequences {p,(x)> and (q?,(x)} are 
of “binomial type,” i.e., they satisfy 

Pn(x+Y)= c 
A c 1 jJ+v=2. P,v 

P,(X) PLY ), 

where the sum ranges over all ordered pairs (II, v). Similarly for the q).‘s. 

Proof. It suffices to prove the identity for integral values of x and y. Let 
cl(o) = A, cl(p) =x, cl(o) = y. Then each f6 Mor(a, p + o) naturally (and 
uniquely) decomposes in a pair (fl, f2) E Mor(o,, p) x Mor(o,, w), for 
some pair (a,, cr2) with g1 + 02= (T. Hence the identity for the p;,‘s. 
Similarly for the 4;s. 1 

Let cl(a) = I, cl(p) = x. Define functions f, g: T[cr] -+ K by 

f(t) := lMor'(o, PII, 

g(t) := lMor,(o, PII. 

Then 

f(t)= c g(s), (1) 
sat 

and by Mobius inversion we have 

g(t) = c At, s).f(s). (2) 
sg* 

In particular, by Proposition 2.14 and Corollary 2.15, we get from (1) that 

PA(x)=f(@? = 1 g(t) 
fE T[cr] 

= c qc,&) 
fe T[u] 
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where 

S(A, v) := IT”[O]l. 

Similarly, from (2) we get 

41(x) = du = c Pu(F t)Pcl(r)(x) fE T[u] 
= c a V)P”(X)> 

where 

s(A, v) := c pp, t). 
I-e T”CO1 

As a consequence, since {qA(x)} is clearly a linear basis for K[x], our 
computations show that {pn(x)) is also a basis, a fact which prima facie is 
not clear to the author. 

III. THE PERMUTATIONAL CASE 

3.1. Permutations and Compatible Partitions 

Let ,Y[E] be the group of permutations of the (finite) set E. We use the 
usual multiplicative notation for composition in S[E]. If a~s[E] and 
DEE is such that a(D) = D, then 

RD := LX jD~S[D]. 

We denote by ~3 the partition of E induced by the disjoint cycle decom- 
position of ~1: 

ii:= (BzE:xg is cyclic, B#@). 

Observe that 

jig= (f?JD =: iii,. 

We define 

cl(ct) : = cl(E). 

It is well known that two permutations are isomorphic iff they have the 
same class, and that the number of automorphisms of a permutation of 
class /z is 

aut’(l) := fl n”‘&! 
iZ>l 
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The disjoint union (or direct sum) of two permutations (E, c!), (F, fi) is 
the permutation 

where CI + p is defined by 

(a+p)E:= a 

(a + p)F : = p. 

Observe that 

A partition z E n[E] is compatible with CI, if, for x, y E E, 

Equivalently: 

x- ,Y iff cxx -T ay, 

(VBGT) (a(B) E r). 

We denote by C[cr] the set of all partitions compatible with c(. In 
Bergeron’s theory of species over permutations (cf. [B]), C[CX J plays a role 
analogous to that played by T[o] in the theory of partitionals of [N-R]. 
We shall prove in this section that the usual refinement order on Cl[a] 
gives a large, reduced incidence bialgebra related to the plethysm of “per- 
mutational” formal power series. 

Note that if a(D) = D and r E C[a], then zD E C[K~]. Also, if z is com- 
patible with a and /?, then it is compatible with c@, and in particular 
with an. 

PROPOSITION 3.1. With the usual refinement order, C[LX] is a sublattice 
of Lf[E], where CI E S[E]. 

Proof Clearly, oE, fen C[cx]. Let n, z E C[a], x, y E E. Then: 

x- XAT Y iff x- ,Y and x-,Y 
iff ax--, ocy and LXX-~ ay 

iff ax-,,.oly, 

so 7~ A z E C[M]. That n v z E C[cl] can be shown in a similar fashion using 
the characterization of 7~ v z in terms of equivalence relations (cf. Section 
1.2). 1 
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If z E C[IX], clearly CI induces a permutation 

a\r E S[r] 

by 

Observe that 

(a\r)(B) := a(B) (BE r). 

(cI\r) = (E v r)/r. 

Let BE z E C[U], B c D E & v r. Then zD is (the underlying set of) the 
cycle of a\z containing B. The trace of CI on B is the permutation 

tr, a E S[B] 

defined by 

tr, CI := (an), =: a;, 

where n : = lzDl is the length of the cycle of a\~ containing B. Observe that 
if B’ is another block of z contained in D, then there is a k 2 1 such that 
d(B) = B’, and therefore gk is an isomorphism between the permutations 
tr, a and tr,. CI. Note that 

tr, c( = (6)B = : EB. 

We build representations for z E C[E] as follows. First assume that 01 is 
cyclic, i.e., 2 = ‘i. Then a\r is cyclic, and if z = {B1,..., B,), then 
lB,l = ... =JB,I=:m. If 

then a has the form 

@ = (a,,,..., a,,, al2 ,... , an2 ,..., a,, ,..., aA, 

where 

trg, CI = (ajl, a, ,..., ati). 

We represent the pair (a, z) by the matrix [a,]. We obtain a different (but 
equivalent) representation of (a, z) for each way of writing a\z as in (1). 

Next assume a arbitrary, but cl v f = ‘i. Let 

a\r = (B1,..., B,). (2) 
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Again, lBll = ... = lB,[ =: m. Let @ = { Cr ,..., C,}. Then rck E C[c+,], clck is 
cyclic, and 

Q\Q, = (B, * Cw., B, * Cd. (3) 

Build a representation [a:] of (a,, rc,) according to (3). Obtain a 
representation [bii] of (a, r), corresponding to (2), by horizontally 
juxtaposing the matrices [a$] (k = l,..., r), thus obtaining a matrix with n 
rows, each representing a trBi CI. 

Finally, a representation of an arbitrary pair (a, z) is a set of matrices 
{M,: BE& v r}, where M, is a representation of (a,, rs). 

Notice that different representations of (CX, z), viewed as representations 
of transversals of Z, do not define a unique transversal. Even so, one could 
try to choose representations appropriately to obtain an embedding 
C[M] -+ T[Z]; this, however, is not possible in general: 
C[( 1,2, 3,4)(5, 6,7, S)] is not embeddable in T[ { 1,2, 3,4/5, 6, 7, S}] in 
this fashion; nor is it ranked. 

Next we define descending operations on z E: C[a], analogous to those on 
transversals. 

Given p 3 cl, the splitting of z according to p is the partition z A p, which 
is compatible with a, as representations show. The splitting is elementary if 
Jpl= Icl v 2}+ 1, fidp<cc v z. 

If G( v r = i and n is a common divisor of the lengths of the cycles of tr, cx 
(BE r), then an n-thinning of z is a partition z’ E C[R] corresponding to a 
representation I# obtained by the following procedure. Choose a represen- 
tation M of (c(, z). Let tr, a (BE r) be the trace represented by the first row 
of M. Choose r* E C[tr, a] with L?, v t* = 1 and Iz*j =n. Choose a 
representation M* of (tr, a, z*). Finally, construct M’ by replacing each 
entry of M* by the corresponding column of M. 

If n is prime then an n-thinning is an elementary thinning. 

PROPOSITION 3.2. Let c, z E C[E]. Then o d 7 iff there is a sequence of 
descending operations transforming z into 0. 

ProoJ: As in Proposition 2.3. [ 

COROLLARY 3.3. The couer relations in C[a] are obtained by elementary 
descending operations. 

In the sequel, if 0, ZE C[U] and ob z, then [o, r] := (p E Cccl]: 
c&p++ 

PROPOSITION 3.4. If CT, z E C[a], cr d z, k v z = 1 and BE 2, then there is 
a natural poset isomorphism 
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THEOREM 3.5 (Natural factorization of intervals in C[a]). Let 
o, T E C[cr], a <z. For each BE cl v Z, let B* E zg. Then there is a natural 
poset isomorphism 

Co, 71~ n CC(trB* a)\o,*l. 
BEavr 

In particular, 

[b, z] N fl C[tr,. cr], 
BEBVr 

and 

[z, I] N C[cr\z]. 

Proof Clearly [a, z] N nBEs v T [cJ~, zB]. Now use Proposition 3.4. 1 

3.2. The Large, Reduced Incidence Bialgebra of Compatible Partitions 

Let C be the (set-theoretic) class of segments of C[a]‘s. For [o, z] E C, 
using Theorem 3.5, define M[a, 2-J as the multiset 

k.t[C, Z] := {cl((tr,* tX)\O,*): BEZ V Z), 

which does not depend on the choice of the B*‘s. 
We repeat, mutatis mutandis, the construction of Section 2.2, obtaining 

B(C) := (K[X], A’, E) with the usual algebra structure. 

THEOREM 3.6. B(C) is a bialgebra, and localizing at xsl makes it into a 
Hopf algebra. 1 

The multiplicative functions of B(C)* are determined by their per- 
mutational generating functions 

Glf(x) := c f(xJ x’/aut’(i). 
A#0 

THEOREM 3.7. The semigroup of multiplicative functions of B(C)*, under 
convolution, is anti-isomorphic to the semigroup of permutational formal 
power series in x without constant term, under plethysm. 

Proof For f E B(C)* and [rc, z] E C, write 

f( [7-c, r]) := f(P-3’1). 
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For f multiplicative and a a permutation of class i # 0, set 

f(a) :=f(i) :=f(C[a]). 

As in the proof of Theorem 2.11, define 

( 1 Ffi ta) :=CfiCa), 
i 

f. g(a) := c f(%) ff%J? ci,+cq=a 
y,(f)(a) := c .f(%)...f(%). 

{~I.-.,%] 
G’ behaves as before for these operations. 

Let C,[a] := (ZE C[rx]: 8 v z =I, (z( =n). Then, if cl(a)=p{“}, 
IC,[a]j =rP-1, where jpcLJ= xi, 1 pi. Define 

f(“)(a) := C f(tr, K), 
7 E C,Cal 

where the choice of BE T is arbitrary. Then 

f'"'(n) = 
n'"'-'f(p) if A+") 

0 otherwise, 

so G’f l”}(x) = (l/n) F,G’f(F, as in Section 1.4). 
For z E C[Icl] define 

cl’(z) := cl((Z v 7)/T). 

Given a class ;1# 0, define 

C,[cc] := {z f q-a]: cl’(z) = .I}, 

and 

fC”l(o) := C 
r~C,&a] BE&V T  

Then, as in Theorem 2.11, 
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and therefore 
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G’fc”l = (l/aut’(l)) fl (lO,G’f)‘k. 
kS1 

The rest of the proof is entirely analogous to that of Theorem 2.11. 1 

The computation of the Mobius function p’ of B(C)* follows the same 
lines of that of the partitional case. Using similar dual closures on C[a] 
one gets that $(A)=0 if 1 has more than one non-zero entry, and for 
1= (k -t 1) 6, one gets the recursion 

0 = p’((k + 1) 6,) + kn$(k6,), 

so 

p’(k&)= (-1)k-l (k-l)! nk-‘$(6,). 

Finally, if cl(a) = S, then C[a] is isomorphic to the poset {d: d 1 n > under 
divisibility, so ~‘(8,) = p(n), the classical Mobius function. 

Thus, one easily computes 

G’,d = log fl (1 + x,)“(“)‘*, 
n>l 

the plethystic inverse of 

G’c’ = exp c x,fn - 1. 
n>l 

3.3. Morphisms between Permutations 

In this section we carry out, for permutations, the program of Section 
2.3. 

In the sequel, we shall denote by juxtaposition the composition of 
functions, and use the conventions at the beginning of Section 2.3. 

Let (E, a) and (P’, /.?) be permutations. A morphism f: (E, a) -+ (F, p) is a 
function f: E -+ F such that 

fa = B! 

We denote by Mor(a, /3) the set of such morphisms. Observe that the com- 
position of morphisms is a morphism. 

PROPOSITION 3.8. If f E Mor(a, j?) then ker f E C[a]. 
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ProojI For x and y in the underlying set of IX, we have 

f(x) =f(Y) iff bYI-4 = P.(Y) 

iff b(x) =.MY), 

i.e., 

X-kerfY iff EX mkerj.Ocy. g 

We denote by fD the restriction off: E -+ F to D c E. If D is a union of 
blocks of 6, then f,~Mor(a~, /?) and 

ker fD = (ker f)D E CCuD]. 

A morphism f is a monomorphism if f is injective, i.e., if ker f = 6. We 
denote by Mon(a, /?) the set of monomorphisms between tx and p. 

As in Section 2.3, we have: 

PROPOSITION 3.9. The disjoint union of permutations is the direct sum in 
the category of partitions and morphisms: 

Mor c cli, ,!? = fl Mor(a,, /I). 1 
(i 1 j 

Recall the definition of f/n of Section 2.3. 

PROPOSITION 3.10. Let (E, N) and (F, 6) be permutations. Let zO E C[a]. 
Let 

and 

MoP(a, /?) :== (f E: Mor(cc, p): ker f 3 zo>, 

Mor,,(a, p) := {f e Mor(ol, p): ker f = zO). 

Then the correspondence f + f/To gives bijections 

Mor’O(a, fi) z Mor(cl\T,, fi), 

Mor,,(a, D) = Mon(dT,, P). I 

COROLLARY 3.11. There is a natural bijection 

Mor(a, P) = c Mon(a\T, B) 
5E C[N] 

given by f -+ (ker ft f/ker f ). 1 
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PROPOSITION 3.12. Let cl(a) = A, cl(p) = 5. Then 

(a) A(t) := lMor(~, B)I = n (c QT,)‘~. n>l din 
(b) d.(t) := IMon(a, ,@I = n n”n(5,)A,. n>1 

ProoJ: As in Proposition 2.16, mutatis mutandis. 8 

PROPOSITION 3.13. The polynomial sequences {p;(x)}, (q;(x)} are of 
binomial type. fl 

Finally, as in Section 2.3, we get 

A(x) = c so, VI 4,(x), 

where 

and 

s’(A v) := IW~II, cl(x) = A, 

d(x) = c s’(k V)PXX)Y 

where 

s’@, v) := 1 p’(O, t), cl(a) = A. 
r E Glal 

IV. THE LINEAR PARTITIONAL CASE 

4.1. Linear Partitions and Linear Transversals 

A linear partition of a (finite) set E is a pair (D., < ), where D E l7[E] and 
< is a partial order on E consisting of linear orders of each block of (T. 

We define cl(~, d ) := cl(o). Two linear partitions are isomorphic iff they 
have the same class, and the number of automorphisms of (c, <) is cl(~)! 

Sums (disjoint unions) and restrictions of linear partitions are defined in 
the obvious way. 

A linear transversal of a linear partition (0, <) is a transversal 
(n, 2) E T[a] such that every BE n is a segment of <. We denote by 
L[ (a, d )] (or by L[a] when there is no danger of confusion) the poset of 
linear transversals of (a, <), with the order induced from T[a J. 
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PROPOSITION 4.1. L[o] is a lattice. 

Proof. Since L[a] is finite and O”, i”EL[o], it suffices to see that 
meets exist. 

For t = (q z) E T[a] write 

u(t) := CT v z. 

Let t’= ((T, #, zi) E L[o]. Then t’ A t2 can be constructed as follows. 
Split t’ and t2 according to p := o( tl) A w( t2), obtaining sl, s2 E L[o] with 
III(?) = o(s’) = p. Then, for each B E: p, 3; and s”, are small linear transver- 
sals of By. But the small linear transversals of a linear partition form a 
lattice, since one can n-thin a small linear transversal in (at most) only one 
way. So let ug= sb A si. Then t1 A t2 =CBEp ug. 1 

We remark that ,5[0] is not ranked in general. 
If t’= (a, 7ti, ri) (i= 1, 2) are linear transversals of (u, d .) and t’ d t’, 

then, for each BE o v rz, one can make (O v r1)J(rc2 v z’)~ into a linear 
partition by defining its partial order d B (on the set (n2 v ~~1~) as follows. 
Let C,, C2 E (r? v zI)~. Let m(C,) be the set of minimal elements of Ci 
under Go. Define C, <s C, iff there is a bijection f: m(C,) -+ m(C,) such 
that x<,f(x) for all x~m(C,). 

Then, by methods entirely analogous to those of Section 2.1, we can 
show that 

THEOREM 4.2 (Natural factorization of intervals of linear transver- 
sals). There is a natural poset isomorphism 

Ctl, t21 = n LC((0 v T’)B/(Z2 v Z1)B’ GBB)]. I 
BEU v r= 

4.2. The Large, Reduced Incidence Bialgebra of Linear Transversals. 

Carrying out, mutatis mutandis, the program of Section 2.2, we obtain 
B(L) := (K[X], A”, E) with the usual algebra structure, and 

THEOREM 4.3. B(L) is a bialgebra, and localizing at x+ makes it into a 
Hopf algebra. 1 

The multiplicative functions of B(L)* are determined by their exponen- 
tial generating functions 

G/f(x) := c J-(X,) x2//l! 
A f 0 

THEOREM 4.4. The semigroup of multiplicative functions of B(L)*, under 
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convolution, is anti-isomorphic to the semigroup of exponential formal power 
series in x without constant term, under plethysm. 1 

As before, we compute the Mobius function ,uu” of B(L)* to be 

0 
p”(A) = 

if 1 has more than one non-zero entry 

(-l)k k!&r) ifA=(k+l)&,,k>O, 

where ,a(n) is the classical Mobius function. 
Hence 

G”p” = log n (1 + x,)~@), 
72>1 

the plethystic inverse of 

G”5” =exp c x, - 1. 
?Z>l 

4.3. Morphisms between Linear Partitions 

Let (E, cr, 6 r) and (R, p, d 2) be linear partitions, A morphism 

f:(-K% <1)-+(&P, G2) 

is a morphism f = (f, n): (E, C) --t (R, p) such that for all BE z, flB is 
order-preserving. 

Then ker f E L[(a, < 1)] and the composition of linear morphisms is a 
linear morphism. 

Redoing Section 2.3, we get the polynomial sequences of binomial type 

Pi(X) := l-l (x -q* 
n21 d/n 

and 

counting morphisms and monomorphisms, respectively, and expressions 
for their connection constants 

PXX) = c m/Z2 VI q;(x), 

where 

Y(jl, v) := IL,[c]l, cl(a) = 1, 
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and 

4;(x) = c f(fi v) P:‘(X), 

where 

s”(l&, v) := c p”(O”, t), cl{ 0) = .a. 
fE &La1 
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