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By use of p-adic analytic methods, we study the L-functions associated to certain 
exponential sums defined over a finite field. Estimates for the degree of this L- 
function as rational function are obtained. In an “asymptotic” sense, these 
estimates are shown to be beat possible. Precise determination of the degree is 
computed in the one-variable case. 

Let F, be the finite field of characteristic p with q = pa elements. Let 
f(W EF,[& ,..., X,]. The associated exponential sum over FPm is defined by 

%(f) = 1 (0.1) 

where Tr,: F, -+ F, is the absolute trace. The associated L-function is 
defined by 

m sp,(f) t” -W 0 = ev J( 
( 

. 
??Z=l 

m 
1 

(0.2) 

As shown in [l], 3(f, t) is an Artin L-function associated to the Galois 
group Z/pZ of the Artin-Schreier covering 

YD- Y =f(X) (0.3) 

of affine n-space A:, , and the character e, = exp(2rri/p) of the Galois group. 
In Dwork’s theory, the exponential sum 

L(f) = c e,ULfW) 
WF;m)” 

(0.4) 

and its associated L-function, L(f, t), are more accessible. Let A C { 1, 2,..., n) 
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be any subset (including the empty set); let n(A) = cardinality of A; let fA 
denote the polynomial in n - n(A) variables obtained from f by putting 
X, = 0 for i E A. Then, the relations between the two types of exponential 
sums above are given by the evident combinatorial identities: 

(a> =%(f) = 1 UfJ; 

(b) Uf) = ;: (-1Y -%m(f~). (0.5) 
A 

Consequently, 

(b) L(f, t) = n 9(fA, t)‘-l’“‘? 
A 

It is well known [I, 6, 81 that both of these type L-functions are rational 
functions with coefficients in Q and algebraic integers as reciprocal zeros and 
poles. In [l], Bombieri proves some general results on the degree of the 
rational function Lcf t) where degree (rational function) = degree (numera- 
tor) - degree (denominator). He also derives estimates for the p-adic 
values of the reciprocal zeros and poles of this function. 

In Section 1 of the present article, we extend Bombieri’s results to the case 
f(x) EF,WI ,..., xn , l/(X, *a* X,)], i.e., f is an arbitrary regular function 
on the variety in question, namely, the complement in Ai of the hyper- 
surface with equation Xi a.* X, = 0 consisting of the coordinate axes. The 
best known examples of such sums are the Kloosterman and hyper-Klooster- 
man exponential sums. This paper is based on an understanding of the role of 
the weight function (1.2) which already appeared in our work on the hyper- 
Kloosterman sum [lo]. The key ingredients in Bombieri’s argument are (1) 
the use of Dwork’s theory to obtain goodp-adic estimates for the entries of the 
matrix of the Frobenius map, and (2) a “Jensen-type” formula for the rela- 
tion between the growth of a ( p-adic) analytic function and the distribution 
of its zeros. We follow this approach faithfully. We thank B. Dwork for 
bringing Bombieri’s work to our attention. 

In Section 2, we indicate that the estimates of theroem 1.23(iv) are asympto- 
tically best possible (i.e., for fixed n and d, and p large enough, there exists 
f cd) E F&c, ,..., x, , l/(X, 0.. X)] (Section 2b, below) such that equality holds 
on the right in (Theorem 1.23(iv)). In Section 2a, we generalize the argument 
of [2], and determine the precise degree of the L-function associated with a 
Laurent polynomial in one variable (again with a restriction on the size of p), 

1. Let G be an algebraically closed, complete field under a non- 
Archimedean valuation extending that of & , normalized so that ord( p) = 1. 
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(We will occasionally also use the normalization ord, = (l/a)ord). Let 
cd = (011 )..., 01~) E Z”, and denote 

Define 

s(a) = max{O, -(Ye ,..., -01~). 

w(a) = f a< + (n + 1) S(N). 
i=l 

(1.2) 

Note that 

Let b, c E R, b > 0, and define 

-WY c) = [ c A(a) X” ! A(4 E Sz, ord A(B) 2 c + b . W(E)\. (1.4) 
‘YeP 

Let WO = UesR L(b, c). The elements of L(b) converge on 

x,J E sz” / -b < ord Xi, i ord xi < b . 
i 

(1.5) 
i=l 

It follows that multiplication of L(b) by a fixed element of L(b) is a well- 
defined endomorphism of L(b). Let 

(1.6) 

be the At-tin-Hasse exponential series, and let y E 52 be a root of 
CE,,(XP’/ p”) = 0 with ord y = l/( p - 1). Then 

@(X) = E(yX) = f B,X” (1.7) 
W&=0 

is a “splitting function” in the terminology of [3, 41, and the coefficients 
satisfy 

ord B, >, -?!- . 
P--l 

(1.8) 

Let j(X) = C &P oFq[XI ,..., X, , l/(X, *+a X,)] and d = max, w(a) in 
which cy runs over indices such that A, # 0. We say f(X) has weight d. Let 
f(X) = z ,4,X” where A, is the Teichmuller lifting of A, in K, , the unramified 
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extension of Qp in 9 of degree a. Hence A,” = A, . If 5 is a primitive pth 
root of 1, it is well-known that Q,(r) = Q,(C). It follows that if we define 

then 

FcxJ ’ L ( (p _’ 1) d ’ 0) (1.10) 

and has coefficients in K&). 
Let cr be the Frobenius automorphism in Gal& 1 Q,), and denote by CJ 

as well its extension to !2,, = K,(l) obtained by setting cr(2J = 5. Define 

a-1 

F,(X) = n crqxq, (1.11) 
j=O 

then F,(X) E L(p/q(p - I)d, 0). Define a linear map 4: L(b, c) -+ L(pb, c) by 

4: 1 C,X” -j 1 t&,X”. (1.12) 

We also denote by Fe(X) the endomorphism of L(p/q(p - 1)d) defined by 
multiplication by F,(X). Let 01 be the following composite map: 

L ((p T 1)d) -L L (4(p F 1)d) a L (q(p ft 1)d) A L ((p !J l)d)’ 
(1.13) 

Then cy. = qP 0 Fe(X) is a completely continuous endomorphism of 
L(p/(p - 1)d) in the sense of Serre [9]. 

Viewing 1y as an Sz, endomorphism of L(p/(p - l)d), Dwork’s trace 
formula [3] yields 

(q” - 1)” Tr(P) = S,(f). (1.14) 

For a completely continuous endomorphism (II, Tr(aim) and det(l- (it) are 
independent of choice of orthonormal basis, and are related by 

. 

Let 6 denote the operator 

(1.15) 

6: g(t) + 8). (1.16) 
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It is a topological group automorphism of 1 + tQ,[[t]] with inverse operator 

6-l: g(t) 4 fi g(qit). 
i=o 

(1.17) 

Hence, (1.14) is equivalent by (1.15) to 

L(f, t)(-l)n+l = det(Z - at)““. (1.18) 

Tf Q, = Q9([), then the following analog of [l, Lemma 21 holds. 

LEMMA 1.19. Let det(Z - at) = Cz=, a,,$“. Then a, E&, for all m, 
and the convex closure in the real (x, y) plane of the points (m, ord,(a,)) is 
contained in the convex closure of the points 

where in terms of binomial coeficients 

g(j) = (” -pj - (j ; 1). 

(Convention: (3 = 0, if j > i). 

Proof. As in [5] and [l], sharper estimates for a, may be obtained by 
viewing 01 as an &-linear map. Let 01~ be the &linear endomorphism of 
LoWdp - 1V) defined by 

a() = $0 u-IoF( (1.20) 

By the argument of [5, Sect. 71, the convex closure of the points (m, ord,(a,,,)) 
is obtained from the Newton polygon of detD,(Z - q,t) by multiplying the 
abscissas and ordinates of its vertices by the factor l/a. 

To complete the proof of the lemma, we compute the matrix of % with 
respect to the basis {&P; 01 E Z”, 1 < i < a} in which (&}& is an integral 
basis of Q, over Q, with the property that 

If U,vEZn; i,jE{l,2 ,..., a>, a! = (GUPi;,J, then by a standard computation 
[l, 7, 101, 

ord Gu.l;v.i > W(PU - 4 
(P - 1) d ’ 
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Hence, by (1.3) 
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(1.21) 

It follows as in [l] that the Newton polygon of det# - or,i) is contained 
in the convex closure of the points 

( m, i min 5 W(Q) , 
131 1 

where the minimum is taken over all sets of m distinct pairs (uz , ir). The map 
A: Zn -+ Z:+l defined by 

x01) = (cr, + w,..., a, + s(a), s(a)) (1.22) 

is easily seen to be one-to-one and onto those elements of Zq+l at least one 
coordinate of which is zero. Furthermore let /I = (j$ ,..., &+I) E Zn+l and 
denote ( j3 1 = CT! ,& , then w(a) = ( h(ar)( for (Y E Z”. It follows that the 
number of n-tuples 01 E Zfl with IV(“) = j is precisely g(j). By [5, Sect. 71, 
the Newton polygon of de$(l - ~u,t) is contained in the convex closure of 
the points 

This completes the proof of (1.19). 

THEOREM 1.23 (cf. [ 1, Theorem 1 I). (i) There exist algebraic integers wh , 
Tifir 1 <h d r, 1 < j < s, depending on f but not on m, dyerent from 0, 
such that oh # Q for every h, j, and such that 

S,(f) = (-l)n i Whm - 8 v3m ; 
( I&=1 c -1 i=l 

(ii) s < r, and ifs 2 1, then every b is of the type vi = qajw, where 
the a, are nonzero integers; 

(iii) ifai < 0, there is some j’ with Q = TV’ and a,, > 0; 

(iv) we have the inequality 

0 < r - s < (n + 1) d”, 

where d = weight off. 

Proof. We are concerned with (iv), the proofs of (i), (ii) and (iii) are 
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identical here to those given in [l]. Let Lu; f)(-l)“+’ = p(t)/q(t), where 
p(t) = I$-, (1 - ant), q(t) = nb, (1 - Q). Denote I&(t) = Pi-“, Dz(t) = 
q(t)*-“. Then (I. 18) yields 

det(l - crt) = D,(t)/D,(t). 

Therefore, if c(m) = ( n+G-l), the formulas [I, Lemma 3 and Corollary] 
imply 

iI c’ (X - ord4(qmWJ) c(m) - ,$ C’ (x - ord,(q”r],)) c(m) 

,< d-’ c (dx - i) g(i), 
i<dz 

(1.24) 

where C’ denotes a sum over those m for which the summands are positive. 
Hence 

tr - 4 tnx;+;), + 0(x”) < (n + 1) d” P+’ 
tn + l)! 

+ 0(x”>. 

Dividing by x”+l and letting x -+ co completes the proof. 
Exactly as in [l], the following two theorems may now be proved. 

THEOREM 1.25 (cf. [1, Theorem 21). Suppose that S,(f) has r = 
(n + 1) d”, s = 0. Then we huue 

il ord,JwJ > ‘(a > ‘) d” 

THEOREM 1.26 (cf. [ 1, Theorem 31). Let S,(f) be an exponential sum 
where f(X) E F&Y, ,..., X, , l/(X, *a* X,)] has weight d. Let wh , qj be the 
characteristic roots of the sum S,,,(f) as defined in (1.23). Then precisely one 
of the ub , say w1 , is a unit. The other roots wj , qj satisfy 

orddrli) 3 1 + a, 
except for at most n roots qj which must all be equal to qwl . 
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Observe that in the case of the hyper-Kloosterman sum [ll] (assuming 
p 3 n $ 3), the wh can be arranged so that 

ord,wn = h - 1. 

Hence equality in (1.25) holds in this case. 

2. EXAMPLES 

a. Exponential Sums in One Variable 

We assume f(X) E F,[X, l/X]. Let f(X) = xi”=,, aJi E K,[X, l/X] be the 
lifting of f by Teichmuller units (ai’ = ai). Assume d’ < 0 < d, and 
(d’,p) = (d, p) = 1. Replacing X by l/X if necessary, we may assume that 
d > -d’. By definition (1.2), f(X) has weight 2d. By constructing p-adic 
cohomology spaces for this example, we will prove the following: 

THEOREM 2.1. Let f(X) E F,[X, l/X], with (d,p) = (d’,p) = 1 ap above. 
Assume also that p satisfies 

(P - II2 > d 
P id’ 

Then L(f, t) E Z[t] is a polynomial of degree d - d’. 

This will follow from [4, Theorems 4.2 and 4.31 once (2.6) below is esta- 
blished. 

We follow the well-known argument of [4, Sect. 31. For purposes of 
constructing Dwork-type cohomology spaces, it is more convenient to use 
the “splitting function” 

f&(X) = exp a(X - XP) (2.2) 

(where n E 52, +‘-l = -p) rather than 8(X) (1.7). It is known [4, Sect. 41 
that 

wm E w, Oh (2.3) 

where b’ = (p - 1)/p”. Therefore 

F(X) = fi B,(aiXi) E L(b’/d, 0). 
i=d’ 

(2.4) 
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Let Y be the vector space spanned over Q by the monomials {F},d_,, . Let 
E = X(&IX), and define 

D=E+H, (2.5) 

where H = nXf’(X). Let b be arbitrary in R, subject to the condition that if 
P = db - 1 /(p - 1) and e’ = -d’b - l/(p - I), then e’ > 0. We will use 
a series of lemmas to establish the following theorem. 

THEOREM 2.6. Ife’ > 0, 

L(b) = I/ @ DL(b). 

Let V(b, c) = L(b, c) n Y. 

LEMMA 2.7. Let y = max(O, d + d’ - 2). Then 

Vb, c> -I- HL(b, c + 4 C L(b, c) C V(b, c - rb) + HL(b, c + e’). 

Consequently, 

L(b) = V + HL(b). 

ProoJ Note that if [ = Cj’=“_, B,Xj E L(b, c) and 

mYaaXi[ = +c C,Xj 
j=-, 

then Cj = rriaiBj+. and 

Therefore 

1 
ord Cj > - 

P--l 
+ c + 1.i - i I b. 

rriaiXit E L (b, c - (I i / b - h)) C L(b, c - e) 

proving HL(b, c + e) C L(b, c). To show the second inclusion, we divide by 
H. A routine inductive argument shows that 

Xn = :g Af’X” + d H[z’B:“‘X’) (for n >, d), (2.8) 

Xm = iz Aim’Xi + f H (~$l@‘X-i) (for nz < d’), (2.9) 
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where in both (2.8) and (2.9), ord A?’ > 0, and ord B:‘) > 0. It follows 
easily that if 6 E L(b, c), division by H via (2.8) and (2.9) yields the second 
inclusion. 

LEMMA 2.10. Vn HL(b) = (0). 

Proof. Suppose Ht = v, for 5 E L(b), v E V. Then X-*‘HtJ = X-d’~ is a 
polynomial of degree d - d’ - 1. The Newton polygon of the factor 
(l/r) Ic’-~‘H shows that all of its d - d’ roots are units. The elements of L(b) 
are easily seen to converge on the annulus -b < ord x < b. It follows that 
iF’H[ has at least d - d’ zeros (counting multiplicities). But J?‘v is a 
polynomial in X of degree d - d’ - 1. This contradiction proves the lemma. 

LEMMA 2.11. Zfe’ 2 0 

V@, C> f DW, c + 4 C L(b, c) C V(b, c - yb) + DL(b, c + e’). 

Hence 

L(b) = V + DL(b). 

Proof. The inclusion on the left is an obvious consequence of (2.7) and 
the assumption that e’, and therefore e, is positive. Let 5 E L(b, c). Assume 
((r) E L(b, c + (r - 1) e’), I;(r) E V(b, c + (r - 1) e’ - yb), T,J+) E L(b, c + re’) 
(where y = max(O, d + d - 2), as in (2.7)) have been defined satisfying 

,$W) = C(T) + H,+P). (2.12) 

For r = 1, we may take 5”) = t, and Q1i and 7”) as given by Lemma 2.7 
satisfying (2.12). Assuming (2.12) for arbitrary r, define 

p7+11 = 5‘(C) _ p - @W' = -@p) (2.13) 

so that [tr+r) E L(b, c + re’). Let Q’+l) E V(b, c + re’ - yb), +++l) E 
L(b, c + (r + 1) e’) be determined by Lemma 2.7 so that (2.12) holds for 
r + 1. Summing (2.13) from I to R yields 

,f'R+l' = .$l, _ f l(r) - D (f 'iW)e 

r=1 V'=l 

Since P, Cc’), v(S) all tend to 0 as r -+ co 

5 = f [(‘) + D (f q(j, 
r=l ?-=I 

completing the proof of the lemma. 
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LEMMA 2.14. Let e’ > 0. If 4 E L(b), H[ E L(b, c), then &! E L(b, c + e’). 

Proof. As in [7] we solve formally for 5 when He = 7. Let t = C AJ”, 
let 7 = C BiXi E L(b, c). If d is the index shift i + i + 1, then 

A-d + ‘2 ia, A-” i=d’ dad 
A - n;a B. d 

Therefore, 

A= Z+ Cg,Ai 
i=l 

-$B 
d 

for some constants gi , ord gi > 0. Similarly we also obtain, 

A = Z + f hid-i 
i=l 

-$ B 
d’ 

with constants hi , ord hi 3 0. As a consequence of (2.13, 

Hence for r 3 0, 

1 
ordA,>c-- 

P--l 
+ (r + 4 6. 

Similarly (2.16) leads to the estimate for r < 0, 

1 
ord A,. 2 c - ___ - 

P--l 
(r + d’) b. 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

The two estimates (2.17) and (2.18) complete the proof of the lemma. 

LEMMA 2.19. Let e’ > 0. If 5 E L(b), Dt E L(b, c), then [ E L(b, c + e’). 

Proof. Let 5 E L(b, p) for some p so chosen that 4 6 L(b, p + e’). Then 

H( = 04 - Et E L(b, c) + L(b, p) = L(b, 1), 

where I = min& c). If ZYt E L(b, p) then (2.14) contradicts the choice of p. 
Therefore I = c and Hf E L(b, c). By (2.14) once again, t E L(b, c + e’). 

LEMMA 2.20. Zf e’ > 0, 

DL(b) n V = {0}, 
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Proof. Let 5 E DL(b) n V, 6 E L(b, c), and t = Dr), where 7 may be 
taken by Lemma 2.19 in L(b, c + e’). Then, 

5 - Hy = ET E L(b, c + e’). 

By Lemma 2.7, there exist 5 E V(b, c + e’ - rb), w E L(b, c + 2e’) such that 

ET = 5 + Hw. 

By Lemma 2.10, 5 = [ and w  = -q. Therefore, 71 E L(b, c + 2e’). By an 
obvious inductive argument 77 E L(b, c + re’) for all r > 0. Therefore q = 0 
and f = 0. 

Theorem 2.6 is now a consequence of Lemmas 2.11 and 2.20. To complete 
the proof of Theorem 2.1, we observe that we may define a = z/P 0 p,, as in 
(1.13) where pb is defined by (1.11) the only change being that 8 is replaced 
by 0, in (1.9). Then OL is an endomorphism of L(pb’/d) where b’ = (p - 1)/p”. 
Therefore e’ > 0, is satisfied for primes p. 

(2.21) 

The proof of Theorem 2.1 then follows as in Theorems 4.2 and 4.3 of [4], and 
the fact that ker D n L(b) = (0). 

b. Generalized Hyper-Kloosterman Sums 

Let a E F, and define 

For d = 1, the resulting exponential sum is the hyper-Kloosterman sum in 
n variables [2, 10, 111. We will show in a subsequent article that for sufficiently 
largep, p-adic cohomology spaces can be constructed for this example having 
a basis of (n + 1) d” elements. This will prove that the inequality of (iv) in 
Theorem 1.23 is best possible (at least in an asymptotic sense): for any II, 
any d, and for large enough p, fj,” has the property that L( f:“, t)(-l)“+’ is a 
polynomial in Z[t] of precise degree (n + 1) d”. It is our belief that the 
hypotheses that p be “sufficiently large” (here as well as in Theorem 2.1) 
are not required. The only essential hypothesis should be the requirement 
that (d,p) = (d’,p) = 1. 
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