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Abstract

Adjusted least squares (ALS) estimators for the conic section problem are considered. Consistency of the
translation invariant version of ALS estimator is proved. The similarity invariance of the ALS estimator with
estimated noise variance is shown. The conditions for consistency of theALS estimator are relaxed compared
with the ones of the paper Kukush et al. [Consistent estimation in an implicit quadratic measurement error
model, Comput. Statist. Data Anal. 47(1) (2004) 123–147].
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The problem considered in this paper is to estimate a hypersurface of the second order that fits
a sample of points x1, x2, . . . , xm in Rn. A second order surface in Rn is described by the equation

x�Ax + b�x + d = 0. (1)

Without loss of generality, one can assume the matrix A to be symmetric. Let S be a set of real
n × n symmetric matrices. The set of all the triples (A, b, d) is V := S × Rn × R.
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Consider a measurement error model. Assume that x̄1, x̄2, . . . , x̄m lie on the true surface
{x | x�Āx + b̄�x + d̄ = 0}. In Section 4 we consider the structural case where x̄1, . . . , x̄m

is an independent identically distributed sequence, while in the rest of the paper the model is
functional, i.e., x̄1, . . . , x̄m are nonrandom. The true values are observed with errors, which give
the measurements x1, . . . , xm. The measurement errors are supposed to be identically distributed
normal variables, the variance of which is either specified or unknown. The parameters of the
true surface are parameters of interest. The conic section estimation problem arises in computer
vision and meteorology, see [4] and [5].

We use the word “conic” in a very wide sense. Any set that can be defined by Eq. (1) is referred
to as “conic”. “The true conic” is neither the entire space Rn nor a subset of a hyperplane, and
our conditions ensure that.

Consider the ordinary least squares (OLS) estimator, which is defined by the minimization of
the loss function

Qols(A, b, d) :=
m∑

l=1

(x�
l Axl + b�xl + d)2.

It is easy to compute but inconsistent in the errors-in-variables setup.
The orthogonal regression estimator is inconsistent as well, though it has smaller asymptotic

bias [2, Example 3.2.4].
To reduce the asymptotic bias, the renormalization procedure can be used, see [4]. In [5] an

adjusted loss function Qals(�) is defined implicitly via the equation

EQals(A, b, d) =
m∑

l=1

(x̄�
l Ax̄l + b�x̄l + d)2,

and consistency of the resulting ALS estimator is proved. A computational algorithm and a sim-
ulation study for the method of [5] are given in [7].

The ALS estimator with known error variance is not translation-invariant. In this paper we pro-
pose a translation-invariant modification of the ALS estimator (TALS estimator). Its consistency
is shown. The translation invariance of the ALS estimator with estimated error variance is proved
as well, and the conditions for consistency of the estimator are relaxed.

We propose a definition of invariance of an estimator. By appropriate choice of the parameter
space and the estimation space this definition can be deduced from the definition of equivariance
given in [6, Section 3.2].

The Euclidean norm of a vector x = (x1, . . . , xd)� ∈ Rd is denoted by ‖x‖ :=
√∑d

i=1 x2
i . If

A = (ai,j ) is m × n matrix, ‖A‖ := max‖x‖�1 ‖Ax‖, while ‖A‖F :=
√∑m

i=1
∑n

j=1 a2
ij is its

Frobenius norm. The rank of the matrix A is denoted by rkA. If m = n, then tr A := ∑m
i=1 aii is

the trace of A.
As a direct sum of three Euclidean spaces, V is a Euclidean space with inner product

〈(A1, b1, d1), (A2, b2, d2)〉 := tr(A1A2) + b�
1 b2 + d1d2.

The induced norm is

‖(A, b, d)‖ :=
√

‖A‖2
F + ‖b‖2 + d2.
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The dimension of the space V is

n� = n(n + 1)

2
+ n + 1 = (n + 1)(n + 2)

2
.

Construct an orthonormal basis of V. For n = 2, the six triples((
1 0
0 0

)
,

(
0
0

)
, 0

)
,

((
0 1/

√
2

1/
√

2 0

)
,

(
0
0

)
, 0

)
,

((
0 0
0 1

)
,

(
0
0

)
, 0

)
,

((
0 0
0 0

)
,

(
1
0

)
, 0

)
,

((
0 0
0 0

)
,

(
0
1

)
, 0

)
,

((
0 0
0 0

)
,

(
0
0

)
, 1

)
form an orthonormal basis of V. For an arbitrary n � 1 the set {b1, b2, . . . , bn�} is an orthonormal
basis of V, where

b (i−1)i
2 +j

:=
(

eie
�
j + ej e

�
i√

2
, 0, 0

)
, 1�j < i�n,

b i(i+1)
2

:= (eie
�
i , 0, 0), 1� i�n,

b n(n+1)
2 +i

:= (0, ei, 0), 1� i�n,

b (n+1)(n+2)
2

:= (0, 0, 1),

and ei := (01, . . . , 0, 1i , 0, . . . , 0n)
� is the ith vector of the standard basis in Rn.

Let [�] be the vector of coordinates of � ∈ V. Then [�] = ([�]1, . . . , [�]n�)
� with [�]i :=

〈�, bi〉 and � = ∑n�
i=1[�]ibi .

If � is a linear operator on V, then its matrix is denoted by [�]. One has [��] = [�][�] for
any � ∈ V. The i,j th entry of [�] is equal to [�]ij := 〈�bj , bi〉.

The ordered eigenvalues of a symmetric d × d matrix A are denoted by �1(A)��2(A)� · · ·
��d(A). We also use the notation �min(A) := �1(A), �max(A) := �d(A). Note that �2(A) =
�1(A) if the minimal eigenvalue is multiple.

If� is a self-adjoint operator on V, then‖�‖ := max‖�‖=1 ‖��‖ is its norm, and�1(�)��2(�)

� · · · ��n�(�) are its eigenvalues. Again, �min(�) := �1(�).
There is a natural one-to-one correspondence between self-adjoint operators, quadratic forms

and symmetric matrices.
We occasionally omit the sample size in the notation. Estimates (�̂, D̂) and variables denoted by

letters Q, �, S, s, with and without bars, with different subscripts, are defined for a fixed sample
size m. The sequence of events {Pm, m�1} is said to occur eventually if

P

( ∞⋃
l=1

∞⋂
m=l

Pm

)
= 1.

In Section 2 the implicit quadratic errors-in-variables model is described and the estimates are
defined for both the case of specified and unknown variance. For the case of unknown vari-
ance, the ALS estimators of the surface and of the variance are studied in Section 3. The condi-
tions for consistency of the estimators relax the assumptions of [5, Theorem 9], namely we do
not assume the contrast condition (vi) from [5, p. 134]. The conditions for consistency in the
structural model are given in Section 4. In Section 5 the invariance of the estimates is shown,
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and Section 6 concludes. Some auxiliary proofs are moved to Appendices A and B. In Appendix C
we introduce the concepts which are used to derive bounds for perturbations of generalized
eigenvectors.

2. The model and the estimates

2.1. The model

Consider a true conic in Rn defined by the equation

x�Āx + b̄�x + d̄ = 0,

with parameters �̄ := (Ā, b̄, d̄) ∈ V. Assume that �̄ 
= 0. The parameters can be chosen, such
that

‖Ā‖2
F + ‖b̄‖2 + d̄2 = 1. (2)

Let nonrandom vectors x̄1, x̄2, . . . belong to the true conic:

x̄�
l Āx̄l + b̄�x̄l + d̄ = 0, l = 1, 2, . . . (3)

The vectors belonging to the true surface are observed with errors. Let xl be the measurement of
x̄l , and x̃l be an error, i.e.

xl = x̄l + x̃l . (4)

Let measurement errors satisfy the following conditions:

(i) x̃1, x̃2, . . . are totally independent,
(ii) x̃l is a normal vector, x̃l ∼ N(0, �2I ), � > 0.

Hereafter I is an identity matrix.
The specified model is a functional homoscedastic measurement error model, given in an

implicit form. As usual in errors-in-variables setting ‘functional’ means that the true vectors x̄1,
x̄2, . . . are nonrandom.

Let m be the sample size. The measurements x1, x2, . . . , xm are observed. �̄ and �2 are pa-
rameters of the model and x̄1, x̄2, . . . , x̄m are nuisance parameters. Initially the parameter �2 is
supposed to be known, but later on we will consider the case of unknown �2 as well.

2.2. Definition of the estimates

In this subsection the sample size m is fixed.

2.2.1. OLS estimator
The elementary OLS loss function is

qols((A, b, d), x) := (x�Ax + b�x + d)2, (A, b, d) ∈ V, x ∈ Rn.

Let

Q̄ols(�) :=
m∑

l=1

qols(�, x̄l), � ∈ V.
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Q̄ols(�) is a positive semidefinite quadratic form on the space V. Equality Q̄ols(A, b, d) = 0 holds
true if and only if all vectors x̄1, x̄2, . . . , x̄m belong to the conic {x ∈ Rn | x�Ax +b�x +d = 0}.
By (3), Q̄ols(�̄) = 0.

Let

Qols(�) :=
m∑

l=1

qols(�, xl), � ∈ V.

A random vector �̂ is called an OLS estimator if �̂ is a point of global minimum of Qols(�) on
a sphere ‖�‖ = 1, i.e. �̂ is a solution to the following optimization problem:{

Qols(�) → min,

‖�‖ = 1.
(5)

The minimum exists because Qols(�) is a continuous function in � and the sphere is a compact
set in V.

Let

�ols(x)(A, b, d) := (x�Ax + b�x + d)(xx�, x, 1), (A, b, d) ∈ V, x ∈ Rn.

�ols(x) is a self-adjoint linear operator in V, such that

qols(�, x) = 〈�ols(x)�, �〉, � ∈ V, x ∈ Rn.

Denote

�ols :=
m∑

l=1

�ols(x̄l), �ols :=
m∑

l=1

�ols(xl).

Then �ols and �ols are self-adjoint operators, such that for all � ∈ V

Q̄ols(�) = 〈�ols�, �〉, Qols(�) = 〈�ols�, �〉.
Note that

�min(�ols) = 0. (6)

Next we express problem (5) in terms of �ols. The extremal equation implies that all solutions
to (5) must be eigenvectors of the operator �ols. If � is an eigenvector of the operator �ols and
‖�‖ = 1, then Qols(�) is a corresponding eigenvalue. Hence the solutions to (5) are normalized
eigenvectors of �ols, corresponding to the smallest eigenvalue. Problem (5) is equivalent to the
system{

�ols� = �min(�ols)�,

‖�‖ = 1.
(7)

2.2.2. ALS estimator
The elementary score function of theALS estimator is a solution to the following deconvolution

problem:

Eqals(�, x̄ + x̃) = qols(�, x̄), x̃ ∼ N(0, �2In), x̄ ∈ Rn, � ∈ V. (8)
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In Appendix A we show that

qals((A, b, d), x) := (x�Ax + b�x + d − �2trA)2

−�2(4‖Ax‖2 + 4b�Ax + ‖b‖2) + 2�4‖A‖2
F (9)

is a solution to (8).
For all � ∈ V denote

Qals(�) :=
m∑

l=1

qals(�, xl), �als :=
m∑

l=1

�als(xl).

The linear self-adjoint operator �als(x) satisfies 〈�als(x)�, �〉 = qals(�, x), and �als is a self-
adjoint linear operator, such that

Qals(�) = 〈�als�, �〉, � ∈ V.

A random vector �̂ is called an ALS1 estimator if it is a solution to the following optimization
problem:{

Qals(�) → min,

‖�‖ = 1.
(10)

Similarly to the OLS estimator, such a random vector exists. Problem (10) is equivalent to the
following system:{

�als(�) = �min(�als)�,

‖�‖ = 1.

2.2.3. Translation-invariant ALS (TALS) estimator
Let

V1 := {(A, b, d) ∈ V : ‖A‖F = 1}.
We define a TALS estimator �̂ as a random vector such that

(1) if there exists min�∈V1 Qals(�), then �̂ is a minimum point (i.e., a solution to the optimization
problem (11));

(2) �̂ is arbitrary if the minimum does not exist.

The corresponding optimization problem is{
Qals(A, b, d) → min,

‖A‖F = 1.
(11)

Such a random vector �̂ exists. The minimum exists if and only if Qals is bounded from below on
the set V1.

2.2.4. ALS estimator with unknown variance �2

In the criterion function for the ALS estimator, substitute D ∈ R in place of �2 and denote

qD((A, b, d), x) := (x�Ax + b�x + d − D trA)2

−D(4‖Ax‖2 + 4b�Ax + ‖b‖2) + 2D2‖A‖2
F . (12)
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Let �D(x) be a self-adjoint operator, such that

〈�D(x)�, �〉 = qD(�, x), � ∈ V, x ∈ Rn.

(The operator �D is the same as in [5].)
Denote

QD(�) :=
m∑

l=1

qD(�, xl), �D :=
m∑

l=1

�D(xl).

Setting D = 0 or D = �2, we obtain the criterion function for the OLS or ALS1 estimators,
respectively:

Qols(�) = Q0(�), �ols = �0,

Qals(�) = Q�2(�), �als = ��2 .

If D < 0 and x ∈ Rn, then the quadratic form qD(�, x) is positive definite. Indeed

qD((A, b, d), x) = (x�Ax + b�x + d − D tr A)2 − D‖2Ax + b‖2 + 2D2‖A‖2
F

and

qD((A, b, d), x) � 2D2‖A‖2
F > 0 if D < 0, A 
= 0,

qD((A, b, d), x) � −D‖b‖2 > 0 if D < 0, A = 0, b 
= 0,

qD((A, b, d), x) = d2 > 0 if D < 0, A = 0, b = 0, d 
= 0.

Therefore, for D < 0 the quadratic form QD(�) is positive definite.
If D = 0, then �min(�D)�0 [5, Lemma 6], so that Q0(�) is a positive semidefinite form.
Expand �D and QD(�) in the powers of D − �2:

QD(�) = (D − �2)2Qq(�) − (D − �2)Ql�(�) + Qals(�), (13)

where for (A, b, d) ∈ V

Qq(A, b, d) := m((trA)2 + 2‖A‖2
F ),

Ql�(A, b, d) :=
m∑

l=1

ql�((A, b, d), xl),

with

ql�((A, b, d), x) := 2(x�Ax + b�x + d − �2 trA)trA

+ 4‖Ax‖2 + 4b�Ax + ‖b‖2 − 4�2‖A‖2
F . (14)

Observe that

Eql�(�, x̄ + x̃) = ql0(�, x̄), x̃ ∼ N(0, �2In), x̄ ∈ Rn, � ∈ V,

with

ql0((A, b, d), x) := 2(x�Ax + b�x + d)trA + 4‖Ax‖2 + 4b�Ax + ‖b‖2

and define

Q̄l0(�) := EQl�(�) =
m∑

l=1

ql0(�, x̄l), � ∈ V.
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Due to the linear isomorphism between the space of quadratic forms and the space of self-adjoint
linear operators, there exist self-adjoint operators �q, �l�, �l0 in V, such that for all � ∈ V

Qq(�) = 〈�q�, �〉, Ql�(�) = 〈�l��, �〉, Q̄l0(�) = 〈�l0�, �〉,

�D = (D − �2)2�q − (D − �2)�l� + �als for D ∈ R,

E�l� = �l0.

By (6),

�min(E��2) = �min(E�als) = 0,

so we define an estimate D̂ for the variance �2 of measurement error as a solution to the equation

�min(�D) = 0. (15)

Eq. (15) has no solution D < 0 because �min(�D) > 0 if D < 0. We prove that it has a unique
solution D�0, see Theorem 14.

TheALS2 estimator is defined similarly to theALS1 estimator with Qals(�) replaced by QD̂(�).
But as �min(�D̂) = 0 and hence min‖�‖=1 QD̂(�) = 0, we can simplify the definition of theALS2
estimator.

�̂ is called an ALS2 estimator if �̂ is a random vector, such that{
QD̂(�̂) = 0,

‖�̂‖ = 1.
(16)

The corresponding eigenvector problem is{
�D̂� = 0,

‖�‖ = 1.

Note that D̂ is a random variable, because {D̂ < D} = {QD is indefinite} is a random event, for
the proof of the last equality see Corollary-remark 15.

D is a solution to (15) if and only if D satisfies the conditions{
∃ � ∈ V, ‖�‖ = 1 : QD(�) = 0,

∀ �1 ∈ V : QD(�1)�0.

A joint estimation problem for D̂ and �̂ is⎧⎪⎨⎪⎩
Q

D̂
(�̂) = 0,

∀ � ∈ V : Q
D̂

(�)�0,

‖�̂‖ = 1.

(17)
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2.3. Conditions and their consequences

We borrow conditions (iii) and (iv) from [5].

(iii) There exist m0 ∈ N and �0 > 0, such that

∀m�m0 : �2

(
1

m
�ols

)
��0.

Now we show that under condition (iii) the true conic cannot be a part of a hyperplane.

Lemma 1. Let condition (iii) hold. Then there is no hyperplane that contains all points x̄l , l�1.

Proof. Suppose that all points x̄l lie on a hyperplane b�x + d = 0, b 
= 0. The equation of the
hyperplane can be written as x�bb�x+2db�x+d2 = 0. Then for all m one has Q̄ols(0, b, d) = 0
as well as Q̄ols(bb�, 2db, d2) = 0. Hence 0 is a multiple eigenvalue of �ols. This contradicts
condition (iii). �

Corollary 2. Suppose that equalities (2) and (3), and condition (iii) hold. Then Ā 
= 0.

The next lemma relates the sample moments of the true vectors to the norm of the matrix Ā.

Lemma 3. Let equalities (2), (3), and condition (iii) hold. Then for all m � m0

�min

(
1

m

m∑
l=1

(
x̄l x̄

�
l x̄l

x̄�
l 1

))
��0‖Ā‖2

F .

Here m0 and �0 come from condition (iii).

Proof. As �̄ is a normalized eigenvector of �ols corresponding to the eigenvalue 0, condition (iii)
is equivalent to

Q̄ols(�)�m�0(‖�‖2 − 〈�, �̄〉2) for all � ∈ V, m�m0. (18)

By definition of Q̄ols(�)(
b

d

)� (
1

m

m∑
l=1

(
x̄l x̄

�
l x̄l

x̄�
l 1

))(
b

d

)
= 1

m

m∑
l=1

(b�x̄l + d)2 = 1

m
Q̄ols(0, b, d). (19)

By (2) and the Schwarz inequality

‖(0, b, d)‖2 − 〈(0, b, d), �̄〉2 = ‖(0, b, d)‖2 − 〈(0, b, d), (0, b̄, d̄)〉2

� ‖(0, b, d)‖2(1 − ‖(0, b̄, d̄)‖2)

= (‖b‖2 + d2)(1 − ‖b̄‖2 − d̄2)

=
∥∥∥∥( b

d

)∥∥∥∥2

‖Ā‖2
F . (20)
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By (18)–(20)(
b

d

)� (
1

m

m∑
l=1

(
x̄l x̄

�
l x̄l

x̄�
l 1

))(
b

d

)
��0

∥∥∥∥( b

d

)∥∥∥∥2

‖Ā‖2
F

for all m�m0, b ∈ Rn, d ∈ R. This proves the lemma. �

Corollary 4. Suppose that equalities (2), (3), and condition (iii) hold. Let x0 ∈ Rn. Then for all
m � m0

�min

(
1

m

m∑
l=1

(x̄l − x0)(x̄l − x0)
�
)

��0‖Ā‖2
F .

Proof. By Lemma 3 for all b ∈ Rn, m�m0,

b�
(

1

m

m∑
l=1

(x̄l − x0)(x̄l − x0)
�
)

b =
(

b

−x�
0 b

)� (
1

m

m∑
l=1

(
x̄l x̄

�
l x̄l

x̄�
l 1

))(
b

−x�
0 b

)
� �0‖Ā‖2

F (‖b‖2 + (b�x0)
2)��0‖Ā‖2

F ‖b‖2. �

Now we obtain a lower bound for a component of the limit objective function.

Lemma 5. Let equalities (3), (2), and condition (iii) hold. Then for all m � m0

Q̄l0(�̄)�m�0‖Ā‖4
F .

Proof. By (3)

Q̄l0(�̄) =
m∑

l=1

‖2Āx̄l + b̄‖2

= tr

{(
2Ā

b̄�
)� m∑

l=1

(
x̄l x̄

�
l x̄l

x̄�
l 1

)(
2Ā

b̄�
)}

� (4‖Ā‖2
F + ‖b̄‖2)�min

(
m∑

l=1

(
x̄l x̄

�
l x̄l

x̄�
l 1

))
.

The bound from Lemma 3 completes the proof. �

We combine the proofs of Lemma 4 and Corollary 5 from [5] about the convergence of the
operator which represents the objective function. The following growth bound will be needed.

(iv) There exist C1 > 0 and � ∈ [0, 1), such that for all m�1

1

m

m∑
l=1

‖x̄l‖6 �C1m
�.

Lemma 6 (Kukush et al., see [5]). Let conditions (4), (i), (ii), and (iv) hold. Then∥∥∥ 1
m

(�als − �ols)

∥∥∥ → 0 as m → ∞ a.s.
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Moreover, the sequence∥∥∥ 1
m

�als − 1
m

�ols

∥∥∥m(1−�)/2, m�1

is stochastically bounded, and for any � < (1 − �)/2∥∥∥ 1
m

�als − 1
m

�ols

∥∥∥m� → 0 as m → ∞ a.s.

One can replace condition (iv) with the following weaker one.

(iv-)
∞∑
l=1

1

l2 ‖x̄l‖6 < ∞.

Indeed, condition (iv) implies (iv-), which can be proved by Abelian transformation.

Lemma 7. Let conditions (4), (i), (ii), and (iv-) hold. Then∥∥∥ 1
m

(�als − �ols)

∥∥∥ → 0 as m → ∞ a.s. (21)

Find proof in Appendix A.

Lemma 8. Let conditions (4), (i), (ii), and (iv-) hold. Then∥∥∥ 1
m

�l� − 1
m

�l0

∥∥∥ → 0 as m → ∞ a.s.

Proof. By Lemma 7,

1
m

(�als − �ols) → 0 as m → ∞ a.s.

Define the linear operators

� : V → Rn, �(A, b, d) = b, and �∗ : Rn → V, �∗(b) = (0, b, 0),

and remember the notation bn� = (0, 0, 1) ∈ V. As

m∑
i=1

(xlx
�
l − �2I − x̄l x̄

�
l ) = [� (�als − �ols) �∗],

m∑
i=1

(xl − x̄l) = � (�als − �ols) bn� ,

then

1

m

m∑
l=1

(xlx
�
l − �2I − x̄l x̄

�
l ) → 0 as m → ∞ a.s. (22)

1

m

m∑
l=1

(xl − x̄l) → 0 as m → ∞ a.s. (23)
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As

ql�((A, b, d), x) = 2(tr(A(xx� − �2I )) + b�x + d) tr A

+ 4 tr(A2(xx� − �2I )) + 4b�Ax + ‖b‖2,

ql0((A, b, d), x) = 2(tr(Axx�) + b�x + d) tr A + 4 tr(A2xx�) + 4b�Ax + ‖b‖2,

one has

Ql�(A, b, d) − Q̄l0(A, b, d)

= 2

(
tr

(
A

m∑
l=1

(xlx
�
l − �2I − x̄l x̄

�
l )

)
+ b�

m∑
l=1

(xl − x̄l)

)
tr A

+ 4 tr

(
A2

m∑
l=1

(xlx
�
l − �2I − x̄l x̄

�
l )

)
+ 4b�

m∑
l=1

(xl − x̄l).

Therefore, by (22), (23), for all � ∈ V

1
m

(Ql�(�) − Q̄l0(�)) → 0 as m → ∞ a.s.

Then one can conclude convergence for the operators. �

Now we obtain a lower bound for the sample covariance matrix. It is used together with the
contrast inequalities presented in Section 3.1.

Lemma 9. Let (3), (4), (2), and conditions (i)–(iii), and (iv-) hold. Then almost surely

lim inf
m→∞ �min

⎛⎝ 1

m

m∑
l=1

xlx
�
l − 1

m2

m∑
l=1

xl

m∑
p=1

x�
p

⎞⎠ ��2 + �0‖Ā‖2,

where �0 comes from condition (iii).

Find proof in Appendix B.
We need the following condition in order to prove consistency of the ALS2 estimator.

(v) Matrix Ā is nonsingular.

Condition (v) means that the true conic is central, i.e. not of a parabolic type. For n = 2 the true
conic is either an ellipse, a hyperbola, or a couple of intersecting straight lines.

Denote

c̄ := −1

2
Ā−1b̄ and Āc := 1

c̄�Āc̄ − d̄
Ā. (24)

Then the true conic has the equation

(x − c̄)�Āc(x − c̄)� = 1.

The next statement relies on condition (v) and is crucial for the proof of consistency.
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Lemma 10. Let conditions (3), (iii), and (v) hold. Then there exist C2 and m0 �1, such that

∀m�m0 ∀�, ‖�‖ = 1 : |Q̄l0(�)|�C2Q̄l0(�̄). (25)

Here m0 comes from condition (iii). The constant C2 depends on �̄ and on �0 given in condition
(iii).

Find proof in Appendix B.

2.4. Consistency of the TALS and ALS1 estimators

In this section we use the definitions, given in Appendix C.
Denote the matrix representations

A :=
[

1

m
�ols

]
, Ã :=

[
1

m
�als

]
,

B := [PrS×0×0] = diag(1, . . . , 1︸ ︷︷ ︸
(n2+n)/2

, 0, . . . , 0︸ ︷︷ ︸
n+1

), (26)

where PrS×0×0 is an operator on V, such that PrS×0×0(A, b, d) = (A, 0, 0) for all (A, b, d) ∈ V.
The matrices A, B are positive semidefinite, B �I in the sense of Loewner order, B = B2, and

Ã is a symmetric matrix. Under condition (iii) A − �0 Pr⊥[�̄] is positive semidefinite for m�m0,

with Pr⊥[�̄] an orthogonal projector along [�̄]. If Lemma 7 holds, then ‖Ã − A‖ → 0, as m → ∞,
a.s.

Now we prove that certain matrix pairs are positive definite. We have

�0 := min‖x‖=1

√
�2

0(x
� Pr⊥[�̄] x)2 + (x�Bx)2 > 0

as �̄
�
B�̄ 
= 0,

�(A, B)��(�0 Pr⊥[�̄], B) = �0 for m�m0,

�(Ã, B)��(A, B) − ‖Ã − A‖��0 − ‖Ã − A‖ for m�m0

by (C.7). Hence, by Lemma 7, almost surely lim infm→∞ �(Ã, B)��0 > 0.
Whenever �(A, B) > 0 (or �(Ã, B) > 0), the matrix A (respectively, Ã) has rkB real fi-

nite generalized eigenvalues w.r.t. the matrix B, and has the (n� − rkB = n+1)-dimensional
eigenspace KerB. Denote the finite generalized eigenvalues by �1 ��2 � · · · ��rkB (respectively,
�̃1 � �̃2 � · · · � �̃rkB for the matrix Ã). As A�0 and 0�B �I , we have

�k ��k(A), k = 1, . . . , rkB, (27)

where �k(A) is the kth ordinary eigenvalue of the matrix A. Inequality (27) holds true because

�k = min
dim V =k

max
x∈V : ‖B1/2x‖�1

x�Ax, �k(A) = min
dim V =k

max
x∈V : ‖x‖=1

x�Ax,

and {x∈V : ‖x‖=1} ⊂ {x∈V : ‖B1/2x‖�1}. Here the minimum is searched for in all
k-dimensional subspaces of Rn� .
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By (27), as �1(A) = 0 and �2(A)��0, we have

�1 = 0, �2 ��0, m�m0.

(As the matrix A is singular, 0 is one of its generalized eigenvalues. Hence 0 is the least one.)
Therefore,

	(�k, 0)�	0, k > 1, 	(∞, 0)�	0

with 	0 = �0√
1+�2

0

.

For the chordal distance between the pairs (A, B) and (Ã, B) we have


D := 
D[(A, B), (Ã, B)]� ‖B‖ ‖Ã − A‖
�(A, B) �(Ã, B)

,

and 
D almost surely tends to 0, as m → ∞. (
D is well-defined if �(A, B) > 0 and �(Ã, B) > 0.)
Since A and B are positive semidefinite, the last generalized eigenvalue of the matrix A is

�1 = 0, and the last generalized eigenvalue of the matrix Ã is either �̃1 ∈ R or ∞. Here we use
the enumeration from Appendix C. By [10, Theorem IV.3.2],

	(�̃1, 0)�
D,

	(�̃k, 0)�	0 − 
D, k > 1,

	(∞, 0)�	0 − 
D

whenever ‖Ã − A‖��(A, B) and m�m0. Eventually these inequalities hold.
Apply [10, Theorem IV.3.8]. Whenever m�m0, ‖Ã − A‖��(A, B), and ‖Ã − A‖ < (	0 −


D) �(Ã, B), there exists a generalized eigenvector x1 of the matrix Ã w.r.t. to B, corresponding
to eigenvalue �̃1, such that

sin 
 (x1, [�̄])� ‖Ã − A‖
�(Ã, B)(	0 − 
D)

.

If in addition 2
D < 	0, then the generalized eigenspace corresponding to the generalized eigen-
value �̃1 is one-dimensional.

Summarizing we have

sin 
 (x1, [�̄]) → 0 as m → ∞ a.s.

Whenever �̃1 < �̃2 and Bx1 
= 0 (i.e., eventually), x1 is a vector in Rn composed of the coordinates
of the TALS estimator up to a scalar multiplier,

[�̂] = ± 1

‖Bx1‖x1

by the definition of TALS estimator. This relation proves the following consistency statement.
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Theorem 11. Let conditions (2)–(4), and (i)–(iii), and (iv-) hold. Let �̂m be the TALS estimator
defined in Section 2.2 for sample size m. Then

sin 
 (�̂m, �̄) → 0 as m → ∞ a.s.,

dist
(
�̂m,

{
± 1

‖Ā‖F

�̄
})

→ 0 as m → ∞ a.s.

The latter statement of Theorem 11 holds due to the relations

dist

(
�̂m

‖�̂m‖ , ±�̄

)
→ 0 as m → ∞ a.s.

which follows from the first one by (C.2), �̂m = f

(
�̂m

‖�̂m‖

)
, and 1

‖Ā‖F

�̄ = f (�̄), where f (A, b, d)

:= 1
‖A‖F

(A, b, d) is an odd continuous function.

Remark 12. If the condition (iv-) is replaced with (iv), then the rate of consistency is

dist
(
�̂m,

{
± 1

‖Ā‖F

�̄
})

m
�−1

2 = Op(1) as m → ∞, (28)

and for any � <
�−1

2

dist
(
�̂m,

{
± 1

‖Ā‖F

�̄
})

m� → 0 as m → ∞ a.s. (29)

Remark 13. Let �̂als be the ALS1 estimator defined in (10). Under the conditions of Theorem 11,

dist(�̂als, {±�̄}) → 0 as m → ∞ a.s.

The proof is easier than the proof of Theorem 11. Choosing B = In� instead of (26), one gets
the consistency of the ALS1 estimator. We mention that this statement is proved in [5] under a
slightly different condition, namely condition (iv-) is replaced by condition (iv).

3. The ALS2 estimator

In this section we deal with the case when the error variance is unknown. We prove the consis-
tency of the estimate.

Denote by

S := 1

m

m∑
l=1

⎛⎝xl − 1

m

m∑
p=1

xp

⎞⎠⎛⎝xl − 1

m

m∑
q=1

xq

⎞⎠�

the sample covariance matrix, and its least eigenvalue by

s := �min(S)�0.
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3.1. Uniqueness of the solution to the estimating equation for the error variance

Remember the criterion function

QD(A, b, d) =
m∑

l=1

[(x�
l Axl+b�xl+d−D trA)2 − D‖2Axl+b‖2 + 2D2‖A‖2

F ].

Consider the coefficient of (−D):

m∑
l=1

‖2Axl + b‖2 =
m∑

l=1

∥∥∥∥∥∥2A

⎛⎝xl − 1

m

m∑
p=1

xp

⎞⎠∥∥∥∥∥∥
2

+ m

∥∥∥∥∥∥2A
1

m

m∑
p=1

xp + b

∥∥∥∥∥∥
2

= 4m tr(ASA) + 1

m

∥∥∥∥∥∥
m∑

p=1

(2Axp + b)

∥∥∥∥∥∥
2

�4ms‖A‖2
F .

Now we apply this bound

QD2(A, b, d + D2 tr A) − QD1(A, b, d + D1 tr A)

= −D2

m∑
l=1

‖2Axl + b‖2 + D1

m∑
l=1

‖2Axl + b‖2 + 2D2
2m‖A‖2

F − 2D2
1m‖A‖2

F

= −(D2 − D1)

(
m∑

l=1

‖2Axl + b‖2 − 2(D1 + D2)m‖A‖2
F

)
.

If D1 �D2, then

QD2(A, b, d + D2 tr A) − QD1(A, b, d + D1 tr A)

� − (D2 − D1)(4s − 2D1 − 2D2)m‖A‖2
F .

Moreover if D1 �D2 �s, then

QD2(A, b, d + D2 tr A) − QD1(A, b, d + D1 tr A)� − 2(D2 − D1)
2m‖A‖2

F . (30)

Theorem 14. The equation in D

�min (�D) = 0

has a unique solution.

Proof. If D < 0, then the quadratic form QD(�) is positive definite, and �min(�D) > 0. If
D = 0, then �min(�D)�0, see [5, Lemma 6].

If b 
= 0, the expression

QD(0, b, d) =
(

m∑
l=1

(b�xl + d)2

)
− Dm‖b‖2 (31)

is strictly decreasing in D. From (31) we get

QD

(
0, b, − 1

m

m∑
l=1

b�xl

)
= mb�Sb − Dm‖b‖2.
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If in addition b is equal to the eigenvector of S corresponding to the least eigenvalue, then

QD

(
0, b, − 1

m

m∑
l=1

b�xl

)
= m(s − D)‖b‖2.

Therefore for D > s, the quadratic form QD(�) is not positive semidefinite and �min(�D) < 0.
Since �min(�D) is continuous with respect to D, there exists D̂, 0�D̂�s, such that

�min(�D̂) = 0.
Suppose that Eq. (15) has two solutions, D1 < D2. Then D2 �s. There exists (A, b, d) 
= 0,

such that QD1(A, b, d) = 0. Since QD1(0, 0, d) = md2, we have (A, b) 
= (0, 0). Then by (30)
(if A 
= 0) or by (31) (if A = 0, b 
= 0), we have QD2(A, b, d + (D2 − D1) tr A) < 0. This
contradicts the assumption �min(�D2) = 0. �

Corollary-remark 15. There exists D̂, 0�D̂�s, such that
• for D < D̂, the quadratic form QD(�) is positive definite and �min(�D) > 0;
• the quadratic form QD̂ is positive semidefinite, but not positive definite, and �min(�D̂) = 0;
• for D > D̂, the quadratic form QD(�) is indefinite and �min(�D) < 0.

3.2. Consistency

Lemma 16. Let conditions (i)–(iv) hold. Then eventually

D̂ − �2 < max

{
2Qals(�̄)

Q̄l0(�̄)
, 0

}
. (32)

Proof. Due to the relationship between quadratic forms and operators and since ‖�̄‖ = 1, we
have

|Qals(�̄)| = |Qals(�̄) − Q̄ols(�̄)|�‖�als − �ols‖.
Hence by Lemma 6,

1

m
Qals(�̄) → 0 as m → ∞ a.s.

Similarly by Lemma 8,

1

m
(Ql�(�̄) − Q̄l0(�̄)) → 0 as m → ∞ a.s. (33)

Next, by Corollary 2 and Lemma 5

lim inf
m→∞

1

m
Q̄l0(�̄) > 0 a.s.,

and hence by (33) the same holds true for Ql�(�̄). Note that 1
m

Qq(�̄) does not depend on m, where
Qq is given after (13). Hence eventually

4Qals(�̄)Qq(�̄) + (Ql�(�̄) − Q̄l0(�̄))2 < Ql�(�̄)2. (34)
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Then the discriminant Ql�(�̄)2 − 4Qals(�̄)Qq(�̄) of the polynomial (13) in D − �2 with � =
�̄ is eventually positive, thus QD(�̄) eventually attains negative values for some D. Since by
Corollary 15 QD(�̄) � 0 for all D < D̂, we have

D̂ − �2 � 2Qals(�̄)

Ql�(�̄) +
√

Ql�(�̄)2 − 4Qals(�̄)Qq(�̄)

. (35)

Eventually, if Qals(�̄)�0, then

D̂ − �2 � 2Qals(�̄)

Q̄l0(�̄)
,

otherwise D̂ − �2 < 0. This holds true because of (34), (35), and Q̄l0(�̄)�0. The lemma is
proved. �

Theorem 17. Let conditions (i)–(v) hold. Then the ALS2 estimator is strongly consistent:

dist(�̂, {±�̄}) → 0 as m → ∞ a.s.

Proof. Denote

�2 := (Â, b̂, d̂ + (�2 − D̂) tr Â).

Since �̂ 
= 0, we have �2 
= 0.

For a fixed m, assume that �2

(
1
m

�ols

)
��0 and both random events (32) and s��2 occur.

Consider the cases, whether the random event D̂ < �2 occurs or not.
Case 1: The random event D̂ < �2 occurs. By definition,

QD̂(�̂) = 0. (36)

By (30) with D2 = �2 and D1 = D̂ and d̂ − D̂ tr Â in place of d and since D̂ < �2 �s,

Qals(�2) − QD̂(�̂)� − 2m(�2 − D̂)2‖Â‖2
F . (37)

By (C.6) and (iii),

m�0 sin2 
 (�2, �̄)‖�2‖2 �Q̄ols(�2). (38)

Since by (C.5),

sin 
 (�̂, �2)‖�2‖�‖�̂ − �2‖ = (�2 − D̂)|tr Â|

and (tr Â)2 �n‖Â‖2
F , we have

2m

n
sin2 
 (�̂, �2)‖�2‖2 �2m(�2 − D̂)2‖Â‖2

F . (39)
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We sum up inequalities (36)–(39)

m( 2
n

sin2 
 (�̂, �2) + �0 sin2 
 (�2, �̄))‖�2‖2 �‖�als − �ols‖ ‖�2‖2.

Since �2 
= 0, we can divide both sides by ‖�2‖2. By the Schwarz inequality and Lemma 36

sin2 
 (�̂, �̄) � (sin 
 (�̂, �2) + sin 
 (�2, �̄))2

�
(

n

2
+ 1

�0

)(
2

n
sin2 
 (�̂, �2) + �0 sin2 
 (�2, �̄)

)
�
(

n

2
+ 1

�0

)
1

m
‖�als − �ols‖.

Case 2: The alternative event D̂��2 occurs. From QD̂(�̂) = 0 and (13) we have

(D̂ − �2)2Qq(�̂) − (D̂ − �2)Ql�(�̂) + Qals(�̂) = 0.

It is clear that

−(D̂ − �2)2Qq(�̂)�0.

By (C.6) and (iii),

m�0 sin2 
 (�̂, �̄)�Q̄ols(�̂).

By (32),

(D̂ − �2)Q̄l0(�̂)� 2Qals(�̄)

Q̄l0(�̄)
|Q̄l0(�̂)|.

From (32) and the relation ‖�̂‖ = 1, we have

(D̂ − �2)(Ql�(�̂) − Q̄l0(�̂))� 2Qals(�̄)

Q̄l0(�̄)
‖�l� − �l0‖,

Q̄ols(�̂) − Qals(�̂)�‖�als − �ols‖.
We sum these inequalities up

m�0 sin2 
 (�̂, �̄)�‖�als − �ols‖ + 2Qals(�̄)

Q̄l0(�̄)
(‖�l� − �l0‖ + |Q̄l0(�̂)|).

Since |Qals(�̄)|�‖�als − �ols‖,

m�0 sin2 
 (�̂, �̄)�‖�als − �ols‖
(

1 + 2

Q̄l0(�̄)
‖�l� − �l0‖ + |Q̄l0(�̂)|

Q̄l0(�̄)

)
.
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By Lemmas 9 and 16, both the random events s��2 and (32) hold eventually, and by condition

(iii), �2

(
1
m

�ols

)
��0 holds for m large enough. Then eventually

sin2 
 (�̂, �̄) � ‖�als − �ols‖
m

max

{(
n

2
+ 1

�0

)
,

1

�0

(
1 + 2

Q̄l0(�̄)
‖�l� − �l0‖ + |Q̄l0(�̂)|

Q̄l0(�̄)

)}
. (40)

By Lemmas 5, 6, 8, and 10,

sin2 
 (�̂, �̄) → 0 as m → ∞ a.s.

Due to (C.2), the consistency is proved. �

Remark 18. Condition (v) can be replaced by the following one

(vi) ∃C3 > 0 ∀m � 1 : 1
m

m∑
l=1

‖x̄l‖2 �C3.

The condition (v) was used in Lemma 10 to prove that the sequence { Q̄l0(�̂)

Q̄l0(�̄)
, m�m0} is bounded.

Under (vi) the sequence { 1
m

Q̄l0(�̂), m � 1} is bounded. With Lemma 5, we get the desired bound.

Remark 19. In [1] a polynomial functional measurement error model is considered

yi =
p∑

j=0

�j x̄
j
i + ỹi , xi = x̄i + x̃i .

Here {ỹi} and {x̃i} are two i.i.d. error sequences, independent of each other. For the case of known
ratio � := var(ỹi)/var(x̃i), while the variances themselves are unknown, a certain estimation
procedure for �0, . . . , �p is proposed. It is not clear whether that procedure is consistent or not.
And in case p = 2 of the quadratic model, under known � and normal errors, there is a clear way
to estimate the regression coefficients consistently: just imbed the explicit quadratic model into
an implicit one

ȳi −
2∑

j=0

�j x̄
j
i = 0, xi = x̄i + x̃i , yi = ȳi + ỹi .

By remark 18, under rather mild conditions theALS2 estimator of � := (�0, �1, �2)
� is consistent.

Remark 20. Under the conditions of Theorem 17, but without (v), the following holds:

dist(�̂, {±�̄}) I{D̂<�2} → 0 as m → ∞ a.s.,

where I(P ) is an indicator function of random event P.

Theorem 21 (Consistency of the estimator of error variance). Let conditions (i)–(iv) hold. Then
D̂ is a strictly consistent estimate of �2.
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Proof. Whenever the random event D̂��2 �s occurs, we sum up lines (36), (37), and the in-
equality

0�Q̄ols(�2).

We get

2m(�2 − D̂)2‖Â‖2
F �‖�als − �ols‖ ‖�2‖2.

If D̂��2, then ‖�2‖�1 + �2√n. By Remark 20,

(‖Â‖F − ‖Ā‖F ) I{D̂<�2} → 0 as m → ∞ a.s.

By Lemma 9, the random event s��2 occurs eventually. Hence, by Corollary 2 and Lemma 6,

(D̂ − �2) I{D̂<�2} → 0 as m → ∞ a.s.

Next, the convergence

(D̂ − �2) I{D̂��2} → 0 as m → ∞ a.s.

holds true due to Lemmas 6, 8, and 10.
Finally,

D̂ − �2 → 0 as m → ∞ a.s. �

4. Structural model

We considered a functional measurement error model. Now we study a structural model with
random vectors x̄l . In this section assume that (2)–(4) hold. Introduce the following conditions:

(S1) The random vectors x̄1, x̄2, x̄3,…; x̃1, x̃2, x̃3,…are totally independent.
(S2) The random vectors x̄1, x̄2,…are identically distributed.
(S3) x̃l has normal distribution, x̃l ∼ N(0, �2I ), � > 0, l�1.
(S4) E‖x̄1‖4 < ∞.
(S5) �2(E�ols(x̄1)) > 0.

We mention that (S4) provides the existence of E�ols(x1).

Proposition 22. Let conditions (S1),(S3),(S4) and (S5) hold. Then ALS1, TALS, and ALS2 esti-
mators are strongly consistent, i.e., the statements of Theorems 11, 17, 21, and Remark 13 hold
true.

Proof. By condition (S4) E‖x1‖4 < ∞, E‖x̄1‖2 < ∞, and the expectations of �ols(x̄1) and
�als(x1) exist and are finite. By the strong law of large numbers,

1

m
�ols → E�ols(x̄1) as m → ∞ a.s.

1

m
�als → E�als(x1) = E�ols(x̄1) as m → ∞ a.s.

Then (21) holds true. By (21) and condition (S5), there exists �0 such that eventually �2
( 1

m
�ols

)
�

�0, i.e., condition (iii) holds true a.s.
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The consistency of the ALS and TALS estimators follows from condition (iii) and convergence
(21) similarly to the proof of Theorem 11.

As E‖x̄1‖2 < ∞, by the strong law of large numbers

1

m

m∑
l=1

‖x̄l‖2 → E‖x̄1‖2 as m → ∞ a.s.,

and then condition (vi) holds true a.s. The ALS2 estimator is consistent. The proof is similar to
the proof of Theorem 17 under condition (vi) (see Remark 18). �

The condition (S4) can be relaxed. Consider assumptions

(S4-) E‖x̄1‖3 < ∞.
(S5-) The identity “�ols(x̄1)� = 0 a.s.” implies “� = k�̄ for some k∈R”.

Condition (S5-) means that the distribution of x̄1 is not concentrated on an intersection of two
different conics. Under (S4) conditions (S5) and (S5-) are equivalent.

Proposition 23. Let conditions (S1)–(S3),(S4-), and (S5-) hold true. Then the ALS, TALS, and
ALS2 estimators are strongly consistent.

Sketch of Proof. Condition (S4-) implies (iv) a.s. by Kolmogorov theorem about three series
(see [9]). By (S4-) condition (vi-) holds true a.s. Condition (S5-) implies (iii) a.s. (with random
C3). Thus, conditions of the consistency theorems hold true a.s. with given x̄l , l = 1, 2, . . . . �

5. Invariance of the estimates

5.1. Notations

Let the sample size m be fixed. Consider an arbitrary estimator of �̄, i.e., a measurable mapping
from the sample space Rn×m into the parameter space V. There is a natural one-to-one corre-
spondence between V and the space of polynomials in n variables of degree �2, namely the
polynomial x�Ax + b�x + d in the coordinates of x corresponds to the triple (A, b, d).

Suppose for a sample X = [x1, x2, . . . , xm] that the estimate is equal to �̂ = (Â, b̂, d̂). Denote
by

�̂X(x) := x�Âx + b̂�x + d̂

the link function of the estimated conic, further referred to as estimate of the link function. The
equation of the estimated conic is �̂X(x) = 0.

Unfortunately problems (5), (10), (11), and (17), which are referred below as estimation prob-
lems, may have multiple solutions. Again fix the sample size m. If a sample X is observed, let
B̂(X) ⊂ V be the set of solutions to the estimation problem. Denote by

Sol(X) := {x �→ x�Ax + b�x + d | (A, b, d) ∈ B̂(X)}
the set of the link functions defined by the solutions to the estimation problem.

Denote the density of an n-variate normal distribution N(0, �) by p�. If the distribution is
homogeneous, the notation p�2 = p�2I is used.
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Let f (x) be a polynomial. The convolution with the normal distribution density is denoted by

f ∗ p�(x) = Ef (x + x̃), x̃ ∼ N(0, �).

The deconvolution denoted by f ∗ p−� is a polynomial such that (f ∗ p−�) ∗ p� = f . This
means that for g = f ∗ p−� the equality Eg(x + x̃) = f (x) holds.

Introduce an abstract notation for functions. The composition of the functions f and T is denoted
by f ◦ T , i.e., f ◦ T (x) = f (T (x)). The notation �2 means x �→ �(x)2, and (� ◦ T )2(x) =
�2 ◦T (x) = �(T (x))2. If T is a one-to-one transformation, the inverse transformation is denoted
by T −1.

Let T be an affine transformation on Rn, T (x) = Kx + h, where K is an n × n matrix, and let
f be a polynomial. The formulae of convolution and deconvolution of the composition f (T (x))

are given next.

(f ◦ T ) ∗ p�(x) = Ef (T (x + x̃)) = Ef (T (x) + Kx̃) = f ∗ pK�K�(T (x))

with x̃ ∼ N(0, �) and Kx̃ ∼ N(0, K�K�). The formula for the deconvolution is

(f ◦ T ) ∗ p−� = (f ∗ p−K�K�) ◦ T , (41)

because

((f ∗ p−K�K�) ◦ T ) ∗ p� = (f ∗ p−K�K� ∗ pK�K�) ◦ T = f ◦ T .

Let � = (A, b, d) ∈ V and �(x) = x�Ax + b�x + d. Let a sample X = [x1, x2, . . . , xm] be
fixed. As qols(�, x) = �(x)2,

Qols(�) =
m∑

l=1

�(xl)
2.

By (8), qals(�, x) = qols(�, x) ∗ p−�2 = �2 ∗ p−�2(x). Hence

Qals(�) =
m∑

l=1

�2 ∗ p−�2(xl).

Denote

�1(�) := ‖A‖F ,

�2(�) :=
√

‖A‖2
F + ‖b‖2 + d2.

The estimation problems (5), (10), (11), and (17) are reformulated in terms of the estimators of
link functions. In the following formulae, �(x) is a polynomial of order less than or equal to 2.

Finally, for the OLS estimator, � ∈ Sol(X) if and only if � delivers a constrained minimum to
the problem⎧⎨⎩

m∑
l=1

�(xl)
2 → min ,

�2(�) = 1.
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For the ALS1 estimator, � ∈ Sol(X) if and only if � is a solution to the problem⎧⎨⎩
m∑

l=1
�2 ∗ p−�2(xl) → min ,

�2(�) = 1.

(42)

For the TALS estimator, � ∈ Sol(X) if and only if � is a solution to the problem⎧⎨⎩
m∑

l=1
�2 ∗ p−�2(xl) → min ,

�1(�) = 1.

(43)

For the ALS2 estimator, � ∈ Sol(X) if and only if there exists D�0, such that⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

m∑
l=1

�2 ∗ p−D(xl) = 0,

m∑
l=1

�2
1 ∗ p−D(xl)�0 for any polynomial �1 of order �2,

�2(�) = 1.

(44)

5.2. Definition of invariance

There are infinitely many coordinate systems of an affine space. The question we consider next
is how the estimated conic depends on the choice of the coordinate system.

Let in an n-dimensional affine space two coordinate systems be fixed. The transformation
function is T: if a point has coordinates x in the first system, it has coordinates y = T (x) in the
second one. Note that T (x) is of the form T (x) = Kx + h with a nonsingular n × n matrix K
and a vector h ∈ Rn.

Let a sample on the space be given. Denote by X := [x1, x2, . . . , xm] and Y := [y1, y2, . . . , ym]
the m-ples of the points of the sample expressed in x- and y-coordinates, respectively. The relation

T (xl) = yl, l = 1, 2, . . . , m

is denoted by

T (X) = Y.

Let �̂X(x) be an estimator of a link function. When the first coordinate system is used, the equation
of the estimated conic is

�̂X(x) = 0.

When the second system is used, the equation is

�̂Y (y) = 0.

These equations define the same conic if and only if

�̂X(x) = 0 ⇔ �̂Y (T (x)) = 0.
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Definition 24. Let �̂ be an estimator of a link function. Let T be an affine transformation of Rn.
The underlying estimator is called T-invariant if the following equations are equivalent:

�̂X(x) = 0 ⇔ �̂T (X)(T (x)) = 0.

Now we suppose that an estimation problem arises, and the estimator is not necessarily unique.
If the first coordinate system is used, then the set of estimated conics is

S1 := {{x|�(x) = 0} : � ∈ Sol(X)}.
If the second coordinate system is used, then the set of estimated conics is

{{y|�(y) = 0} : � ∈ Sol(Y )}.
We perform a coordinate transformation. If the second system is used for estimation procedure
and the equations of the estimated conics are rewritten in x-coordinates, then the set of estimated
conics is

S21 := {{x|�(T (x)) = 0} : � ∈ Sol(Y )}.
The two sets of estimated conics are the same if and only if S1 = S21.

Definition 25. Fix a sample X. Consider an estimation problem. Let T (x) be an affine transfor-
mation of Rn. The problem is called T ⇒invariant if ∀�1 ∈ Sol(X) ∃�2 ∈ Sol(T (X)), such
that

�1(x) = 0 ⇔ �2(T (x)) = 0.

The problem is called T ⇐invariant if ∀�2 ∈ Sol(T (X))∃�1 ∈ Sol(X), such that

�1(x) = 0 ⇔ �2(T (x)) = 0.

The problem is called T-invariant if it is both T ⇒invariant and T ⇐invariant.

Remark 26. Suppose that for any sample X, an estimation problem is T ⇒invariant and T −1⇒
invariant. Then for any sample X it is T-invariant. The reason is that the T ⇐invariance for a
sample X coincides with the T −1⇒invariance for the sample T (X).

The next statement concerns the relation between the invariance of an estimator and the invari-
ance of an estimation problem.

Proposition 27. Let an estimation problem and an estimator be given. Suppose that for any
sample, whenever the estimation problem has solutions, the estimator provides one of them. Let
T be an affine transformation. For a given sample X, suppose that the problem is T-invariant and
its solutions define a unique conic. Then the estimator is T-invariant for the sample X.

Proof. Let Sol(X) be the set of all the link functions defined by the solutions to the problem,
and �̂X be the estimator of the link functioncorresponding to the estimator (of �). The relation
between the estimation problem and the estimator is such that for any sample X′, either

�̂X′ ∈ Sol(X′) or Sol(X′) = �.
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The uniqueness of the estimated conic means that

Sol(X) 
= �

and

if �1 ∈ Sol(X) and �2 ∈ Sol(X) then �1(x) = 0 ⇔ �2(x) = 0. (45)

We have �X ∈ Sol(X). Then by the T ⇒invariance, Sol(T (X)) 
= �, and therefore �(T (X)) ∈
Sol(T (x)). Because of the T ⇐invariance, there exists �1 ∈ Sol(X), such that

�1(x) = 0 ⇔ �T (X)(T (x)) = 0. (46)

By the relations (45) for �2 = �X, and by (46), the estimator is T-invariant. �

5.3. Rotation invariance of the ALS1 estimator

Consider the transformation T (x) = Sx with an orthogonal n × n matrix S.

Theorem 28. For any sample X , problem (10) is T-invariant for T (x) = Sx.

Proof. Hereafter � is a polynomial of order �2. By (41),

m∑
l=1

(� ◦ T )2 ∗ p−�2(xl) =
m∑

l=1

(�2 ◦ T ) ∗ p−�2(xl) =
m∑

l=1

�2 ∗ p−�2(T (xl)), (47)

because S(−�2I )S� = −�2I . We show that

�2(� ◦ T ) = �2(�).

Let �(x) = x�Ax + b�x + d , (A, b, d) ∈ V. Since ‖S�AS‖F = ‖A‖F , ‖S�b‖ = ‖b‖, and
�(T (x)) = x�S�ASx + (S�b)�x + d , we have

�2
2(� ◦ T ) = ‖S�AS‖2

F + ‖S�b‖2 + d2 = ‖A‖2
F + ‖b‖2 + d2 = �2

2(�).

By (42), � ∈ Sol(T (X)) if and only if � is a solution to the problem⎧⎨⎩
m∑

l=1
�2 ∗ p−�2(T (xl)) → min ,

�2(�) = 1.

This problem is equivalent to⎧⎨⎩
m∑

l=1
(� ◦ T )2 ∗ p−�2(xl) → min ,

�2(� ◦ T ) = 1.

(48)

Now, we prove the T ⇒invariance. Suppose that �1 ∈ Sol(X), i.e., �1 is a solution to problem
(42). Then �1 ◦ T −1 is a solution to problem (48), i.e., �1 ◦ T −1 ∈ Sol(T (X)). The relation

�1(x) = 0 ⇔ �1(T
−1(T (x))) = 0 (49)
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is obvious. The T ⇒invariance is proven. Since the inverse transformation T −1(y) = S�y is
of the same form, the problem (10) is T −1⇒invariant for any sample. By Remark 26, it is T-
invariant. �

The same invariance holds for the estimation problem (5) for the OLS estimator.

5.4. Isometry invariance of the TALS estimator

Consider the transformation T (x) = Sx + h with an orthogonal matrix S.

Theorem 29. Problem (11) is T-invariant for T (x) = Sx + h for any sample X.

Proof. By (41), the formula (47) holds true. Next we prove that

�1(� ◦ T ) = �1(�). (50)

Let �(x) = x�Ax + b�x + d , (A, b, d) ∈ V. Then

�(T (x)) = x�S�ASx + (2Ah + b)�Sx + h�Ah + b�h + d.

Hence �1(� ◦ T ) = ‖S�AS‖F = ‖A‖F = �1(�).
By (43), � ∈ Sol(T (X)) if and only if � is a solution to the problem⎧⎨⎩

m∑
l=1

�2 ∗ p−�2(T (xl)) → min,

�1(�) = 1.

By (47) and (50), this problem is equivalent to⎧⎨⎩
m∑

l=1
(� ◦ T )2 ∗ p−�2(xl) → min,

�1(� ◦ T ) = 1.

(51)

We prove the T ⇒invariance. Let �1 ∈ Sol X. Then �1 is a solution to (43), �1 ◦ T −1 is a
solution to (51), i.e., �1 ◦ T −1 ∈ Sol T (X). The equivalence (49) completes the proof of the
T ⇒invariance.

The same holds for the transformation T −1(y) = S�y − S�h. By Remark 26, problem (11) is
T-invariant. �

5.5. Similarity invariance of the ALS2 estimator

Theorem 30. Let the transformation T (x) be of the form T (x) = kSx + h, with an orthogonal
matrix S and real k 
= 0. Then problem (17) is T-invariant for any sample X.

Proof. By (41), for any real D�0 we have

(� ◦ T )2 ∗ p−D = (�2 ◦ T ) ∗ p−D = (�2 ∗ p−k2D) ◦ T , (52)
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because kS(−DI)(kS)� = −k2DI . We apply (52) to � = �1 ∗ T −1:

�2
1 ∗ p−D(x) = (�1 ◦ T −1)2 ∗ p−k2D(T (x)). (53)

Now, we prove the T ⇒invariance. Let �1 ∈ Sol(X). Then there exists D�0, such that � satisfies
(44). By (53), the first equation of (44) implies that

m∑
l=1

(�1 ◦ T −1)2 ∗ p−k2D(T (xl)) = 0. (54)

For any polynomial �2(x) of order �2, �2(T (x)) is also a polynomial of order �2. Then by the
second line of (44) and by (52),

m∑
l=1

�2
2 ∗ p−k2D(T (xl))�0. (55)

By the third line of (44), the polynomial �1 is not identically 0. Neither is �1 ◦ T −1, thus
�2(�1 ◦ T −1) 
= 0. Denote

�3(x) := �1(T
−1(x))

�2(�1 ◦ T −1)
.

By (54), (55), and since �2 is homogeneous, we have⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

m∑
l=1

�2
3 ∗ p−k2D(T (xl)) = 0,

m∑
l=1

�2
2 ∗ p−k2D(T (xl))�0 for any polynomial �2 of order �2,

�2(�3) = 1.

We see that the link function �3 satisfies conditions (44) for the sample T (X). Hence �3 ∈
Sol(T (X)). Since �3(T (x)) = 1

�2(�1◦T −1)
�1(x), the polynomial �3(T (x)) has the same zeros as

�1(x). The T ⇒invariance is proved.
The same holds true for the transformation T −1(y) = k−1S�y − k−1S�h and any sample X.

By Remark 26, problem (17) is T-invariant. �

A simulation study confirming the invariance of the ALS2 estimator is given in [7].
Denote by D(X) the solution to Eq. (15) with the sample X observed. (The solution is unique,

see Theorem 14.) Next we show that the variance estimator is invariant under isometries.

Theorem 31. Let the transformation T be of the form T (x) = Sx +h, with an orthogonal matrix
S. Then for any sample X,

D(X) = D(T (X)).

Proof. D is a solution to (15) if and only if there exists a polynomial � of order �2, such that
conditions (44) hold. For any sample X there exists �1, such that conditions (44) hold true for
D = D(X), � = �1. Then conditions (44) are satisfied for D = D(X), � = 1

�2(�1◦T −1)
�1 ◦T −1,

and the sample T (X). Therefore D(X) = D(T (X)). �
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Fig. 1. Simulation example showing the invariance properties of the ALS1, ALS2, and orthogonal regression estimators.
Dashed line—ALS1, solid line—ALS2, dashed dotted line—orthogonal regression, ◦—data points, ×—centers.

Remark 32. Let T (x) = kSx + h with an orthogonal matrix S, and k 
= 0. Then for any
sample X,

D(T (X)) = k2D(X).

In the next remark the similarity-invariance of the TALS estimator is concerned.

Remark 33. Consider the transformation T from Remark 32. Denote the set of all the estimated
link functions which are solutions to (43) by Sol�2(X). Let �1 ∈ Sol�2(X). Then �1 ◦ T −1 is a
solution to the problem (51), which is equivalent to⎧⎨⎩

m∑
l=1

�2 ∗ p−k2�2(T (xl)) → min,

k�1(�) = 1.

Then 1
k
� ◦ T −1 ∈ Solk2�2(T (X)), and �1(x)=0 ⇔ 1

k
�1(T

−1(T (x)))=0.
Hence, to introduce the similarity invariance, one has to take the rescaling of measurement

error variance into account, and modify Definition 25.

We illustrate the invariance properties of theALS1,ALS2, and orthogonal regression estimators
via a simulation example. The plots on Fig. 1 show data points and the estimates obtained by the
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Transformations ALS1 TALS ALS2

Isometries preserving the origin Invariant Invariant Invariant
Translations Not invariant Invariant Invariant
Homotheties with the Not invariant Invariant if Invariant
center in the origin �2 is rescaled

three estimators for the original data (example “special data” from [3]), for the data scaled by
factor 0.2 and for the data translated by (20, 20). We see that the ALS2 and orthogonal regression
estimators are translation invariant and scale invariant, while the ALS1 estimator is not.

In the next table (see above) it is summarized whether an estimation problem is invariant for
any sample X against all transformations within a group.

6. Conclusion

We considered the implicit quadratic measurement error model in a Euclidean space, with
normal errors. For the case of known variance, the similarity invariant version of theALS estimator
was presented and its strong consistency was shown. For the case of unknown variance, the
consistency of the ALS2 estimators for the surface and the variance were proved under rather mild
conditions. The ALS2 estimators are shown to be similarity invariant. We intend to generalize the
results for unspecified error distributions.
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Appendix A. Proofs using the matrix representation of qals

Proposition 34. The quadratic form qals defined by (9) is a solution to (8).

Before the proof of this proposition we consider the following identity.

Lemma 35. For x ∼ N(x̄, �2I ), A ∈ S, b ∈ Rn

var(x�Ax + b�x) = 2�4‖A‖2
F + �2‖2Ax̄ + b‖2.

Proof. There exists a unique decomposition

b = 2Ax1 + b2, x1 ∈ Rn, b2 ∈ Rn, b�
2 A = 0.
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Then

x�Ax + b�x = (x + x1)
�A(x + x1) + b�

2 x − x�
1 Ax1.

Since the random vector (
Ax
b�

2 x
) is normally distributed and cov(Ax, b�

2 x) = A (�2I ) b2 = 0, the

random vector Ax and the random variable b�
2 x are independent. Therefore the random variables

(x + x1)
�A(x + x1) = (Ax)�(A+(Ax) + 2x1) + x�

1 Ax1 and b�
2 x are independent. Here A+ is

the pseudoinverse of A. By [8, Theorem 1.8, Corollary 1]

var(x + x1)
�A(x + x1) = 2�4‖A‖2

F + 4�2‖A(x̄ + x1)‖2.

Finally,

var(x�Ax + b�x) = var(x + x1)
�A(x + x1) + varb�

2 x

= 2�4‖A‖2
F + �2‖2Ax̄ + 2Ax1‖2 + ‖b2‖2

= 2�4‖A‖2
F + �2‖2Ax̄ + b‖2.

Here we used that b�
2 · (2Ax̄ + 2Ax1) = 0. �

Proof of Proposition 34. Let x ∼ N(x̄, �2I ). By [8, Theorem 1.7],

E(x�Ax + b�x + d − �2 tr A) = x̄�Ax̄ + b�x̄ + d.

By Lemma 35,

var(x�Ax + b�x + d − �2 tr A) = �2‖2Ax̄ + b‖2 + 2�4‖A‖2
F .

Also,

E‖2Ax + b‖2 = ‖2Ax̄ + b‖2 + 4�2‖A‖2
F .

These equalities imply (8) with qals defined by (9). �

Proof of Lemma 7. Consider an entry Kfijpq(x) of the matrix [�als(x)]. Here K is a constant
equal to either 1,

√
2, or 2; and fijpq is a polynomial such that

Efijpq(x̄ + x̃) = x̄i x̄j x̄p x̄q , x̃ ∼ N(0, �2I ), x̄ ∈ Rn,

where x̄i the ith entry of vector x̄. Thus, fijpq(x) is a homogeneous polynomial in � and in
the entries of x of order 4, and it is an even function in �. Its variance varfijpq(x̄ + x̃) is a
homogeneous polynomial in � and in the entries of x̄ without �-free and odd-in-� monomials.
Then varfijpq(x̄ + x̃)�const(�8 + �2‖x̄‖6). By condition (iv-),

∞∑
l=1

1

l2 varfijpq(xl) < ∞.

Similar bounds can be found for the variances of other entries of the matrix �als(x). By the strong
law of large numbers, 1

m
(�ols − �ols) → 0, as m → ∞, a.s. �
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Appendix B. Tedious proofs

Proof of Lemma 9. By (22) and (23) from the proof of Lemma 8,∥∥∥∥∥ 1

m

m∑
l=1

(
xlx

�
l − �2I xl

x�
l 1

)
− 1

m

m∑
l=1

(
x̄l x̄

�
l x̄l

x̄�
l 1

)∥∥∥∥∥ → 0 as m → ∞ a.s.

Since for symmetric matrices A and B

|�min(A) − �min(B)|� max‖x‖=1
|x�(A − B)x| = ‖A − B‖,

we have

�min

(
1

m

m∑
l=1

(
xlx

�
l − �2I xl

x�
l 1

))
− �min

(
1

m

m∑
l=1

(
x̄l x̄

�
l x̄l

x̄�
l 1

))
→ 0,

as m → ∞, a.s. Using Lemma 3, one has

lim inf
m→∞ �min

(
1

m

m∑
l=1

(
xlx

�
l − �2I xl

x�
l 1

))
��0‖Ā‖2.

Denote xce = 1
m

∑m
l=1 xl . Note that xce depends on m. Then

1

m

m∑
l=1

xlx
�
l − xcex

�
ce = 1

m

m∑
l=1

(xl − xce)(xl − xce)
�

= 1

m

(
I

−x�
ce

)� m∑
l=1

(
xlx

�
l − �2I xl

x�
l 1

)(
I

−x�
ce

)
+ �2I.

For all b ∈ Rn,

b�
(

1

m

m∑
l=1

xlx
�
l − xcex

�
ce

)
b

= 1

m

(
b

−x�
ceb

)� m∑
l=1

(
xlx

�
l − �2I xl

x�
l 1

)(
b

−x�
ceb

)
+ �2‖b‖2

�(‖b‖2 + (x�
ceb)2)�min

(
1

m

m∑
l=1

(
xlx

�
l − �2I xl

x�
l 1

))
+ �2‖b‖2

�
(

�min

(
1

m

m∑
l=1

(
xlx

�
l − �2I xl

x�
l 1

))
+ �2

)
‖b‖2.
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Hence almost surely

lim inf
m→∞ �min

(
1

m

m∑
l=1

xlx
�
l − xcex

�
ce

)

� lim inf
m→∞ �min

(
1

m

m∑
l=1

(
xlx

�
l − �2I xl

x�
l 1

))
+ �2 ��2 + �0‖Ā‖2. �

Proof of Lemma 10. Let c̄ be the center of the true conic, see (24). Denote

ȳl := x̄l − c̄.

Then

ql0((A, b, d), x̄l) = 2((ȳl+c̄)�A(ȳl+c̄) + b�(ȳl+c̄) + d) tr A + ‖2A(ȳl+c̄) + b̄‖2

= 2(ȳ�
l Aȳl + (b+2Ac̄)�ȳl + d + b�c̄ + c̄�Ac̄) tr A

+‖2Aȳl + b̄ + 2Ac̄‖2

= ql0(R(A, b, d), ȳl),

where R is a linear operator on V that depends only on �̄:

R(A, b, d) = (A, b + 2Ac̄, d + b�c̄ + c̄�Ac̄).

Then

‖R�‖�‖R‖ ‖�‖ for � ∈ V.

By Corollary 4,

m∑
l=1

‖ȳl‖2 �mn�0‖A‖2
F for all m�m0.

Then for � = (A, b, d) ∈ V, R� = (A, bY , dY ), y = x − c̄

ql0(�, x) = 2〈(yy�, y, 1), R�〉 tr A + ‖2Ay + bY ‖2

� 2(‖y‖2+‖y‖+1) ‖R�‖2√n + (4‖y‖2+4‖y‖+1) max(‖A‖2, ‖bY ‖2)

� (3
√

n + 5)(‖y‖2 + 1)‖R�‖2,

because

|trA|�√
n‖A‖F �

√
n‖R�‖,

‖(yy�, y, 1)‖�‖y‖2 + ‖y‖ + 1� 3
2 (‖y‖2 + 1),

4‖y‖2 + 4‖y‖ + 1�5‖y‖2 + 5,

max(‖A‖2, ‖bY ‖2)�‖R�‖2,
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and of the Schwarz inequality. Then for all m�m0, � ∈ V, ‖�‖ = 1,

Q̄l0(�) �
m∑

l=1

(3
√

n + 5)(‖ȳl‖2 + 1)‖R�‖2

� (3
√

n + 5)‖R‖2

(
m +

m∑
l=1

‖ȳl‖2

)

� (3
√

n + 5)‖R‖2

(
1

�0‖Ā‖2
F n

+ 1

)
m∑

l=1

‖ȳl‖2. (B.1)

By (3) and (24),

Q̄l0(�̄) = 4
m∑

l=1

‖Āyl‖2 � 4

‖Ā−1‖2

m∑
l=1

‖ȳl‖2. (B.2)

By (B.1) and (B.2), inequality (25) holds with

C2 := 3
√

n + 5

4
‖R‖2‖Ā−1‖2

(
1

�0‖Ā‖2
F n

+ 1

)
. �

Appendix C. On the generalized eigenvalue problem

C.1. Trigonometry

For a, b ∈ Rd , a 
= 0, b 
= 0, denote the length the projection of the vector a
‖a‖ onto the

orthogonal complement to b by sin 
 (a, b). The following formulae hold:

sin 
 (a, b) =
√

1 − (a�b)2

‖a‖2‖b‖2 ,

sin 
 (a, b) = 1

2

∥∥∥∥ a

‖a‖ − b

‖b‖
∥∥∥∥ ∥∥∥∥ a

‖a‖ + b

‖b‖
∥∥∥∥ . (C.1)

For z1, z2 ∈ Rd , ‖z1‖ = ‖z2‖ = 1, we have

min{‖z1 − z2‖, ‖z1 + z2‖}�
√

2 sin 
 (z1, z2). (C.2)

For vectors z1, z2 ∈ Rd , ‖z1‖ = ‖z2‖ = 1,

sin 
 (z1, z2) = ‖z1 − z2‖
√

4 − ‖z1 − z2‖2

2
= ‖z1 + z2‖

√
4 − ‖z1 + z2‖2

2
. (C.3)

This holds true due to identities (C.1) and ‖z1 − z2‖2 + ‖z1 + z2‖2 = 4.
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Let A be a d × d singular positive semidefinite matrix, let �k = �k(A), k = 1, . . . , d be its
eigenvalues in ascending order (�1 = 0), and letb1, . . . , bd be corresponding eigenvectors forming
an orthogonal normalized basis of Rd . Suppose x = ∑d

i=1 �ibi 
= 0. Then ‖x‖2 sin2 
 (x, b1) =∑d
i=2 �2

i . Hence for all x ∈ Rn, x 
= 0,

x�Ax�‖x‖2�2 sin2 
 (x, b1). (C.4)

For all a, b ∈ Rn, a 
= 0, the inequality(
‖a‖ − (a, b)

‖a‖
)2

�0

implies

‖b‖2 − (a, b)2

‖a‖2 �‖a‖2 − 2(a, b) + ‖b‖2.

Extracting the root, we get for b 
= 0 that

‖b‖ sin 
 (a, b)�‖a − b‖. (C.5)

Lemma 36. For any a, b, c ∈ Rd\{0},
sin 
 (a, b)� sin 
 (a, c) + sin 
 (c, b).

Proof.

r(a, b) := min

{∥∥∥∥ a

‖a‖ − b

‖b‖
∥∥∥∥ ,

∥∥∥∥ a

‖b‖ + b

‖b‖
∥∥∥∥}

is a pseudometric on Rd\{0}. For all a 
= 0 and b 
= 0, 0 � r(a, b) �
√

2.
Consider the function f (t) = 1

2 t
√

4 − t2. Since f (0) = 0 and f (t) is increasing and concave
on the interval [0,

√
2], therefore f (r(a, b)) is a pseudometric as well. By (C.3), sin 
 (a, b) =

f (r(a, b)). The inequality holds true. �

Remark 37. We define sine between elements of the Euclidean space V by

sin 
 (�1, �2) :=
√

1 − 〈�1, �2〉2

‖�1‖2‖�2‖2 , �1, �2 ∈ V\{0}.

The properties proved in this subsection for vectors in Rd remain true. Inequality (C.4) changes to
the following. Let Q(�) be a positive semidefinite quadratic form on V, and � be a corresponding
self-adjoint operator. Let �0 
= 0 and Q(�0) = 0. Then

Q(�)�‖�‖2�2(�) sin2 
 (�, �0), � ∈ V, � 
= 0. (C.6)

C.2. Definite matrix pairs

Let A and B be d × d matrices. A number � is called a (generalized) eigenvalue of A w.r.t. B
if the matrix A − �B is singular. Infinity ∞ is called a generalized eigenvalue if the matrix B is
singular.
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The set {x : Ax = �Bx} (or {x : Bx = 0} if �=∞) is called the eigenspace corresponding to
the eigenvalue �. Its dimension is called the geometric multiplicity of the eigenvalue �, and its
nonzero elements are called generalized eigenvectors.

A pair of real symmetric d × d matrices is called definite if

�(A, B) := min‖x‖=1

√
(x�Ax)2 + (x�Bx)2 > 0.

As �(A, B) = min‖x‖=1 |x�(A + iB)x|, therefore

|�(A1, B) − �(A2, B)|� max‖x‖=1
|x�(A1 − A2)x| = ‖A1 − A2‖. (C.7)

If a matrix pair is definite, then

• There exist real � and �, such that the matrix �A + �B is positive definite, whence −�/� is
not a generalized eigenvalue, see [10, Theorem IV.1.18].

• All the finite generalized eigenvalues are real.
• The sum of the geometric multiplicities of all the generalized eigenvalues is equal to d.

We enumerate the generalized eigenvalues according to the following order. Let �A + �B be
positive definite. At first, we count the generalized eigenvalues from interval from −�/� down to
−∞ in decreasing order, repeating each eigenvalue according to its multiplicity. Then we count
∞ (repeating it dim KerB times). At last, we count the generalized eigenvalues from +∞ down
to −�/�.

(If � = 0, then B is definite and all generalized eigenvalues are finite. We enumerate them in
decreasing order.)

This enumeration does not depend on the choice of � and � satisfying �A + �B > 0. The
enumeration coincides with the ordering given in [10, pp. 313–314].

If �A+�B is a semidefinite matrix, then the properties stated above hold true with the following
exception. −�/� can be a generalized eigenvalue of A w.r.t. B, and then it lies either at the beginning
or at the end of the enumeration.

A chordal distance is a metric on R ∪ {∞}, defined by relations

	(�, ) := |� − |√
1 + �2

√
1 + 2

, 	(�, ∞) := 1√
1 + �2

.

A chordal distance between definite matrix pairs (A, B) and (C, D) is


D[(A, B), (C, D)] := max‖x‖=1

|x�Ax x�Dx − x�Cx x�Bx|√
(x�Ax)2 + (x�Bx)2

√
(x�Cx)2 + (x�Dx)2

.
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