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Abstract 

 

The implementation of Discrete Event Simulation (DES) – based decision support tools in complex manufacturing environments could prove of 
invaluable help to industrial practitioners involved in cross-functional decision processes at multiple hierarchical levels. The increasing number 
of decision variables, their stochastic nature and the non-linearity of their mutual relationships theoretically make simulation a preferred 
modelling approach for a great variety of manufacturing systems as strict simplifying assumptions are not necessarily required and the models’ 
detail level can be tuned according to the analysis purposes. However, recourse to Commercial Off-The-Shelf (COTS) simulation packages to 
develop and implement simulation-based solutions in real manufacturing environments usually presents significant cost-of-ownership (COO). 
Along with license costs, modelling flexibility and sustainability represent fundamental issues raised by industrial engineers that adopt COTS 
simulation packages. In order to promote the use of DES in production related decision making processes and reduce the associated COO for 
manufacturing companies, an open-source simulation platform, ManPy, has been developed. ManPy consists of a library of DES objects 
implemented in SimPy. ManPy’s scope is to provide modellers with generic, highly customizable open-source simulation objects that can be 
connected to form a model in the same fashion of COTS simulation packages. ManPy’s on-going development is based on guidelines provided 
by the analysis of real industrial use cases. Specific pilot models developed in SimPy are used to identify new objects and relevant features to 
be incorporated in ManPy in order to make it a highly flexible simulation tool. In this article, a use case based on a labour intensive serial 
production line operating in a medical device manufacturing plant is described. Insights for the transition from a COTS simulation model to a 
specific SimPy model and finally to generic ManPy objects are presented. 
© 2014 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the Scientific Committee of the “8th International Conference on Digital Enterprise Technology - DET 
2014. 
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1. Introduction 
 

Modern manufacturing systems are  very complex to 
manage and control [1]. The presence of multiple production 
steps, various product flows, machine-product-operators 
dedication and complex maintenance programs make it almost 
impossible to investigate the inter-relationships between the 
system decision variables by using straightforward analytical 
approaches. As a consequence, simulation is becoming a 
preferred   modelling   approach   for   a   great   variety   of 

manufacturing systems as strict simplifying assumptions are 
not necessarily required and the models’ detail level can be 
tuned according to the analysis purposes. However, the choice 
of simulation comes at a cost [2]. When simulation models are 
developed for supporting decision making in complex 
manufacturing environments, the Cost of Ownership (COO) of 
such models can be high as considerable effort and expertise is 
required [3,4]. System familiarisation, data mining and model 
development usually require long time periods and limit the 
applicability of the simulation approach to tactical or strategic 
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decision problems [2]. Moreover, the natural evolution of a 
manufacturing system over time or even variations of the 
system configuration due to the implementation of solutions 
suggested by the simulation analysis tend to make simulation 
models quite obsolete fairly quickly after their early use. 

By reducing the programming effort, Commercial off-the- 
self (COTS) DES software packages have contributed 
considerably to the diffusion of DES in the academic and 
industrial community. COTS software packages strength is 
that they provide the user with tools for modelling, debugging 
and experimentation [5]. The programming effort is, at least in 
standard cases, significantly reduced as prefabricated DES 
objects can be manipulated through a user friendly Graphical 
User Interface (GUI). However, due to the great variety of 
systems, in most real cases the user does have to write some 
code in order to model the occasional peculiarities. So most 
COTS DES tools offer an internal programming language, 
which is on one hand simplified but on the other hand specific 
for the users of the tools so support is more difficult to be 
found, no matter how good the documentation is. 

Besides the COO of simulation models, the high license 
cost of COTS software packages is often the largest factor for 
organizations, especially Small and Medium Enterprises 
(SMEs) reluctance to adopt DES. Reusability [6] is also 
hindered because, in the case where the license is not renewed, 
past work cannot be exploited to further the system potential. 
Moreover, practice has shown that even with the use of COTS 
DES packages many simulation projects fail to achieve their 
goals. Even though the process is meliorated through the 
reduction of programming requirements, DES is a complex 
technique and high modeling expertise is always needed [7]. 

A more sustainable alternative to COTS DES packages, at 
least from a cost perspective, is represented by Open Source 
(OS) [8] DES software, which has the potential to overcome 
the aforementioned problems. Being available at zero license 
cost, the adoption of OS software should prove attractive to 
companies with limited financial resources. Also, for 
companies investigating the opportunity of deploying DES- 
based decision support OS software could be used  to 
investigate test cases and assess the benefits deriving from 
simulation-based analyses. Nevertheless, our review of OS 
DES [9] has shown that most projects fail to  attract 
contributors and remain inactive. While published literature 
provides numerous articles that relate to specific OS DES 
projects [10-12] and COTS DES tools are referenced in many 
papers [13-15], there are very few articles that compare 
different OS projects [9,16] or different COTS tools [17] and 
none which compare the development of a pilot model of a 
real world production line using both OS and COTS. 

In this  study, the development and validation of  a 
simulation model developed using two COTS and an OS DES 
simulation package is illustrated using an industrial use case. 
The OS DES application used, which is under ongoing 
development, is based on the simulation engine of a more 
comprehensive OS simulation platform being developed as 
part of the DREAM (“simulation based application Decision 
support in Real-time for Efficient Agile Manufacturing”, 
http://dream-simulation.eu/) project, which also includes data 
mining tools and a GUI. This platform and its components 

will provide industrial practitioners with  easy-to-use, 
reconfigurable and efficient simulation-based decision support 
tools for cross-functional decision processes at multiple 
hierarchical levels. The DREAM simulation engine is ManPy 
“Manufacturing in Python”. ManPy’s on-going development 
is based on guidelines provided by the analysis of actual 
industrial use cases. Specific pilot models developed in COTS 
DES software or SimPy are used to identify new objects and 
relevant features to be incorporated in ManPy in order to make 
it a highly flexible simulation tool. 

The use case analysed in this study focuses on a labour 
intensive serial-parallel production line in a medical device 
fabrication  plant.  Other  than  serving  as  a  fundamental 
application  of  the  ManPy standard  objects  to  a  flow-shop 
manufacturing system, the analysis of this use case has also 
highlighted the need to develop simulation objects to model 
specific production flow control logic. In this case, restrictions 
of  the  production  flow  are  dictated  by  statutory  medical 
regulations.   Moreover,   the   different   production   stations 
processing different sized batches; and this has inspired the 
development of batching and unbatching simulation objects 
whose behaviour  has been  validated  against  the  results  of 
simulation models built in Plant Simulation® and ExtendSim®. 

The  choice  of  using  two  different  COTS  packages  to 
validate the ManPy model, is based on the consideration that 
the  two  packages  chosen  support  two  different  modelling 

approaches. Plant is more flexible, as customisation of the 
logic within an object is facilitated by means of methods that 
can be added to the object through a graphical interface, 
providing a completely object oriented approach. In contrast, 
such modifications are more difficult in ExtendSim where 
methods can only be added to an object by accessing the 
object’s inherent code. Often, a combination of standard 
objects which reproduce the logic is preferred, at the obvious 
cost of making the model more cumbersome. 

The remainder of this paper is organised as follows. Details 
on the ManPy architecture are given in Section 2. The use case 
analysed in this study is described in Section 3. Sections 4 and 
5 elaborate on the development of simulation models of the 
use case system using COTS software and ManPy, 
respectively. The models validation is discussed in Section 6; 
finally, conclusions are drawn in Section 7. 

 
2. ManPy 

 
ManPy is exclusively written in Python and takes 

advantage of SimPy’s efficient use of Python generators via 
the SimPy.Process class. SimPy was chosen after a review of 
23 OS DES projects [9]. The scope of ManPy is not to imitate 
or replace SimPy, but to offer something new and 
accommodate the needs of different levels of users. Highly 
customizable OS simulation objects that can be connected to 
form a model, in the same manner as COTS simulation 
packages, constitute the core of ManPy. The four industrial 
partners in the DREAM consortium provide relevant use cases 
to cover a wide range of manufacturing system related 
problems across four different industrial sectors. This ensures 
that the development of ManPy is focused toward industry 
use.  The  initial  phase  of  the  DREAM  project  focused  on 
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gathering industrial partners’ requirements and identified three 
classes of user of the DREAM platform: 

 
 Super User (SU): he/she can access the code directly, 

customize objects flexibly or create completely new ones. 
He/she needs to have good coding and modeling skills. 

 Industrial Engineer (IE): he/she can use tailored objects 
in order to connect them and create a model. Limited 
coding experience is required at this level, but good 
modeling skills and knowledge of the system are essential. 

 End User (EU): he/she takes a model which is tailored for 
their needs. Specification of certain values using forms, 
drop-down menus, spreadsheets etc. is the only 
customization required to set up the model for use. No 
software or modeling experience is required, only the 
ability to understand the results of the simulation, the 
presentation of which should also have been customized. 

 
In order to address these needs, ManPy focuses on 

developing a repository of well-defined DES objects that can 
be connected like “black boxes” and form a model. It is worth 
noting that the SU and IE levels described above may be 
external consultants rather than internal members of the 
organization using the DES model. 

Object oriented programming [18] is a natural approach in 
DES where, by default, objects coexist in a model. It is 
indicative that the ALGOL based simulation language Simula 
is historically the first that introduced the class concept, 
becoming the originator of  object orientated programming 
[19]. Considering OS basis for this work and the 
implementation by independent developers, ManPy’s 
ambition to have DES objects interacting with each other 
dictates the need for clean and efficient class architecture. The 
current architecture of ManPy is shown in Figure 1. 

 

 
 

Fig. 1. ManPy architecture. 
 

Figure 1 highlights how ManPy generic classes inherit 
objects and  methods from SimPy and  Python. In the next 
level, there is a basic core of DES objects that inherit from the 
generic classes and also customized objects that inherit from 
either existing  ones  in the basic core or other customized 
objects. 

The repository of ManPy objects should be expandable and 
customizable. So users may create either completely new or 
customized objects and incorporate them into the platform 
and also obtain a repository of objects that might be generic, 

focused  in  a  specific  domain  or  tailored  to  a  specific 
organization’s needs. 

The five generic classes of ManPy objects are: 
 

 CoreObject: all the stations which are permanent for the 
model. These can be servers or buffers of any type and also 
entry and exit points. 

 ObjectInterruption: all the objects that affect the 
availability of another object. For example failures, 
scheduled breaks, shifts etc. 

 Entity: all objects that get processed by or wait in 
CoreObjects and are not permanent in a model. For 
example parts in a production line, customers in a shop, 
calls in a call centre etc. 

 ObjectResource: all the resources that might be necessary 
for certain operations. For example repairman, operator, 
electric power etc. 

 Auxiliary: auxiliary scripts that are needed for different 
simulation functionalities. For example a main script to 
create the objects and run the simulation, a script that 
contains global variables, methods for random number 
generation etc. 

 
In order to achieve the interconnection of objects, all 

ManPy classes have to follow a well-defined naming 
convention of methods and attributes, which define how 
ManPy objects interact. The fundamental methods required 
for this model are: 

 
     init__: this is the python constructor method. This 

method is executed only once, when the instance (for 
example a specific instance of the type “Queue”) is 
created. 

 initialize: this method initializes the object for a simulation 
replication. Not to be confused with the constructor 
method above, this must be invoked at the start of every 
replication. 

 canAccept: returns true if the object is in a state to receive 
an Entity. 

 haveToDispose: returns true if the object is in a state to 
give an Entity. 

 canAcceptAndIsRequested: returns true only when both 
conditions are satisfied: the active object is in the state of 
accepting an Entity and also another object is waiting to 
give an Entity to it, i.e. its haveToDispose returns True 
when it is called by the active object. Only when this 
method returns true the main simulation logic of the object 
is started. 

 getEntity: gets the Entity from another CoreObject. 
 removeEntity: removes an Entity from the CoreObject. 
 createEntity: creates new Entities in the CoreObject. Most 

usually used by entry points such as the ManPy Source 
object, which creates Entities with a defined interarrival 
time, but every object can potentially use it. 

 calculateProcessingTime: calculates the processing time 
of the object. 

 run: this is a generator method and it is the one where the 
logic of the progress of the object in simulation time is 
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implemented. For this reason run requires that the user has 
also knowledge of SimPy in order to customize. 

 
ManPy, along with other DREAM related code, has 

recently been released in GitHub 
(https://github.com/nexedi/dream) under the terms of the 
GNU Lesser General Public License (LGPL) [20], which 
means that it can also be used in proprietary DES projects for 
specific companies. ManPy can cooperate with other DREAM 
modules such as the Graphical User Interface (GUI), but it 
can also be used as a standalone project. In the root of the 
GitHub repository, a ManPy user-manual is also available. 
The methods described above are the ones that needed to be 
overridden in order to make tailored objects for our use case. 
A more comprehensive list of methods can be found in [21]; 
for further details on both ManPy and its methods, the reader 
is referred to the software documentation available in GitHub. 

 
3. Use case – system description 

 
Several production lines operate in the medical device 

fabrication facility involved in DREAM. The pilot line chosen 
as a use case for supporting the expansion and validation of 
ManPy is located in a  clean room where other lines also 
operate; the selection of the pilot line was based on the 
relatively uncomplicated variations between the different 
product types. Even though there are dimensional variations 
in the products fabricated on this line, the pilot line can be 
considered product dedicated, which means the production 
flow is the same for the all products. The product in question 
is a medical device for use in operating theatres. It consists of 
a two part stent; a 1.8m flexible shaft, and a balloon capable 
of inflation within a human vein. The length of the shaft 
impacts on product storage capacity along the line as the shaft 
is kept straight for most of its processing. Items are produced 
in batches of 100 units. Figure 2 presents a process flow 
diagram for the pilot line. 

 

 
 

Fig. 2. Schematic layout of the pilot line. 
 

The line can be considered as an assembly line and 
different tasks can be assigned to each station for balancing 
purposes. The process flow consists of four main segments; 

 
1. Balloon assembly ; 
2. Hub moulding ; 
3. Unit pressure testing ; 
4. Unit packaging. 

 
The first segment comprises two serial lines that operate in 

parallel, each having three consecutive stations across which a 
production batch can be distributed. A production batch is 
generally divided into several sub-batches which are passed to 

the downstream buffer once completed. However, due to 
regulatory compliance a line clearance constraint applies. 
Line clearance prevents units belonging to different 
production batches from accidental mixing by imposing a 
clear and physical segmentation of the line with respect to 
production batches [22]. This constraint might cause blocking 
at a station if the buffer between two consecutive stations 
contains units belonging to a different batch. Before leaving 
segment 1 a batch must be complete. More generally, 
distribution of sub-batches across different sections is not 
allowed; hence, if a section consists of only one station, the 
entire batch must be taken from the upstream buffer and its 
processing completed before it can be transferred to the 
following buffer. It is obvious that in this case, for processing 
purposes, sub-batches can be created and processed separately 
within a station but they cannot be transferred to the next 
station until the entire batch has been completed. As an 
example, in segment 2, the moulding machine can operate on 
maximum 2 units at a time; hence, sub-batches of 2 units are 
effectively created; however, once processed, the sub-batches 
remain at the station and are not immediately passed to the 
following buffer. Due to the presence of both batches and sub- 
batches, it is worth noting that a distinction is made between 
unit buffers, which hold completed units, and batch buffers, 
which hold completed batches. In Figure 2, unit buffers are 
represented by triangles whereas batch buffers are represented 
by diamonds. 

As happens for most of the lines in the plant, the process is 
labour intensive; each station requires one or more operators. 
The presence of more than one operator per station is 
mandatory in the last segment (e.g. packaging) where three 
operators are required to run the two parallel stations. In some 
sections, the presence of a number of operators greater than 
the number of stations enables processing time  reductions 
whenever work division is possible. As an example, in 
segment 3, unit labelling and pressure tests can be carried out 
separately; hence, the presence of an additional operator at 
one of the two stations would help speed up the process. 

The production is carried out based on two daily shifts 
running on weekdays; in order to facilitate Work-In-Process 
(WIP) balancing, production capacity is opportunely adjusted 
at different shifts; as an example, being Segment 2 the line 
bottleneck, one of the sub-lines in Segment 1 is shut down 
during the evening shift in order to reduce the WIP built up at 
Segment 2 during the day shift. 

As the level of automation in the line is very low, machine 
failures are generally not a significant limiting factor in terms 
of productivity. Preventive maintenance is normally carried 
out during off-shift hours in order to avoid disrupting 
production. On the contrary, the production is constrained by 
human operators’ availability. Absenteeism might cause shut- 
downs of different stations and, as a consequence, limit the 
productivity of the line. In order to avoid this, a number of 
operators greater than those actually needed to run the line is 
planned to be available during each shift. In an ideal situation, 
any possible excess operator available is employed for 
training purposes. 

The main productivity related performance measures used 
in the company are: 
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 Throughput: this is measured in terms of number of 
batches produced per hour or per shift; 

 Average unit departure rate: this is calculated as the 
average time interval between the completion of two 
consecutive units; 

 Cycle time: in this production context, cycle time is 
defined as the elapsed time between the introduction of a 
batch into the line and the completion of the batch at the 
end of the line; 

 Average daily line attainment: this metric expresses the 
production quantity achieved in a day in relative terms 
with respect to the production target set for that day; 

 Line attainment: this measures the ability to meet daily 
production targets. It is a binary variable which is set equal 
to 1 if the daily production target is met, to 0 otherwise. 

 
Moreover, Work in Process (WIP) at the intermediate 

buffers and stations status related statistics (e.g. working, 
waiting and blocking %) are monitored during production in 
order to trigger line rebalancing actions. 

 
4. Development of COTS simulation models 

 
In this section, the assumptions based on which simulation 

models of the production line described in the previous 
section have been developed using ExtendSim® and Plant 
Simulation® are described. 

 
4.1. Modelling assumptions 

 
The models developed in this study aim to capture relevant 

features of the system described in Section 3 so that ManPy’s 
functionality could be expanded. Conceptual models were 
developed to facilitate the correct representation of the 
production flow logic. Production flow constraints (e.g. line 
clearance) and variation of batch size along the line proved to 
be novel elements within the ManPy framework and objects 
able to deal with these features were therefore developed in 
ManPy. 

The models developed here are intended to be used as a 
tool to facilitate industrial engineers in tactical decision 
processes related to production line design issues. These 
issues include line re-balancing (e.g. assignment of tasks to 
workstations), definition of optimal WIP levels and operating 
batch sizes at the various stations. For this reason some 
aspects of the system not closely related to the purpose of this 
simulation analysis have been neglected in the models. In 
particular, due to both the high availability of the machines 
used in the pilot line and the specific preventive maintenance 
programme adopted, the machines are assumed to be failure 
free. More generally, the stations are assumed to be always 
available, this means that at least one operator per machine is 
available for the entire duration of each shift. The operators’ 
availability constitutes a fundamental problem at an 
operational level; a reduced number of operators in the line 
might disrupt productivity. This problem will be addressed 
separately using an operational decision support tool, where 
the presence of operators and the associated assignment logic 
will be introduced in the simulation models. 

The production is assumed to be defect free and scrapping 
of units is not modelled. This assumption is reasonable as the 
production yield observed in the production line is greater 
than 95%. It is worth noting that even though the validation 
experiments ignore the presence of quality defects, ManPy 
objects able to model scrapping of defective units have been 
developed. 

Starvation due to the lack of raw material at the various 
stations (e.g. components of the stent) is not considered in the 
models as it is rarely experienced in the real line; a kanban- 
based inventory system is adopted in the clean room where 
the pilot line operates and ensures that both production unit 
components and disposable  tools required to complete the 
tasks at a station are always available. This also applies to the 
first station in the line; hence, the system operates based on a 
pull production logic. As a consequence, production entities 
are infinitely generated in the simulation models. In order to 
make the computation more efficient, the production entities 
modelled consist of the smallest transfer sub-batches observed 
in the line in accordance to the line clearance constraint. In 
this case, sub-batches of 25 units, which are used in the first 
segment of the line, are generated and processed in the 
models; the number of units available in each  production 
entity is represented as an entity attribute. The sub-batches are 
batched and unbatched based on the stations’ processing 
requirements; when sub-batches cannot be transferred to the 
following stations once completed (e.g. segments 2, 3 and 4), 
the entities are batched and transferred as a 4 entity-batch. 
Processing times are calculated based on the number of units 
that a production entity (e.g. batch or sub-batch) at a station 
carries with it. Deterministic values are used to model 
processing times; this is based on the practice adopted in the 
company to treat times as constant values at tactical decision 
levels. Stochastic  processing times will  be used when 
simulation applications for operational decision support tools 
will be developed. 

 
4.2. ExtendSim Model 

 
Based on the assumptions above, the pilot production line 

has been modelled using ExtendSim standard blocks. Several 
libraries of blocks are available in ExtendSim to handle most 
modelling needs; these blocks can be linked using connectors 
and assembled in hierarchical blocks of sub-systems. The 
model layout as appears in the graphical interface at a high 
hierarchical level is shown in Figure 3. 

Following the logical flow in Figure 3, production entities 
(e.g. sub-batches of 25 units) are generated at deterministic 
time intervals so that the initial buffer of the line is always at 
full capacity except during the simulation start; attributes are 
assigned to the entities which are then batched into batches of 
4 entities. The initial batch is created so as to facilitate the 
handling of common properties across the sub-batches that 
form a batch. A batch waits in the initial buffer until one of 
the two unbatch blocks that precede the machines at the first 
station of Segment 1 becomes available. The unbatch block 
separates the full batch into 4 sub-batches and is used as a 
temporary storage for these production entities; the sub- 
batches  are  released  one  by  one  as  soon  as  the  machine 



288   Georgios Dagkakis et al.  /  Procedia CIRP   25  ( 2014 )  283 – 292 

 

downstream of the unbatch block becomes available. When 
the last sub-batch of a batch leaves the unbatch block another 
full batch is pulled from the initial buffer. During the batch 
and unbatch operations the entities’ uniqueness is preserved 
so that the properties assigned to each single entity prior the 
batch assembly are not overwritten by the batch’s properties. 

 

 
 

Fig. 3. ExtendSim model layout. 
 

The machines operating at a station are modelled using 
hierarchical blocks, which are represented as blue squares in 
Figure 3. The layout of a Machine block is shown in Figure 4. 
An initial gate limits the number of entities that can enter a 
machine. For most machines this gate closes when an entity 
enters the Machine block; the gate will re-open when the 
entity leaves the block so that only one entity at a time is 
allowed in the block. There are exceptions to this logic for the 
machines of station 3 where sub-batches are re-assembled in a 
full batch before they leave the station. In this case, 4 sub- 
batches are allowed in the block before the gate closes; the 
gate will re-open when the full batch leaves. The choice of 
introducing a gate at each Machine block is related to the 
choice of separating the blockage status of a machine from its 
waiting and working status. In order to realise this, a 
“blockage” buffer of capacity 1 has been introduced 
immediately after the Activity block (e.g. the block where the 
processing delay is imposed) in the Machine block. The 
reason for this choice is twofold. Firstly, due to modelling 
requirements, a “dummy” buffer is required before the 
conditional gate at the entrance of the Line Clearance (LC) 
buffers (e.g. buffer that follows the Machine block); this 
prevents production entities not allowed in the LC buffers 
from being held in a block (e.g. gate) that has no 
corresponding element in reality. Secondly, the presence of a 
“blockage” buffer proves quite useful at the machines where 
batch re-assembly is required after processing (e.g. Station 3) 
in order to separate the machine waiting time from its 
blockage time. When batch re-assembly is required, the 
completed sub-batches are held in the batch block, which acts 
as a temporary storage; even though the presence of the initial 
gate in the Machine block would prevent any other sub-batch 
from entering the block, it would be complex to distinguish 
the waiting time of sub-batches in the batch block, which does 
not impact the machine status, from the blocking time of the 
full batch  in  the same block, which  corresponds  with the 
machine’s blocking time. The presence of the blockage buffer 
allows re-assembled batches to immediately leave the batch 

block so that the blockage time at the associated machine can 
be calculated as the queuing time in the “blockage” buffer. 
The remaining blocks in the Machine block are used to update 
and record information about the entities. Among these 
information blocks, there are blocks used for calculating the 
processing time required for any given production entity 
based on the current production step, the unit processing time 
(e.g. this is read from an MS Excel worksheet) and the 
number of units that form the entity currently processed (e.g. 
batch or sub-batch). 

 

 
 

Fig. 4. Machine block layout. 
 

The intermediate buffers in the ExtendSim model are also 
modelled as hierarchical blocks and represented as pink 
circles in Figure 3. The buffers where the Line Clearance 
concept applies with its strictest meaning are those placed 
between Segment 1 stations (labelled ‘LC’ characterizes these 
buffers in Figure 3); the graphical layout of the LC buffer 
block is reported in Figure 5. 

 

 
 

Fig. 5. Line Clearance Buffer layout. 
 

A conditional gate regulates the flow of production entities 
into the finite capacity buffer. This gate remains open if the 
buffer is empty; when the buffer holds some entities but it is 
not at full capacity, the passage of entities through the gate is 
allowed provided that the entity going through belongs to the 
same batch as the entities currently held in the buffer. This 
prevents entities belonging to different batches from mixing, 
as the Line Clearance constraint requires. When the buffer is 
full no entity can enter the block even though the gate is open. 
In order to keep track of the batch ID of the batches held in 
the buffer, a database has been created where the batch ID of 
any entity that passes through the buffer is recorded. In the 
upstream buffers for Segments 2, 3 and 4 the implementation 
of the Line Clearance constraint is looser as the units 
belonging to a batch are confined in storage boxes; hence, 
there is no risk that these units could be mixed. These buffers 
can hold different batches and the only restriction to the 
upstream flow is given by their maximum capacity. In terms 
of ExtendSim block layout, these buffers appear the same as 
the block in Figure 5 with the only exception that the gate and 
the preceding equation block are not included for obvious 
reasons. 
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Information on the  entities schedule  and the machines’ 
status are recorded in internal databases and exported to MS 
Excel worksheets at the end of each simulation run. The 
simulation data obtained are post-processed in MATLAB 
V7.12® where a more readable format for the batches’ 
schedule and relevant statistics are generated. 

 
4.3. Plant Simulation model 

 
Plant Simulation is a very powerful DES tool developed by 

Siemens, providing an Object Oriented approach, where the 
user can make highly customized new objects inheriting their 
properties either from the prefabricated ones that Plant 
Simulation provides or from other customized objects. The 
model layout, as it appears in Plant Simulation GUI is (Figure 
6) is straightforward. A Source creates the Batches, which are 
queued before they pass along one of the sub-lines and then 
they follow their route in the system. Two methods are 
invoked when the model is reset and at the end of the 
simulation. reset ensures that the initial state of a run is not 
affected by the previous one by resetting certain statistics and 
control variables that were added for the needs of custom 
objects and EndSim outputs results at the end of the run. 

 

 
 

Fig. 6. Plant Simulation model layout. 
 

While the graphics reflect the layout of the line and appear 
simple, the actual model contains hidden complexity. As 
shown in Figure7, new classes of Plant Simulation objects 
with their own custom methods and attributes were required. 
These are either instances or children of Plant Simulation’s 
MUs (Mobile Units that flow in the simulation model), 
SingleProc (a single station for processing an MU), 
PlaceBuffer (lines up several MUs of the same kind one after 
the other), Source (produces MUs in a single station) and 
Drain (removes MUs from the model). More info on Plant 
Simulation objects can be found in [23]. 

 

 
 

Fig. 7. Plant Simulation objects implemented in the model. 
 

The new classes created are: 

 BatchSource: A Source that creates Batches. 
 Batch: An MU that holds a number of units. 
 SubBatch: An MU that contains a number of units 

extracted from a parent Batch. Its attributes include the id 
of the parent Batch. 

 BatchDecomposition: A PlaceBuffer that takes a batch 
and separates it into sub-batches. 

 BatchReassembly: A PlaceBuffer that takes a number of 
sub-batches and reassembles the original batch. 

 LineClearance: A PlaceBuffer that can take a sub-batch 
only if it is completely empty or the sub-batches that it 
already holds are derived from the same parent batch as the 
one that requests entry. 

 ScrapStation: A SingleProc that can scrap some units of 
the MU it processes. Its processing time is calculated 
according to the number of units in the MU. Scrapping of 
units has being modelled both in Plant Simulation and 
ManPy in order to be used in future work, but in the 
experiments presented here scrappage is not considered. 

 SubLineScrapStation: Almost identical to the 
ScrapStation class with the addition of extra coding to 
interact with the LineClearance class. 

 QueueBeforeBD: A PlaceBuffer with modifications to 
allow communication with the downstream 
BatchDecomposition object. 

 QueueAfterBR: A PlaceBuffer with modifications to 
communicate with the upstream BatchReassembly object. 

 
Table 1. Object types and instances used in the model shown in Figure 6. 

 

Object Type Objects Used in the 
Model 

BatchSource BS 

BatchDecomposition BD1, BD2 

BatchReassembly BR1, BR2 

LineClearance Q1A, Q2A, Q1B, Q2B 

ScrapStation M3A, M3B, MM, PrA, 
PrB, PaA, PaB 

SubLineScrapStation M1A, M1B, M2A, M2B 

QueueBeforeBD SQA, SQB 

QueueAfterBR MQ 

PlaceBuffer PrQ, PaQ 

Drain Exit 

 
Table 1 shows the instances of the object types used in the 

model. These correspond with the objects shown in Figure 6. 
Despite the introduction of new  classes, some further 
customization was needed for specific objects in the model. It 
was found that the PlaceBuffer (MQ), which is placed after 
the two BatchReassembly objects (BR1, BR2), should accept 
the item which has been waiting the longest in those buffers. 
This is the default behaviour in Plant Simulation, but the 
customizations negated it. For this reason some methods 
needed further modifications. In general, this is considered 
poor Object Orientation since methods were customised for 
specific instances. In complex situations it is often quite 
difficult to identify a straightforward model development 
approach. In this specific case, there may have been an easier 
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way to model this feature but, in general, this is indicative of 
how complex modeling of specific processes can become. 

 
5. ManPy model development 

 
ManPy aims in providing the user with a selection of 

CoreObjects that exchange Entities during simulation time. In 
the initial development of ManPy, Entities were constructed 
to flow as separate objects or parts that could get loaded into 
and unloaded from frames. This pilot case has supported the 
extension of ManPy so that Entities can flow in batches, be 
decomposed into sub-batches and then reassembled to the 
parent batch. Some other particular features involve the line 
clearance concept, scrappage (even thought this feature is not 
included in the validation process) and also that  the 
processing times in station is dependent on the number of 
units the processed Entity holds. 

In order to model such a case new ManPy objects had to be 
implemented: 

 
 Batch: A ManPy Entity that holds a number of units. 
 SubBatch: A ManPy Entity that contains a number of 

units and is derived from a parent Batch. In its attributes it 
also holds the parent Batch. 

 
Also we needed two new CoreObject types: 

 
 BatchDecomposition: A CoreObject that takes a batch 

and decomposes it to sub-batches. It overrides 

are derived from the same parent batch as the one that 
requests to enter. 

 BatchDecompositionStartTime: A CoreObject that 
inherits from BatchDecomposition and overrides its 
removeEntity method in order to assign the start time of the 
Entity as the simulation time that the Entity got into this 
object. 

 
From the final object in the list above we can see that it 

was necessary to customize one of the newly created objects, 
in order to calculate the cycle time as defined in section 3. 
This makes sense since BatchDecomposition can be a generic 
object to be used in multiple cases, while 
BatchDecompositionStartTime is just needed in this specific 
model where the start of the lifecycle must be recorded in 
these stations. 

As expected, the most time consuming part of the 
implementation was the coding of BatchDecomposition and 
BatchReassembly. These are brand new CoreObjects in which 
also the Python generator run had to be overridden. These 
methods run in parallel, making it more difficult to debug 
them. In fact, it is the overriding of the run method that 
discriminates a completely new CoreObject from a 
customization of an already existing one. Indeed 
BatchDecomposition and BatchReassembly were the only 
new CoreObjects to directly inherit from the generic class. 
The generic class is abstract and does not include a specific 
implementation of run. So every object that directly inherits 
from the generic class has to have a run method developed for 

CoreObject’s   init__, initialize, canAccept, it. Also, it is not obligatory, but in most cases it seems that if a 
hasToDispose, canAcceptAndIsRequested and run methods 
in order to implement the new logic. 

 BatchReassembly: A CoreObject that takes a number of 
sub-batches and reassembles the original batch. It overrides 

new CoreObject needs to override run of the parent object, 
then its logic is peculiar, so it makes sense to inherit directly 
from the generic class. 

It is important to mention that during the implementation 
CoreObject’s   init__, initialize, canAccept, of the new objects no modifications to the underlying ManPy 
hasToDispose, canAcceptAndIsRequested and run methods 
in order to implement the new logic. 

 
Finally  customizations  in  already  existing  CoreObjects 

were made: 
 

 BatchSource: A CoreObject that inherits from Source and 
creates Entities that hold a number of units. It overrides the 
    init__ method of the Source in order to accept the 
number of units per batch as an argument and also the 
createEntity method so that it creates the Entity containing 
this number of units. 

 BatchScrapMachine: A CoreObject that inherits from 
Machine. It overrides    init__ in order to use the 
scrappage distribution, removeEntity in order to scrap some 
units of the Entity when it is ready to leave the object and 
also calculateProcessing time in order to define the 
processing time according to the number of units that the 
Entity had when it entered. 

 LineClearance: A CoreObject that inherits from Queue 
and overrides its canAccept and canAcceptAndIsRequested 
methods, so that it can take a sub-batch only if it is 
completely empty or the sub-batches that it already holds 

code were needed. So the ManPy repository was considered 
as a black box, where we have been able to create new objects 
and use them in models together with the pre-existing objects. 
This fact is essential to demonstrate the expandability of the 
platform. 

The procedure described so far lead to the implementation 
of tailored objects for this use case. Effectively, this is the 
repository of objects that an Industrial Engineer user should 
have in order to model the specific problem defined by the 
industry partner. More objects, such as operators, will be 
needed in order to get the full model of the line. This is left 
for future work; the scalability of this development approach 
offers the opportunity to progressively gain confidence in the 
objects developed hereinbefore. 

In order to use ManPy DES objects in a model, a separate 
Python script should be used. This is an auxiliary script and 
we refer to it as “main script”. Main script is responsible for 
creating, connecting, activating and initializing the DES 
objects, defining general simulation attributes, running  the 
simulation and outputting results. The main script may be raw 
Python code in the way it is presented in examples of ManPy 
documentation, but there are also other ways to define the 
model. One of them is reading from a JSON [24] 
representation which in this case is used for interaction with 
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the DREAM GUI. The definition of the pilot line was chosen 
to be implemented using the JSON representation to combine 
this model with the DREAM GUI. Generally the main script 
is separate of the actual simulation code, so future ManPy 
users can implement their own approaches to input and output 
definition. 

 
6. Models validation and comparison 

 
Validation and verification are complex issues that should 

be taken care all through a simulation project [25]. Validation 
aims at ensuring that a real system is validly captured in a 
model whereas verification has the purpose to confirm that a 
model is correctly coded as a computer program [26]. In order 
to define the scope of the study and gain understanding of the 
logic of the simulated system a workshop took place at the 
facility where the production line operates. Following the 
workshop, regular communication with the industrial 
engineers familiar with the pilot line guided the development 
of the conceptual model and ensured that the modelling 
assumptions were correct. A formal questionnaire and a 
Request For Information (RFI) were also used as  support 
documents. In particular, details and peculiarities of the pilot 
line, such as the line clearance concept, were extensively 
clarified before the models were developed. A prototype 
model of the pilot line was illustrated to the industrial 
engineers; the production flow logic implemented, inputs and 
outputs were discussed, whilst the simulation logic and results 
were considered valid, the need to include further features of 
the system so that the model could be used to support 
operational decisions was expressed. More specifically, the 
presence of operators  in  the line should be modelled and 
allocations algorithms should be developed in order to assist 
the line supervisor in assigning operators to workstations in 
case of absenteeism. This will be done in the near future. 

To further assess the validation of our modeling, we plan 
its review by experts of the system within the company. This 
will be firstly done using the COTS models, since the medical 
device company where the pilot line operates are familiar with 
using COTS simulation packages and also the GUI of these 
packages is at a more mature state to enhance a structured 
walkthrough. Nevertheless, if a COTS model is adequately 
validated and ManPy model is verified against this COTS 
model, then this is considered enough for the validation of the 
ManPy model. The development of the model using three 
different tools, one OS and two COTS, was followed in order 
to establish the verification concept. Firstly, the models were 
built and debugged for a specific set of inputs. It is worth 
mentioning, that debugging revealed not only errors in new 
ManPy objects, but also mistakes in the modeling in COTS. 
Both COTS tools used are in a more advanced state than 
ManPy, but the deep level of control we had in the latter, was 
sometimes essential in identifying problems and solutions. 

A structured experimental plan was developed to validate 
the models from a numerical perspective. Realistic data were 
used as access to historical data proved difficult at this stage 
of the project; significant effort is required to interpret the 
data available in historical database and data mining tools are 
being developed  to  automate  inputting relevant  simulation 

data in the models. Deterministic input data were used since 
the purpose of the experiments was the verification of models 
and code. The experimental plan was conceived so that the 
new objects developed in ManPy could be verified under 
different operating conditions. Two sets of experiments were 
run; each set consisted of seven experiments. In the first six 
experiments each of the six stations populating the line was 
set as a bottleneck, respectively; in the last experiment the 
production flow was made synchronous so that the system 
would not present any bottleneck. In order to achieve these 
conditions, the unit processing times were opportunely set. 
The second set of experiments replicated the first set using a 
different inter-arrival time for the production batches; this was 
done to assess impact on waiting time at the different stations. 
The performance measures considered in the validation 
process were the daily throughput, the average cycle time and 
the machine status percentages (e.g. waiting,  working and 
blockage). 

For all the experiments the results proved identical; hence 
the validity of ManPy in simulating flow shop systems 
subjected to both variation of production batch sizes and 
production flow constraints has been demonstrated. It is worth 
noting that as a result of the validation process, one bug in 
ManPy that would cause a premature interruption of the 
simulation run has been identified and fixed. This shows the 
importance of comparing ManPy performance against COTS 
packages; comparison analyses based on  sensible 
experimental plans prove fundamental in order to verify 
ManPy’s logic and set effective development guidelines. 

In terms of speed ManPy proved slower than COTS 
alternatives. This issue was also demonstrated in [21] where 
the results obtained are similar to those obtained here. The 
pursuit of generality of OS code does induce an overhead of 
computations. Nevertheless, ManPy can be less expensively 
used in a cluster of PCs, since there is no license needed in 
order to install it. That can enhance the speed significantly 
using a web-based distributed simulation in cases where we 
have multiple replications of stochastic models or scenario 
analysis. It is in the scope of DREAM to research such 
methodologies in order to provide a high performance DES 
framework. 

 
7. Conclusions 

 
ManPy is the simulation engine of the DREAM platform 

whose ultimate objective is to provide industrial practitioners 
with easy-to-use, expandable and efficient simulation based 
decision support tools for industrial problems at different 
decision levels. In this study, the application of ManPy to a 
flowshop system characterized by batch production, varying 
batch size and production flow constraints has been 
illustrated. The ManPy model has been successfully validated 
against the simulation results of two versions of the same 
model developed using COTS software. Being under 
development, the validation of newly introduced ManPy 
objects against corresponding objects available in COTS 
software represents a fundamental step for proving that 
ManPy is able to offer a valid license free alternative to more 
commonly   used   simulation   packages.   Based   on   both 
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validation results and the identification of relevant industrial 
use case features, effective development guidelines have been 
set to enhance ManPy’s functionalities. ManPy’s most 
significant advantage with respect to other OS simulation 
packages available consists of the fact that objects similar to 
those available in COTS simulation packages are ready to use 
and can be connected with minimal programming effort. 

Future work regarding this pilot case and DREAM in 
general include: the integration of the model with the tailored 
GUI that will enhance the human/system interaction and the 
DREAM Knowledge Extraction (KE) tool that will automate 
of the ManPy simulation inputs. To model the system at an 
operational level, new ManPy objects  will be needed and 
more specifically an operator object since the efficient 
allocation of operators is regarded crucial by the company. 
Moreover, the model will be combined with a scenario 
analysis approach, so that it can be used for decision support. 
If this is proven to be computationally expensive, then 
research will be conducted, so that ManPy is deployed over a 
cluster of computers. 
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