
 Procedia CIRP 25 (2014) 283 – 292

Available online at www.sciencedirect.com

2212-8271 © 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
Peer-review under responsibility of The International Scientific Committee of the 8th International Conference on Digital Enterprise Technology - DET
2014 – “Disruptive Innovation in Manufacturing Engineering towards the 4th Industrial Revolution”
doi: 10.1016/j.procir.2014.10.040

ScienceDirect

8th International Conference on Digital Enterprise Technology - DET 2014 – “Disruptive Innovation in
Manufacturing Engineering towards the 4th Industrial Revolution

From COTS simulation software to an open-source platform: a use case in
the medical device industry

Georgios Dagkakisa,*, Anna Rotondob, Ioannis Papagiannopoulosa, Cathal Heavya, John Geraghtyb,
Paul Youngb, Rob Hollandc

aEnterprise Research Centre, University of Limerick, Limerick, Ireland
bEnterprise Process Research Centre, School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin, Ireland

cBoston Scientific Cork Limited, Cork, Ireland

* Corresponding author. Tel.: +353-61-234200 ; fax: +353-61-213583. E-mail address: georgios.dagkakis@ul.ie

Abstract

The implementation of Discrete Event Simulation (DES) – based decision support tools in complex manufacturing environments could prove of
invaluable help to industrial practitioners involved in cross-functional decision processes at multiple hierarchical levels. The increasing number
of decision variables, their stochastic nature and the non-linearity of their mutual relationships theoretically make simulation a preferred
modelling approach for a great variety of manufacturing systems as strict simplifying assumptions are not necessarily required and the models’
detail level can be tuned according to the analysis purposes. However, recourse to Commercial Off-The-Shelf (COTS) simulation packages to
develop and implement simulation-based solutions in real manufacturing environments usually presents significant cost-of-ownership (COO).
Along with license costs, modelling flexibility and sustainability represent fundamental issues raised by industrial engineers that adopt COTS
simulation packages. In order to promote the use of DES in production related decision making processes and reduce the associated COO for
manufacturing companies, an open-source simulation platform, ManPy, has been developed. ManPy consists of a library of DES objects
implemented in SimPy. ManPy’s scope is to provide modellers with generic, highly customizable open-source simulation objects that can be
connected to form a model in the same fashion of COTS simulation packages. ManPy’s on-going development is based on guidelines provided
by the analysis of real industrial use cases. Specific pilot models developed in SimPy are used to identify new objects and relevant features to
be incorporated in ManPy in order to make it a highly flexible simulation tool. In this article, a use case based on a labour intensive serial
production line operating in a medical device manufacturing plant is described. Insights for the transition from a COTS simulation model to a
specific SimPy model and finally to generic ManPy objects are presented.
© 2014 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Scientific Committee of the “8th International Conference on Digital Enterprise Technology - DET
2014.

Keywords: Discrete event simulation; open-source software; SimPy; ManPy; modelling flexibility

1. Introduction

Modern manufacturing systems are very complex to
manage and control [1]. The presence of multiple production
steps, various product flows, machine-product-operators
dedication and complex maintenance programs make it almost
impossible to investigate the inter-relationships between the
system decision variables by using straightforward analytical
approaches. As a consequence, simulation is becoming a
preferred modelling approach for a great variety of

manufacturing systems as strict simplifying assumptions are
not necessarily required and the models’ detail level can be
tuned according to the analysis purposes. However, the choice
of simulation comes at a cost [2]. When simulation models are
developed for supporting decision making in complex
manufacturing environments, the Cost of Ownership (COO) of
such models can be high as considerable effort and expertise is
required [3,4]. System familiarisation, data mining and model
development usually require long time periods and limit the
applicability of the simulation approach to tactical or strategic

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
Peer-review under responsibility of The International Scientifi c Committee of the 8th International Conference on Digital Enterprise
Technology - DET 2014 – “Disruptive Innovation in Manufacturing Engineering towards the 4th Industrial Revolution”

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82528104?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

284 Georgios Dagkakis et al. / Procedia CIRP 25 (2014) 283 – 292

decision problems [2]. Moreover, the natural evolution of a
manufacturing system over time or even variations of the
system configuration due to the implementation of solutions
suggested by the simulation analysis tend to make simulation
models quite obsolete fairly quickly after their early use.

By reducing the programming effort, Commercial off-the-
self (COTS) DES software packages have contributed
considerably to the diffusion of DES in the academic and
industrial community. COTS software packages strength is
that they provide the user with tools for modelling, debugging
and experimentation [5]. The programming effort is, at least in
standard cases, significantly reduced as prefabricated DES
objects can be manipulated through a user friendly Graphical
User Interface (GUI). However, due to the great variety of
systems, in most real cases the user does have to write some
code in order to model the occasional peculiarities. So most
COTS DES tools offer an internal programming language,
which is on one hand simplified but on the other hand specific
for the users of the tools so support is more difficult to be
found, no matter how good the documentation is.

Besides the COO of simulation models, the high license
cost of COTS software packages is often the largest factor for
organizations, especially Small and Medium Enterprises
(SMEs) reluctance to adopt DES. Reusability [6] is also
hindered because, in the case where the license is not renewed,
past work cannot be exploited to further the system potential.
Moreover, practice has shown that even with the use of COTS
DES packages many simulation projects fail to achieve their
goals. Even though the process is meliorated through the
reduction of programming requirements, DES is a complex
technique and high modeling expertise is always needed [7].

A more sustainable alternative to COTS DES packages, at
least from a cost perspective, is represented by Open Source
(OS) [8] DES software, which has the potential to overcome
the aforementioned problems. Being available at zero license
cost, the adoption of OS software should prove attractive to
companies with limited financial resources. Also, for
companies investigating the opportunity of deploying DES-
based decision support OS software could be used to
investigate test cases and assess the benefits deriving from
simulation-based analyses. Nevertheless, our review of OS
DES [9] has shown that most projects fail to attract
contributors and remain inactive. While published literature
provides numerous articles that relate to specific OS DES
projects [10-12] and COTS DES tools are referenced in many
papers [13-15], there are very few articles that compare
different OS projects [9,16] or different COTS tools [17] and
none which compare the development of a pilot model of a
real world production line using both OS and COTS.

In this study, the development and validation of a
simulation model developed using two COTS and an OS DES
simulation package is illustrated using an industrial use case.
The OS DES application used, which is under ongoing
development, is based on the simulation engine of a more
comprehensive OS simulation platform being developed as
part of the DREAM (“simulation based application Decision
support in Real-time for Efficient Agile Manufacturing”,
http://dream-simulation.eu/) project, which also includes data
mining tools and a GUI. This platform and its components

will provide industrial practitioners with easy-to-use,
reconfigurable and efficient simulation-based decision support
tools for cross-functional decision processes at multiple
hierarchical levels. The DREAM simulation engine is ManPy
“Manufacturing in Python”. ManPy’s on-going development
is based on guidelines provided by the analysis of actual
industrial use cases. Specific pilot models developed in COTS
DES software or SimPy are used to identify new objects and
relevant features to be incorporated in ManPy in order to make
it a highly flexible simulation tool.

The use case analysed in this study focuses on a labour
intensive serial-parallel production line in a medical device
fabrication plant. Other than serving as a fundamental
application of the ManPy standard objects to a flow-shop
manufacturing system, the analysis of this use case has also
highlighted the need to develop simulation objects to model
specific production flow control logic. In this case, restrictions
of the production flow are dictated by statutory medical
regulations. Moreover, the different production stations
processing different sized batches; and this has inspired the
development of batching and unbatching simulation objects
whose behaviour has been validated against the results of
simulation models built in Plant Simulation® and ExtendSim®.

The choice of using two different COTS packages to
validate the ManPy model, is based on the consideration that
the two packages chosen support two different modelling

approaches. Plant is more flexible, as customisation of the
logic within an object is facilitated by means of methods that
can be added to the object through a graphical interface,
providing a completely object oriented approach. In contrast,
such modifications are more difficult in ExtendSim where
methods can only be added to an object by accessing the
object’s inherent code. Often, a combination of standard
objects which reproduce the logic is preferred, at the obvious
cost of making the model more cumbersome.

The remainder of this paper is organised as follows. Details
on the ManPy architecture are given in Section 2. The use case
analysed in this study is described in Section 3. Sections 4 and
5 elaborate on the development of simulation models of the
use case system using COTS software and ManPy,
respectively. The models validation is discussed in Section 6;
finally, conclusions are drawn in Section 7.

2. ManPy

ManPy is exclusively written in Python and takes

advantage of SimPy’s efficient use of Python generators via
the SimPy.Process class. SimPy was chosen after a review of
23 OS DES projects [9]. The scope of ManPy is not to imitate
or replace SimPy, but to offer something new and
accommodate the needs of different levels of users. Highly
customizable OS simulation objects that can be connected to
form a model, in the same manner as COTS simulation
packages, constitute the core of ManPy. The four industrial
partners in the DREAM consortium provide relevant use cases
to cover a wide range of manufacturing system related
problems across four different industrial sectors. This ensures
that the development of ManPy is focused toward industry
use. The initial phase of the DREAM project focused on

285 Georgios Dagkakis et al. / Procedia CIRP 25 (2014) 283 – 292

gathering industrial partners’ requirements and identified three
classes of user of the DREAM platform:

 Super User (SU): he/she can access the code directly,

customize objects flexibly or create completely new ones.
He/she needs to have good coding and modeling skills.

 Industrial Engineer (IE): he/she can use tailored objects
in order to connect them and create a model. Limited
coding experience is required at this level, but good
modeling skills and knowledge of the system are essential.

 End User (EU): he/she takes a model which is tailored for
their needs. Specification of certain values using forms,
drop-down menus, spreadsheets etc. is the only
customization required to set up the model for use. No
software or modeling experience is required, only the
ability to understand the results of the simulation, the
presentation of which should also have been customized.

In order to address these needs, ManPy focuses on

developing a repository of well-defined DES objects that can
be connected like “black boxes” and form a model. It is worth
noting that the SU and IE levels described above may be
external consultants rather than internal members of the
organization using the DES model.

Object oriented programming [18] is a natural approach in
DES where, by default, objects coexist in a model. It is
indicative that the ALGOL based simulation language Simula
is historically the first that introduced the class concept,
becoming the originator of object orientated programming
[19]. Considering OS basis for this work and the
implementation by independent developers, ManPy’s
ambition to have DES objects interacting with each other
dictates the need for clean and efficient class architecture. The
current architecture of ManPy is shown in Figure 1.

Fig. 1. ManPy architecture.

Figure 1 highlights how ManPy generic classes inherit
objects and methods from SimPy and Python. In the next
level, there is a basic core of DES objects that inherit from the
generic classes and also customized objects that inherit from
either existing ones in the basic core or other customized
objects.

The repository of ManPy objects should be expandable and
customizable. So users may create either completely new or
customized objects and incorporate them into the platform
and also obtain a repository of objects that might be generic,

focused in a specific domain or tailored to a specific
organization’s needs.

The five generic classes of ManPy objects are:

 CoreObject: all the stations which are permanent for the
model. These can be servers or buffers of any type and also
entry and exit points.

 ObjectInterruption: all the objects that affect the
availability of another object. For example failures,
scheduled breaks, shifts etc.

 Entity: all objects that get processed by or wait in
CoreObjects and are not permanent in a model. For
example parts in a production line, customers in a shop,
calls in a call centre etc.

 ObjectResource: all the resources that might be necessary
for certain operations. For example repairman, operator,
electric power etc.

 Auxiliary: auxiliary scripts that are needed for different
simulation functionalities. For example a main script to
create the objects and run the simulation, a script that
contains global variables, methods for random number
generation etc.

In order to achieve the interconnection of objects, all

ManPy classes have to follow a well-defined naming
convention of methods and attributes, which define how
ManPy objects interact. The fundamental methods required
for this model are:

 init__: this is the python constructor method. This

method is executed only once, when the instance (for
example a specific instance of the type “Queue”) is
created.

 initialize: this method initializes the object for a simulation
replication. Not to be confused with the constructor
method above, this must be invoked at the start of every
replication.

 canAccept: returns true if the object is in a state to receive
an Entity.

 haveToDispose: returns true if the object is in a state to
give an Entity.

 canAcceptAndIsRequested: returns true only when both
conditions are satisfied: the active object is in the state of
accepting an Entity and also another object is waiting to
give an Entity to it, i.e. its haveToDispose returns True
when it is called by the active object. Only when this
method returns true the main simulation logic of the object
is started.

 getEntity: gets the Entity from another CoreObject.
 removeEntity: removes an Entity from the CoreObject.
 createEntity: creates new Entities in the CoreObject. Most

usually used by entry points such as the ManPy Source
object, which creates Entities with a defined interarrival
time, but every object can potentially use it.

 calculateProcessingTime: calculates the processing time
of the object.

 run: this is a generator method and it is the one where the
logic of the progress of the object in simulation time is

286 Georgios Dagkakis et al. / Procedia CIRP 25 (2014) 283 – 292

implemented. For this reason run requires that the user has
also knowledge of SimPy in order to customize.

ManPy, along with other DREAM related code, has

recently been released in GitHub
(https://github.com/nexedi/dream) under the terms of the
GNU Lesser General Public License (LGPL) [20], which
means that it can also be used in proprietary DES projects for
specific companies. ManPy can cooperate with other DREAM
modules such as the Graphical User Interface (GUI), but it
can also be used as a standalone project. In the root of the
GitHub repository, a ManPy user-manual is also available.
The methods described above are the ones that needed to be
overridden in order to make tailored objects for our use case.
A more comprehensive list of methods can be found in [21];
for further details on both ManPy and its methods, the reader
is referred to the software documentation available in GitHub.

3. Use case – system description

Several production lines operate in the medical device

fabrication facility involved in DREAM. The pilot line chosen
as a use case for supporting the expansion and validation of
ManPy is located in a clean room where other lines also
operate; the selection of the pilot line was based on the
relatively uncomplicated variations between the different
product types. Even though there are dimensional variations
in the products fabricated on this line, the pilot line can be
considered product dedicated, which means the production
flow is the same for the all products. The product in question
is a medical device for use in operating theatres. It consists of
a two part stent; a 1.8m flexible shaft, and a balloon capable
of inflation within a human vein. The length of the shaft
impacts on product storage capacity along the line as the shaft
is kept straight for most of its processing. Items are produced
in batches of 100 units. Figure 2 presents a process flow
diagram for the pilot line.

Fig. 2. Schematic layout of the pilot line.

The line can be considered as an assembly line and
different tasks can be assigned to each station for balancing
purposes. The process flow consists of four main segments;

1. Balloon assembly ;
2. Hub moulding ;
3. Unit pressure testing ;
4. Unit packaging.

The first segment comprises two serial lines that operate in

parallel, each having three consecutive stations across which a
production batch can be distributed. A production batch is
generally divided into several sub-batches which are passed to

the downstream buffer once completed. However, due to
regulatory compliance a line clearance constraint applies.
Line clearance prevents units belonging to different
production batches from accidental mixing by imposing a
clear and physical segmentation of the line with respect to
production batches [22]. This constraint might cause blocking
at a station if the buffer between two consecutive stations
contains units belonging to a different batch. Before leaving
segment 1 a batch must be complete. More generally,
distribution of sub-batches across different sections is not
allowed; hence, if a section consists of only one station, the
entire batch must be taken from the upstream buffer and its
processing completed before it can be transferred to the
following buffer. It is obvious that in this case, for processing
purposes, sub-batches can be created and processed separately
within a station but they cannot be transferred to the next
station until the entire batch has been completed. As an
example, in segment 2, the moulding machine can operate on
maximum 2 units at a time; hence, sub-batches of 2 units are
effectively created; however, once processed, the sub-batches
remain at the station and are not immediately passed to the
following buffer. Due to the presence of both batches and sub-
batches, it is worth noting that a distinction is made between
unit buffers, which hold completed units, and batch buffers,
which hold completed batches. In Figure 2, unit buffers are
represented by triangles whereas batch buffers are represented
by diamonds.

As happens for most of the lines in the plant, the process is
labour intensive; each station requires one or more operators.
The presence of more than one operator per station is
mandatory in the last segment (e.g. packaging) where three
operators are required to run the two parallel stations. In some
sections, the presence of a number of operators greater than
the number of stations enables processing time reductions
whenever work division is possible. As an example, in
segment 3, unit labelling and pressure tests can be carried out
separately; hence, the presence of an additional operator at
one of the two stations would help speed up the process.

The production is carried out based on two daily shifts
running on weekdays; in order to facilitate Work-In-Process
(WIP) balancing, production capacity is opportunely adjusted
at different shifts; as an example, being Segment 2 the line
bottleneck, one of the sub-lines in Segment 1 is shut down
during the evening shift in order to reduce the WIP built up at
Segment 2 during the day shift.

As the level of automation in the line is very low, machine
failures are generally not a significant limiting factor in terms
of productivity. Preventive maintenance is normally carried
out during off-shift hours in order to avoid disrupting
production. On the contrary, the production is constrained by
human operators’ availability. Absenteeism might cause shut-
downs of different stations and, as a consequence, limit the
productivity of the line. In order to avoid this, a number of
operators greater than those actually needed to run the line is
planned to be available during each shift. In an ideal situation,
any possible excess operator available is employed for
training purposes.

The main productivity related performance measures used
in the company are:

287 Georgios Dagkakis et al. / Procedia CIRP 25 (2014) 283 – 292

 Throughput: this is measured in terms of number of
batches produced per hour or per shift;

 Average unit departure rate: this is calculated as the
average time interval between the completion of two
consecutive units;

 Cycle time: in this production context, cycle time is
defined as the elapsed time between the introduction of a
batch into the line and the completion of the batch at the
end of the line;

 Average daily line attainment: this metric expresses the
production quantity achieved in a day in relative terms
with respect to the production target set for that day;

 Line attainment: this measures the ability to meet daily
production targets. It is a binary variable which is set equal
to 1 if the daily production target is met, to 0 otherwise.

Moreover, Work in Process (WIP) at the intermediate

buffers and stations status related statistics (e.g. working,
waiting and blocking %) are monitored during production in
order to trigger line rebalancing actions.

4. Development of COTS simulation models

In this section, the assumptions based on which simulation

models of the production line described in the previous
section have been developed using ExtendSim® and Plant
Simulation® are described.

4.1. Modelling assumptions

The models developed in this study aim to capture relevant

features of the system described in Section 3 so that ManPy’s
functionality could be expanded. Conceptual models were
developed to facilitate the correct representation of the
production flow logic. Production flow constraints (e.g. line
clearance) and variation of batch size along the line proved to
be novel elements within the ManPy framework and objects
able to deal with these features were therefore developed in
ManPy.

The models developed here are intended to be used as a
tool to facilitate industrial engineers in tactical decision
processes related to production line design issues. These
issues include line re-balancing (e.g. assignment of tasks to
workstations), definition of optimal WIP levels and operating
batch sizes at the various stations. For this reason some
aspects of the system not closely related to the purpose of this
simulation analysis have been neglected in the models. In
particular, due to both the high availability of the machines
used in the pilot line and the specific preventive maintenance
programme adopted, the machines are assumed to be failure
free. More generally, the stations are assumed to be always
available, this means that at least one operator per machine is
available for the entire duration of each shift. The operators’
availability constitutes a fundamental problem at an
operational level; a reduced number of operators in the line
might disrupt productivity. This problem will be addressed
separately using an operational decision support tool, where
the presence of operators and the associated assignment logic
will be introduced in the simulation models.

The production is assumed to be defect free and scrapping
of units is not modelled. This assumption is reasonable as the
production yield observed in the production line is greater
than 95%. It is worth noting that even though the validation
experiments ignore the presence of quality defects, ManPy
objects able to model scrapping of defective units have been
developed.

Starvation due to the lack of raw material at the various
stations (e.g. components of the stent) is not considered in the
models as it is rarely experienced in the real line; a kanban-
based inventory system is adopted in the clean room where
the pilot line operates and ensures that both production unit
components and disposable tools required to complete the
tasks at a station are always available. This also applies to the
first station in the line; hence, the system operates based on a
pull production logic. As a consequence, production entities
are infinitely generated in the simulation models. In order to
make the computation more efficient, the production entities
modelled consist of the smallest transfer sub-batches observed
in the line in accordance to the line clearance constraint. In
this case, sub-batches of 25 units, which are used in the first
segment of the line, are generated and processed in the
models; the number of units available in each production
entity is represented as an entity attribute. The sub-batches are
batched and unbatched based on the stations’ processing
requirements; when sub-batches cannot be transferred to the
following stations once completed (e.g. segments 2, 3 and 4),
the entities are batched and transferred as a 4 entity-batch.
Processing times are calculated based on the number of units
that a production entity (e.g. batch or sub-batch) at a station
carries with it. Deterministic values are used to model
processing times; this is based on the practice adopted in the
company to treat times as constant values at tactical decision
levels. Stochastic processing times will be used when
simulation applications for operational decision support tools
will be developed.

4.2. ExtendSim Model

Based on the assumptions above, the pilot production line

has been modelled using ExtendSim standard blocks. Several
libraries of blocks are available in ExtendSim to handle most
modelling needs; these blocks can be linked using connectors
and assembled in hierarchical blocks of sub-systems. The
model layout as appears in the graphical interface at a high
hierarchical level is shown in Figure 3.

Following the logical flow in Figure 3, production entities
(e.g. sub-batches of 25 units) are generated at deterministic
time intervals so that the initial buffer of the line is always at
full capacity except during the simulation start; attributes are
assigned to the entities which are then batched into batches of
4 entities. The initial batch is created so as to facilitate the
handling of common properties across the sub-batches that
form a batch. A batch waits in the initial buffer until one of
the two unbatch blocks that precede the machines at the first
station of Segment 1 becomes available. The unbatch block
separates the full batch into 4 sub-batches and is used as a
temporary storage for these production entities; the sub-
batches are released one by one as soon as the machine

288 Georgios Dagkakis et al. / Procedia CIRP 25 (2014) 283 – 292

downstream of the unbatch block becomes available. When
the last sub-batch of a batch leaves the unbatch block another
full batch is pulled from the initial buffer. During the batch
and unbatch operations the entities’ uniqueness is preserved
so that the properties assigned to each single entity prior the
batch assembly are not overwritten by the batch’s properties.

Fig. 3. ExtendSim model layout.

The machines operating at a station are modelled using
hierarchical blocks, which are represented as blue squares in
Figure 3. The layout of a Machine block is shown in Figure 4.
An initial gate limits the number of entities that can enter a
machine. For most machines this gate closes when an entity
enters the Machine block; the gate will re-open when the
entity leaves the block so that only one entity at a time is
allowed in the block. There are exceptions to this logic for the
machines of station 3 where sub-batches are re-assembled in a
full batch before they leave the station. In this case, 4 sub-
batches are allowed in the block before the gate closes; the
gate will re-open when the full batch leaves. The choice of
introducing a gate at each Machine block is related to the
choice of separating the blockage status of a machine from its
waiting and working status. In order to realise this, a
“blockage” buffer of capacity 1 has been introduced
immediately after the Activity block (e.g. the block where the
processing delay is imposed) in the Machine block. The
reason for this choice is twofold. Firstly, due to modelling
requirements, a “dummy” buffer is required before the
conditional gate at the entrance of the Line Clearance (LC)
buffers (e.g. buffer that follows the Machine block); this
prevents production entities not allowed in the LC buffers
from being held in a block (e.g. gate) that has no
corresponding element in reality. Secondly, the presence of a
“blockage” buffer proves quite useful at the machines where
batch re-assembly is required after processing (e.g. Station 3)
in order to separate the machine waiting time from its
blockage time. When batch re-assembly is required, the
completed sub-batches are held in the batch block, which acts
as a temporary storage; even though the presence of the initial
gate in the Machine block would prevent any other sub-batch
from entering the block, it would be complex to distinguish
the waiting time of sub-batches in the batch block, which does
not impact the machine status, from the blocking time of the
full batch in the same block, which corresponds with the
machine’s blocking time. The presence of the blockage buffer
allows re-assembled batches to immediately leave the batch

block so that the blockage time at the associated machine can
be calculated as the queuing time in the “blockage” buffer.
The remaining blocks in the Machine block are used to update
and record information about the entities. Among these
information blocks, there are blocks used for calculating the
processing time required for any given production entity
based on the current production step, the unit processing time
(e.g. this is read from an MS Excel worksheet) and the
number of units that form the entity currently processed (e.g.
batch or sub-batch).

Fig. 4. Machine block layout.

The intermediate buffers in the ExtendSim model are also
modelled as hierarchical blocks and represented as pink
circles in Figure 3. The buffers where the Line Clearance
concept applies with its strictest meaning are those placed
between Segment 1 stations (labelled ‘LC’ characterizes these
buffers in Figure 3); the graphical layout of the LC buffer
block is reported in Figure 5.

Fig. 5. Line Clearance Buffer layout.

A conditional gate regulates the flow of production entities
into the finite capacity buffer. This gate remains open if the
buffer is empty; when the buffer holds some entities but it is
not at full capacity, the passage of entities through the gate is
allowed provided that the entity going through belongs to the
same batch as the entities currently held in the buffer. This
prevents entities belonging to different batches from mixing,
as the Line Clearance constraint requires. When the buffer is
full no entity can enter the block even though the gate is open.
In order to keep track of the batch ID of the batches held in
the buffer, a database has been created where the batch ID of
any entity that passes through the buffer is recorded. In the
upstream buffers for Segments 2, 3 and 4 the implementation
of the Line Clearance constraint is looser as the units
belonging to a batch are confined in storage boxes; hence,
there is no risk that these units could be mixed. These buffers
can hold different batches and the only restriction to the
upstream flow is given by their maximum capacity. In terms
of ExtendSim block layout, these buffers appear the same as
the block in Figure 5 with the only exception that the gate and
the preceding equation block are not included for obvious
reasons.

289 Georgios Dagkakis et al. / Procedia CIRP 25 (2014) 283 – 292

Information on the entities schedule and the machines’
status are recorded in internal databases and exported to MS
Excel worksheets at the end of each simulation run. The
simulation data obtained are post-processed in MATLAB
V7.12® where a more readable format for the batches’
schedule and relevant statistics are generated.

4.3. Plant Simulation model

Plant Simulation is a very powerful DES tool developed by

Siemens, providing an Object Oriented approach, where the
user can make highly customized new objects inheriting their
properties either from the prefabricated ones that Plant
Simulation provides or from other customized objects. The
model layout, as it appears in Plant Simulation GUI is (Figure
6) is straightforward. A Source creates the Batches, which are
queued before they pass along one of the sub-lines and then
they follow their route in the system. Two methods are
invoked when the model is reset and at the end of the
simulation. reset ensures that the initial state of a run is not
affected by the previous one by resetting certain statistics and
control variables that were added for the needs of custom
objects and EndSim outputs results at the end of the run.

Fig. 6. Plant Simulation model layout.

While the graphics reflect the layout of the line and appear
simple, the actual model contains hidden complexity. As
shown in Figure7, new classes of Plant Simulation objects
with their own custom methods and attributes were required.
These are either instances or children of Plant Simulation’s
MUs (Mobile Units that flow in the simulation model),
SingleProc (a single station for processing an MU),
PlaceBuffer (lines up several MUs of the same kind one after
the other), Source (produces MUs in a single station) and
Drain (removes MUs from the model). More info on Plant
Simulation objects can be found in [23].

Fig. 7. Plant Simulation objects implemented in the model.

The new classes created are:

 BatchSource: A Source that creates Batches.
 Batch: An MU that holds a number of units.
 SubBatch: An MU that contains a number of units

extracted from a parent Batch. Its attributes include the id
of the parent Batch.

 BatchDecomposition: A PlaceBuffer that takes a batch
and separates it into sub-batches.

 BatchReassembly: A PlaceBuffer that takes a number of
sub-batches and reassembles the original batch.

 LineClearance: A PlaceBuffer that can take a sub-batch
only if it is completely empty or the sub-batches that it
already holds are derived from the same parent batch as the
one that requests entry.

 ScrapStation: A SingleProc that can scrap some units of
the MU it processes. Its processing time is calculated
according to the number of units in the MU. Scrapping of
units has being modelled both in Plant Simulation and
ManPy in order to be used in future work, but in the
experiments presented here scrappage is not considered.

 SubLineScrapStation: Almost identical to the
ScrapStation class with the addition of extra coding to
interact with the LineClearance class.

 QueueBeforeBD: A PlaceBuffer with modifications to
allow communication with the downstream
BatchDecomposition object.

 QueueAfterBR: A PlaceBuffer with modifications to
communicate with the upstream BatchReassembly object.

Table 1. Object types and instances used in the model shown in Figure 6.

Object Type Objects Used in the
Model

BatchSource BS

BatchDecomposition BD1, BD2

BatchReassembly BR1, BR2

LineClearance Q1A, Q2A, Q1B, Q2B

ScrapStation M3A, M3B, MM, PrA,
PrB, PaA, PaB

SubLineScrapStation M1A, M1B, M2A, M2B

QueueBeforeBD SQA, SQB

QueueAfterBR MQ

PlaceBuffer PrQ, PaQ

Drain Exit

Table 1 shows the instances of the object types used in the

model. These correspond with the objects shown in Figure 6.
Despite the introduction of new classes, some further
customization was needed for specific objects in the model. It
was found that the PlaceBuffer (MQ), which is placed after
the two BatchReassembly objects (BR1, BR2), should accept
the item which has been waiting the longest in those buffers.
This is the default behaviour in Plant Simulation, but the
customizations negated it. For this reason some methods
needed further modifications. In general, this is considered
poor Object Orientation since methods were customised for
specific instances. In complex situations it is often quite
difficult to identify a straightforward model development
approach. In this specific case, there may have been an easier

290 Georgios Dagkakis et al. / Procedia CIRP 25 (2014) 283 – 292

way to model this feature but, in general, this is indicative of
how complex modeling of specific processes can become.

5. ManPy model development

ManPy aims in providing the user with a selection of

CoreObjects that exchange Entities during simulation time. In
the initial development of ManPy, Entities were constructed
to flow as separate objects or parts that could get loaded into
and unloaded from frames. This pilot case has supported the
extension of ManPy so that Entities can flow in batches, be
decomposed into sub-batches and then reassembled to the
parent batch. Some other particular features involve the line
clearance concept, scrappage (even thought this feature is not
included in the validation process) and also that the
processing times in station is dependent on the number of
units the processed Entity holds.

In order to model such a case new ManPy objects had to be
implemented:

 Batch: A ManPy Entity that holds a number of units.
 SubBatch: A ManPy Entity that contains a number of

units and is derived from a parent Batch. In its attributes it
also holds the parent Batch.

Also we needed two new CoreObject types:

 BatchDecomposition: A CoreObject that takes a batch

and decomposes it to sub-batches. It overrides

are derived from the same parent batch as the one that
requests to enter.

 BatchDecompositionStartTime: A CoreObject that
inherits from BatchDecomposition and overrides its
removeEntity method in order to assign the start time of the
Entity as the simulation time that the Entity got into this
object.

From the final object in the list above we can see that it

was necessary to customize one of the newly created objects,
in order to calculate the cycle time as defined in section 3.
This makes sense since BatchDecomposition can be a generic
object to be used in multiple cases, while
BatchDecompositionStartTime is just needed in this specific
model where the start of the lifecycle must be recorded in
these stations.

As expected, the most time consuming part of the
implementation was the coding of BatchDecomposition and
BatchReassembly. These are brand new CoreObjects in which
also the Python generator run had to be overridden. These
methods run in parallel, making it more difficult to debug
them. In fact, it is the overriding of the run method that
discriminates a completely new CoreObject from a
customization of an already existing one. Indeed
BatchDecomposition and BatchReassembly were the only
new CoreObjects to directly inherit from the generic class.
The generic class is abstract and does not include a specific
implementation of run. So every object that directly inherits
from the generic class has to have a run method developed for

CoreObject’s init__, initialize, canAccept, it. Also, it is not obligatory, but in most cases it seems that if a
hasToDispose, canAcceptAndIsRequested and run methods
in order to implement the new logic.

 BatchReassembly: A CoreObject that takes a number of
sub-batches and reassembles the original batch. It overrides

new CoreObject needs to override run of the parent object,
then its logic is peculiar, so it makes sense to inherit directly
from the generic class.

It is important to mention that during the implementation
CoreObject’s init__, initialize, canAccept, of the new objects no modifications to the underlying ManPy
hasToDispose, canAcceptAndIsRequested and run methods
in order to implement the new logic.

Finally customizations in already existing CoreObjects

were made:

 BatchSource: A CoreObject that inherits from Source and
creates Entities that hold a number of units. It overrides the
 init__ method of the Source in order to accept the
number of units per batch as an argument and also the
createEntity method so that it creates the Entity containing
this number of units.

 BatchScrapMachine: A CoreObject that inherits from
Machine. It overrides init__ in order to use the
scrappage distribution, removeEntity in order to scrap some
units of the Entity when it is ready to leave the object and
also calculateProcessing time in order to define the
processing time according to the number of units that the
Entity had when it entered.

 LineClearance: A CoreObject that inherits from Queue
and overrides its canAccept and canAcceptAndIsRequested
methods, so that it can take a sub-batch only if it is
completely empty or the sub-batches that it already holds

code were needed. So the ManPy repository was considered
as a black box, where we have been able to create new objects
and use them in models together with the pre-existing objects.
This fact is essential to demonstrate the expandability of the
platform.

The procedure described so far lead to the implementation
of tailored objects for this use case. Effectively, this is the
repository of objects that an Industrial Engineer user should
have in order to model the specific problem defined by the
industry partner. More objects, such as operators, will be
needed in order to get the full model of the line. This is left
for future work; the scalability of this development approach
offers the opportunity to progressively gain confidence in the
objects developed hereinbefore.

In order to use ManPy DES objects in a model, a separate
Python script should be used. This is an auxiliary script and
we refer to it as “main script”. Main script is responsible for
creating, connecting, activating and initializing the DES
objects, defining general simulation attributes, running the
simulation and outputting results. The main script may be raw
Python code in the way it is presented in examples of ManPy
documentation, but there are also other ways to define the
model. One of them is reading from a JSON [24]
representation which in this case is used for interaction with

291 Georgios Dagkakis et al. / Procedia CIRP 25 (2014) 283 – 292

the DREAM GUI. The definition of the pilot line was chosen
to be implemented using the JSON representation to combine
this model with the DREAM GUI. Generally the main script
is separate of the actual simulation code, so future ManPy
users can implement their own approaches to input and output
definition.

6. Models validation and comparison

Validation and verification are complex issues that should

be taken care all through a simulation project [25]. Validation
aims at ensuring that a real system is validly captured in a
model whereas verification has the purpose to confirm that a
model is correctly coded as a computer program [26]. In order
to define the scope of the study and gain understanding of the
logic of the simulated system a workshop took place at the
facility where the production line operates. Following the
workshop, regular communication with the industrial
engineers familiar with the pilot line guided the development
of the conceptual model and ensured that the modelling
assumptions were correct. A formal questionnaire and a
Request For Information (RFI) were also used as support
documents. In particular, details and peculiarities of the pilot
line, such as the line clearance concept, were extensively
clarified before the models were developed. A prototype
model of the pilot line was illustrated to the industrial
engineers; the production flow logic implemented, inputs and
outputs were discussed, whilst the simulation logic and results
were considered valid, the need to include further features of
the system so that the model could be used to support
operational decisions was expressed. More specifically, the
presence of operators in the line should be modelled and
allocations algorithms should be developed in order to assist
the line supervisor in assigning operators to workstations in
case of absenteeism. This will be done in the near future.

To further assess the validation of our modeling, we plan
its review by experts of the system within the company. This
will be firstly done using the COTS models, since the medical
device company where the pilot line operates are familiar with
using COTS simulation packages and also the GUI of these
packages is at a more mature state to enhance a structured
walkthrough. Nevertheless, if a COTS model is adequately
validated and ManPy model is verified against this COTS
model, then this is considered enough for the validation of the
ManPy model. The development of the model using three
different tools, one OS and two COTS, was followed in order
to establish the verification concept. Firstly, the models were
built and debugged for a specific set of inputs. It is worth
mentioning, that debugging revealed not only errors in new
ManPy objects, but also mistakes in the modeling in COTS.
Both COTS tools used are in a more advanced state than
ManPy, but the deep level of control we had in the latter, was
sometimes essential in identifying problems and solutions.

A structured experimental plan was developed to validate
the models from a numerical perspective. Realistic data were
used as access to historical data proved difficult at this stage
of the project; significant effort is required to interpret the
data available in historical database and data mining tools are
being developed to automate inputting relevant simulation

data in the models. Deterministic input data were used since
the purpose of the experiments was the verification of models
and code. The experimental plan was conceived so that the
new objects developed in ManPy could be verified under
different operating conditions. Two sets of experiments were
run; each set consisted of seven experiments. In the first six
experiments each of the six stations populating the line was
set as a bottleneck, respectively; in the last experiment the
production flow was made synchronous so that the system
would not present any bottleneck. In order to achieve these
conditions, the unit processing times were opportunely set.
The second set of experiments replicated the first set using a
different inter-arrival time for the production batches; this was
done to assess impact on waiting time at the different stations.
The performance measures considered in the validation
process were the daily throughput, the average cycle time and
the machine status percentages (e.g. waiting, working and
blockage).

For all the experiments the results proved identical; hence
the validity of ManPy in simulating flow shop systems
subjected to both variation of production batch sizes and
production flow constraints has been demonstrated. It is worth
noting that as a result of the validation process, one bug in
ManPy that would cause a premature interruption of the
simulation run has been identified and fixed. This shows the
importance of comparing ManPy performance against COTS
packages; comparison analyses based on sensible
experimental plans prove fundamental in order to verify
ManPy’s logic and set effective development guidelines.

In terms of speed ManPy proved slower than COTS
alternatives. This issue was also demonstrated in [21] where
the results obtained are similar to those obtained here. The
pursuit of generality of OS code does induce an overhead of
computations. Nevertheless, ManPy can be less expensively
used in a cluster of PCs, since there is no license needed in
order to install it. That can enhance the speed significantly
using a web-based distributed simulation in cases where we
have multiple replications of stochastic models or scenario
analysis. It is in the scope of DREAM to research such
methodologies in order to provide a high performance DES
framework.

7. Conclusions

ManPy is the simulation engine of the DREAM platform

whose ultimate objective is to provide industrial practitioners
with easy-to-use, expandable and efficient simulation based
decision support tools for industrial problems at different
decision levels. In this study, the application of ManPy to a
flowshop system characterized by batch production, varying
batch size and production flow constraints has been
illustrated. The ManPy model has been successfully validated
against the simulation results of two versions of the same
model developed using COTS software. Being under
development, the validation of newly introduced ManPy
objects against corresponding objects available in COTS
software represents a fundamental step for proving that
ManPy is able to offer a valid license free alternative to more
commonly used simulation packages. Based on both

292 Georgios Dagkakis et al. / Procedia CIRP 25 (2014) 283 – 292

validation results and the identification of relevant industrial
use case features, effective development guidelines have been
set to enhance ManPy’s functionalities. ManPy’s most
significant advantage with respect to other OS simulation
packages available consists of the fact that objects similar to
those available in COTS simulation packages are ready to use
and can be connected with minimal programming effort.

Future work regarding this pilot case and DREAM in
general include: the integration of the model with the tailored
GUI that will enhance the human/system interaction and the
DREAM Knowledge Extraction (KE) tool that will automate
of the ManPy simulation inputs. To model the system at an
operational level, new ManPy objects will be needed and
more specifically an operator object since the efficient
allocation of operators is regarded crucial by the company.
Moreover, the model will be combined with a scenario
analysis approach, so that it can be used for decision support.
If this is proven to be computationally expensive, then
research will be conducted, so that ManPy is deployed over a
cluster of computers.

Acknowledgements

The research leading to these results has received funding
from the European Union Seventh Framework Programme
(FP7-2012-NMP-ICT-FoF) under grant agreement n° 314364.

References

[1] Ramirez YM, Nembhard DA. Measuring knowledge worker productivity.

J of Intellectual Capital 2004;5:4602-628.
[2] Carson JS. Introduction to modeling and simulation. In: Proceedings of

the 36th Winter Simulation Conference 2004. p. 9-16.
[3] Salman MR, Geraghty J, Brady M. The development of a discrete event

simulation framework for complex manufacturing environments, In:
Proceedings of EUROSIS-ETI conference 2010.

[4] McLean C, Leong S. The expanding role of simulation in future
manufacturing, In: Proceedings of the 33rd Winter Simulation
Conference; 2001. p.1478-1486.

[5] Pidd M, Carvalho A. Simulation software: Not the same yesterday, today
or forever. J of Simulation 2006;1:17-20.

[6] Paul RJ, Taylor SJ. What use is model reuse: Is there a crook at the end of
the rainbow?, In: Proceedings of 2002 Winter Simulation Conference;
2002. p. 648-652.

[7] Kuljis J, Paul RJ. An appraisal of web-based simulation: Whither we
wander? Simul Pract Theory 2001;9:137-54.

[8] Fitzgerald B. The transformation of open source software. Mis Quarterly
2006;587-598.

[9] Dagkakis G, Heavey C, Papadopoulos CT. A review of open source
discrete event simulation software, In: Proceedings of 9th Conference on
Stochastic Models of Manufacturing and Service Operations; 2013. p. 27-
35.

[10] Varga A, Hornig R. An overview of the OMNeT++ simulation
environment, In: Proceedings of the 1st International Conference on
Simulation Tools and Techniques for Communications, Networks and
Systems & Workshops; 2008. p.60.

[11] King D, Harrison HS. Discrete-event simulation in java: A practitioner's
experience, In: Proceedings of the 2010 Conference on Grand Challenges
in Modeling & Simulation.

[12] Rossetti MD. Java simulation library (JSL): An open-source object-
oriented library for discrete-event simulation in java. International J of
Simulation and Process Modelling 2008;4:169-87.

[13] Bengtsson N, Shao G, Johansson B, Lee YT, Leong S, Skoogh A,
Mclean C. Input data management methodology for discrete event
simulation. In: Proceedings of the 2009 Winter Simulation Conference.

[14] Zhang SS, Peng H, Liu C, Yao LL. Simulation of genetic algorithm
scheduling on extendsim based on COM technology, In: Proceedings of
the 2012 International Conference on Modelling, Identification and
Control.

[15] Bergmann S, Stelzer S, Strassburger S. On the use of artificial neural
networks in simulation-based manufacturing control. J of Simulation
2014;876-90.

[16] Weingartner E, Vom Lehn H, Wehrle K. A performance comparison of
recent network simulators, In: Proceedings of 2009 IEEE International
Conference on Communications (ICC'09).

[17] Tewoldeberhan TW, Verbraeck A, Valentin E, Bardonnet G. Software
evaluation and selection: An evaluation and selection methodology for
discrete-event simulation software, In: Proceedings of the 34th Winter
Simulation Conference; 2002. p. 67-75.

[18] Smith B. Object-oriented programming, AdvancED ActionScript 3.0:
Design Patterns, Springer; 2011.

[19] Rentsch T. Object oriented programming. ACM Sigplan Notices
1982;17:951-57.

[20] Ueda M. Licenses of open source software and their economic values,
In: Proceedings of the 2005 Symposium on Applications and the Internet
Workshops.

[21] Dagkakis G, Heavey C, Robin S, Perrin J. ManPy: An open-source layer
of DES manufacturing objects implemented in SimPy, In: Proceedings of
the 8th EUROSIM Congress on Modelling and Simulation; 2013.

[22] http://www.gpacmfg.com/ISO_13485_Line_Clearance.html
[23] Bangsow S. Manufacturing Simulation with Plant Simulation and

Simtalk: Usage and Programming with Examples and Solutions. Springer;
2010.

[24] Severance C. Discovering JavaScript object notation. Computer, 45:46-
8.

[25] Law AM, Kelton WD. Simulation modelling and analysis. McGraw Hill
Boston, MA; 2000.

[26] Shannon RE. Introduction to the art and science of simulation. In:
Proceedings of the 1998 Winter Simulation Conference, p.7-14.

