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Quantum chemical studies
Experimental aspect of the corrosion inhibition potential of adenine (AD), guanine (GU) and,

hypoxanthine (HYP) was carried out using weight loss, potentiodynamic polarization and electro-

chemical impedance spectroscopy (EIS) methods while the theoretical aspect of the work was car-

ried out by calculations of semi-empirical parameters (for AM1, MNDO, CNDO, PM3 and RM1

Hamiltonians), Fukui functions and inhibitor–metal interaction energies. Results obtained from

the experimental studies were in good agreement and indicated that adenine (AD), guanine

(GU) and hypoxanthine (HYP) are good adsorption inhibitors for the corrosion of aluminum

in solutions of HCl. Data obtained from electrochemical experiment revealed that the studied

purines functioned by adsorption on the aluminum/HCl interface and inhibited the cathodic half

reaction to a greater extent and anodic half reaction to a lesser extent. The adsorption of the

purines on the metal surface was found to be exothermic and spontaneous. Deviation of the

adsorption characteristics of the studied purines from the Langmuir adsorption model was com-

pensated by the fitness of Flory Huggins and El Awardy et al. adsorption models. Quantum

chemical studies revealed that the experimental inhibition efficiencies of the studied purines are

functions of some quantum chemical parameters including total energy of the molecules (TE),

energy gap (EL–H), electronic energy of the molecule (EE), dipole moment and core–core repul-

sion energy (CCR). Fukui functions analysis through DFT and MP2 theories indicated slight

complications and unphysical results. However, results obtained from calculated Huckel charges,

molecular orbital and interaction energies, the adsorption of the inhibitors proceeded through the

imine nitrogen (N5) in GU, emanine nitrogen (N7) in AD and the pyridine nitrogen (N5) in HPY.

ª 2014 Production and hosting by Elsevier B.V. on behalf of Cairo University.
Introduction

Industrial revolution that is ever expanding within different
parts of the world has several advantages and disadvantages
in the quality of environment. Most industries utilize metals

or their ores (such as mild steel, aluminum, zinc, and copper)
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in the fabrication of their installations. In most cases, these
metals are exposed to aggressive medium/media and are prone
to corrosion [1]. Corrosion is an electrochemical process that

gradually returns the metal to its natural state in the environ-
ment. Corrosion in industries is often activated by processes
such as acid wash, etching, prickling and others. Aluminum

owes its widespread use after steel, to its excellent corrosion
resistance to the air formed film strongly bonded to its surface.
This film is relatively stable in aqueous solutions over a pH

range of 4–8.5 [2]. In such solutions the surface film is insoluble
but may be locally attacked by aggressive anions, primarily
chlorides. The effect of Cl� ions (which can be generated by
hydrolysis of HCl) on the corrosion of aluminum and its alloys

has been the subject of several studies [3–5]. The cost of replac-
ing metals due to corrosion is often exorbitant and economi-
cally unbearable. Therefore, industries have adopted several

options to control corrosion of metals including anodic/
cathodic protection, painting, electroplating and galvanizing.
However, the use of corrosion inhibitors has proven to be

one of the most effective methods.
Inhibitors are compounds that retard the rate of corrosion

of metals by been absorbed on the surface of the metal either

through the transfer of charge from charge inhibitor molecule
to charged metal surface (physical adsorption) or by electron
transfer from the inhibitor’s molecule to the vacant d-orbital
of the metal(chemical adsorption) [6]. Numerous studies have

been carried out on the corrosion of metals in different envi-
ronments and most of the well-known and suitable inhibitors
are heterocyclic compounds [7–10]. For these compounds,

their adsorption on the metal surface is the initial step of inhi-
bition [11,12]. The adsorption of inhibitor is linked to the pres-
ence of heteroatoms (such as N, O, P, and S) and long carbon

chain length as well as triple bond or aromatic ring in their
molecular structure [13]. Generally, a strong coordination
bond leads to higher inhibition efficiency. The corrosion inhi-

bition potentials of some purines and their derivatives have
been reported by several researchers [14–19].

Although quantum chemical studies limits the corrosion
inhibition efficiency with molecular orbital energy levels of

some organic compounds, semi-empirical method emphasizes
the approaches that are involved in the selection of inhibitor
Fig. 1 Molecular structures of (a) aden
by correlating the experimental data with quantum chemical
properties such as energy of the highest molecular orbital
(EHOMO), the energy of the lowest unoccupied molecular orbi-

tal (ELUMO), total negative charge (TNC), electronic energy
(EE), binding energy (Eb), core–core repulsion energy
(CCR), dipole moment and other parameters [20,21]. Also,

the use of Fukui functions, calculated through Milliken, Low-
din or Hierfield charges have proven to be very useful in pre-
dicting the sites for electrophilic and nucleophilic attacks.

The present study is aimed at investigating the inhibitory
and adsorption properties of some purines, namely (AD),
guanine (GU) and hypoxanthine (HYP) for the corrosion of
aluminum in HCl using gravimetric, electrochemical and quan-

tum chemical methods.

Experimental

Material

Aluminum sheet (AA 1060 type) and purity 98.5% was used in
this study. Acid solution of 0.1 M HCl was prepared by dilut-
ing analytical grade with distilled water. Various concentra-

tions (ranging from 2.0 · 10�3 to 10.0 · 10�3 M) of the
inhibitors were also prepared in the acid media. All reagents
were obtained from Zayo-Sigma Chemicals. Fig. 1 shows

chemical structures of adenine (AD), guanine (GU) and hypo-
xanthine (HYP).

Experimental procedure

Weight loss measurements

Aluminum coupons of dimension 5.0 · 4.0 · 0.15 cm were cut

and wet-abraded with silicon carbide abrasive paper (from grade
#1000 to #1200), rinsed with distilled water and in acetone be-
fore they were dried in the air. The pre-cleaned and weighed cou-

pons were suspended in beakers containing the test solutions
using glass hooks and rods. Tests were conducted under total
immersion conditions in 150 mL of the aerated and unstirred

test solutions. Immersion time was varied from 1 to 5 days
(120 h) in 0.1 M HCl. The coupons were retrieved from test
ine (b) guanine and (c) hypoxanthine.



Table 1 Corrosion rates of aluminum and inhibition efficiencies of adenine (AD), guanine (GU) and hypoxanthine (HYP) at 303 and

333 K respectively, in 0.1 M HCl.

Inhibitor C (M) Corrosion rate · 10�4 (g h�1 cm�2) Inhibition efficiency (IE%)

303 K 333 K 303 K 333 K

Blank 1.26 8.11 – –

AD 0.002 0.356 4.20 71.73 48.27

0.004 0.306 3.51 75.70 56.74

0.006 0.233 3.21 81.49 60.41

0.008 0.173 2.49 86.28 69.29

0.01 0.119 2.23 90.58 72.58

GU 0.002 0.231 3.06 81.65 62.28

0.004 0.177 2.74 85.95 66.26

0.006 0.127 2.52 89.92 68.91

0.008 0.090 2.43 92.89 70.06

0.01 0.044 2.15 96.53 73.50

HYP 0.002 0.216 3.59 82.84 55.79

0.004 0.17 3.22 86.54 60.36

0.006 0.136 2.85 89.22 64.88

0.008 0.117 2.61 90.72 67.83

0.01 0.098 2.35 92.23 71.01

Fig. 2 Variation of inhibition efficiency with concentration for

AD, GU and HPY for the corrosion of aluminum in 0.1 M HCl at

303 and 333 K.
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Fig. 3 Electrochemical impedance spectra of aluminum in 0.1 M

solutions of HCl in the absence and presence of 0.01 M AD, GU

and HYP at 303 K.
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solutions after every 24 h, appropriately cleaned, dried and re-
weighed. The weight loss was taken to be the difference between
the weight of the coupons at a given time and its initial weight.

The effect of temperature on Al corrosion and corrosion inhibi-
tion was investigated by repeating the experiments at 303 and
333 K respectively. All tests were run in duplicate and the data
obtained showed good reproducibility.

Electrochemical measurements

Metal samples for electrochemical experiments were machined

into test electrodes of dimension 1.0 · 1.0 cm2 and sealed with
epoxy resin in such a way that only one square surface area
(1 cm2) was left uncovered. The exposed surface was cleaned
using the procedure described above. Electrochemical tests

were conducted in a Model K0047 corrosion cell using a
VERSASTAT 400 complete DC voltammetry and corrosion
system, with V3 Studio software. A graphite rod was used as

a counter electrode and a saturated calomel electrode (SCE)
as a reference electrode. The latter was connected via a Luggin
capillary. Measurements were performed in aerated and un-

stirred solutions at the end of 1 h of immersion at 303 K.
Impedance measurements were made at corrosion potentials
(Ecorr) over a frequency range of 100 kHz–10 mHz, with a sig-

nal amplitude perturbation of 5 mV. Potentiodynamic polari-
zation studies were carried out in the potential ranging from
�1000 to 2000 mV versus corrosion potential at a scan rate
of 0.33 mV/s. Each test was run in triplicate [22].

Quantum chemical calculations

Full geometric optimization of each of the studied purines was
carried out using molecular mechanics, ab ignition and DFT

level of theories in the HyperChem release 8.0 software.
Semi-empirical parameters were calculated using optimized
structure of each of the purines as an input to the MOPAC

software, while Muliken and Lowdin charges were calculated
using GAMMES software. All quantum chemical calculations
were carried out on gas phase.



Table 2 Impedance and polarization data for aluminum in 0.1 mol dm�3 HCl in the absence and presence of 0.01 mol dm�3 adenine

(AD), guanine (GU) and hypoxanthine (HYP) at 303 K.

System Impedance Polarization

Rct (X cm2) Cdl (lX�1 Sn cm�2) N IE% Ecorr (mV versus SCE) icorr (lA cm�2) IE%

Blank 101.00 21.89 0.99 – �703.00 265.12 –

AD 907.00 3.72 0.92 88.87 �685.93 29.56 88.85

GU 1756.52 2.51 0.91 94.25 �707.72 14.93 94.37

HYP 1175.80 2.68 0.98 91.41 �703.05 23.28 91.22

Table 3 Langmuir, Flory Huggins and El Awardy et al. parameters for the adsorption of AD, GU and HPY on Al surface at 303 and

333 K.

Isotherm T (K) Slope Intercept n/1/y DG0
ads ðkJ=molÞ=B R2

Langmuir AD (303 K) 0.8545 �0.2400 �8.73 0.9986

AD (333 K) 0.7463 �0.3632 �8.80 0.9972

GU (303 K) 0.8982 �0.183 �9.06 0.9997

GU (333 K) 0.9032 �0.0541 �10.77 0.9997

HPY (303 K) 0.9332 �0.0982 �9.55 1.0000

HPY (333 K) 0.8505 �0.1458 �10.19 0.9996

Flory Huggins AD (303 K) 1.1246 3.0421 1 �27.77 0.8392

AD (333 K) 1.7446 2.8094 2 �26.42 0.8930

GU (303 K) 1.2798 3.4904 1 �30.37 0.9289

GU (333 K) 4.2163 4.2271 4 �34.64 0.9411

HPY (303 K) 1.8878 4.0206 2 �33.44 0.9784

HPY (333 K) 3.1649 3.5061 3 �30.46 0.9520

El Awardy et al. AD (303 K) 9.0275 25.803 0.1108 �25.55 0.7581

AD (333 K) 2.3778 7.1637 0.4206 �29.02 0.8748

GU (303 K) 13.356 39.577 0.0748 �26.13 0.8568

GU (333 K) 1.4599 5.5222 0.6850 �33.71 0.9208

HPY (303 K) 9.6585 30.287 0.1035 �27.09 0.9332

HPY (333 K) 1.6404 5.5832 0.6096 �31.40 0.9334

n is applicable to Flory Huggins while 1/y and B are for El Awardy et al. adsorption isotherms.
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Fig. 4 Polarization curves of aluminum in 0.1 M solutions of

HCl in the absence and presence of 0.01 M AD, GU and HYP at

303 K.

Fig. 5 Langmuir isotherms for the adsorption of AD, GU and

HPY onto Al surface at 303 and 333 K.
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Results and discussion

Weight loss measurements

The corrosion rate, CR g cm�2 h�1 and inhibition efficiency,

IE%, as functions of concentration in the acid media were cal-
culated using the equation [23]:



Table 4 Calculated values of activation energies (Ea) and heats of adsorption (Qads) for the corrosion of aluminum in 0.1 M HCl in

the absence and presence of various concentrations of adenine (AD), guanine (GU) and hypoxanthine (HYP).

Inhibitor Concentration mol dm�3 Activation energy, Ea (kJ mol�1) Heat of adsorption, Qads (kJ mol�1)

Blank 52.13

AD 0.002 69.10 �10.58
0.004 68.31 �9.15
0.006 73.44 �11.20
0.008 74.66 �10.84
0.01 78.94 �12.28

GU 0.002 72.34 �10.48
0.004 76.39 �12.01
0.006 77.46 �14.72
0.008 82.39 �18.18
0.01 84.55 �24.37

HYP 0.002 78.69 �14.19
0.004 82.35 �15.23
0.006 85.18 �15.86
0.008 86.93 �16.21
0.01 88.98 �16.69

Fig. 6 Flory Huggins isotherm for the adsorption of AD, GU

and HPY on aluminum surface at 303 and 333 K.
Fig. 7 El awardy et al. isotherm for the adsorption of AD, GU

and HPY on aluminum surface at 303 and 333 K.
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CR ðg h�1 cm�2Þ ¼ DW
At

ð1Þ

IE% ¼ 1� DWinh

DWblank

� �
� 100 ð2Þ

where DW is the weight loss in g, A is the surface area of the

coupon and t is the immersion time, DWinh and DWblank are
the weight losses (g) of aluminum in the presence and absence
of the inhibitor respectively. The results obtained are presented

in Table 1.
Fig. 2 shows plots for the variation of IE% with concentra-

tion for AD, GU and HPY in 0.1 M HCl and at 303 and
333 K. The plots reveal that the inhibition efficiencies of the

studied purines increase with increase in the concentration of
the respective purine which suggest that the inhibition effi-
ciency is a function of the amount of the inhibiting species

present in the system and that the area of the aluminum sur-
face covered by the adsorbed inhibitors is increased. Again,
it is obvious from the plots that all the studied purines had

high inhibition efficiencies with GU as the most effective inhib-
itor suggesting that not only the inhibitory power of the inhib-
itors increased with concentration but the performance also is
a function of the type of purine.

Electrochemical impedance spectroscopy

Nyquist plots displayed in Fig. 3 revealed semicircles for all
systems over the studied frequency range. The high frequency

intercept with the real axis in the Nyquist plots is assigned to
the solution resistance (Rs) and the low frequency intercept
with the real axis is ascribed to the charge transfer resistance

(Rct).
The impedance spectra were analyzed by fitting informa-

tion to the equivalent circuit model Rs(QdlRct). In this equiva-

lent circuit, the solution resistance was shorted by a constant
phase element (CPE) that is placed in parallel to the charge
transfer resistance. The CPE is used in place of a capacitor
to compensate for deviations from ideal dielectric behavior

arising from the inhomogeneous nature of the electrode sur-
faces. The impedance of the CPE is given by [24];

ZCPE ¼ Q�1ðjxÞ�n ð3Þ



Table 5 Computed values of semi-empirical parameters for adenine, quinine and hypoxanthine.

CNDO MNDO AM1 RM1 PM3

EHOMO (eV)

Adenine �11.430 �9.591 �9.511 �9.424 �9.062
Quanine �10.130 �9.054 �8.993 �8.885 �8.688
Hypoxanthine �11.577 �9.876 �9.851 �9.811 �9.596

ELUMO (eV)

Adenine 3.520 �0.102 �0.021 0.137 �0.263
Quanine 3.231 �0.164 �0.100 0.084 �0.280
Hypoxanthine 2.776 �0.665 �0.583 �0.509 �0.800

EL–H (eV)

Adenine 14.950 9.489 9.491 9.561 8.799

Quanine 13.361 8.890 8.892 8.968 8.408

Hypoxanthine 14.353 9.211 9.268 9.302 8.796

l (Debye)

Adenine 6.157 5.803 5.989 6.327 6.266

Quanine 3.747 2.170 2.322 2.482 2.491

Hypoxanthine 6.416 5.728 5.717 6.100 5.986

Eb (eV)

Adenine �221.16 �69.17 �67.54 �71.12 �69.31
Quanine �1555546.00 �39442.70 �1057934.00 �38629.40 �39568.00
Hypoxanthine �1385995.00 �35667.00 �34597.80 �32733.40 �35460.80

EE (eV)

Adenine �9490.55 �7789.66 �7778.36 �7779.22 �7385.55
Quanine �6028329.00 �4974777.00 �4967677.00 �4966004.00 �4740755.00
Hypoxanthine �5158937 �4222164.00 �4215761.00 �4212423.00 �4021481.00

TE (eV)

Adenine �2650.37 �1741.59 �1738.20 �1741.78 �1476.84
Quanine �1678629.00 �1099277.00 �1096446.00 �1096585.00 �943142.00
Hypoxanthine �113224.00 �981435.00 �978842.00 �976977.00 �848255.00

CCR (eV)

Adenine 3,643,243 3,221,244 3,217,150 3,215,699 3,147,134

Quanine 4,349,700 3,875,500 3,871,231 3,869,402 3,797,613

Hypoxanthine 3,659,719 3,240,729 3,236,920 3,234,293 3,173,226
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where Q and n represents the CPE constant and exponent
respectively, j= (�1)1/2 is an imaginary number, and x is
the angular frequency in rad s�1 (x = 2pf), while f is the fre-

quency in Hz.
The corresponding electrochemical parameters are pre-

sented in Table 2 and from the results obtained, it can be stated
that the presence of AD, GU and HYP increases the magni-

tude of Rct, with corresponding decrease in the double layer
capacitance (Qdl). The increase in Rct values in inhibited sys-
tems, which corresponded to an increase in the diameter of

the Nyquist semicircle, confirms the corrosion inhibiting effect
of the purines. The observed decrease in Cdl values, which nor-
mally results in the double-layer thickness can be attributed to

the adsorption of the purines (with lower dielectric constant
compared to the displaced adsorbed water molecules) onto
the aluminum/acid interface, thereby protecting the metal

from corrosion.
Inhibition efficiency from the impedance data was esti-

mated by comparing the values of the charge transfer resis-
tance in the absence (Rct) and presence of inhibitor (Rct,inh)

as follows [18]:

IE% ¼ RctðinhÞ � Rct

RctðinhÞ

� �
� 100 ð4Þ
The magnitude and trend of the obtained values presented
in Table 3 are in close agreement with those determined from

gravimetric measurements.
Potentiodynamic polarization data

Polarization measurements were undertaken to investigate the

behavior of aluminum electrodes in 0.1 M solutions of HCl in
the absence and presence of the purines. The current–potential
relationship for the aluminum electrode in various test solu-
tions is shown in Fig. 4 while the electrochemical data obtained

from the polarization curves are presented in Table 3.
Addition of the purines is seen to affect the cathodic partial

reaction mostly, thereby reducing the cathodic current densi-

ties and the corresponding corrosion current density (icorr).
This indicates that the purines functioned as cathodic inhibi-
tors for the corrosion of aluminum in 0.1 M HCl solutions.

Adenine (AD) however, is also observed to affect the anodic
arm of the Tafel plot, slightly, indicating that is functioned
as a mixed inhibitor in 0.1 M HCl [11]. It was also seen that

the potential range in the Tafel plots is short. This can be
explained as follows. A typical Tafel plots will show Tafel
region, plateau region and high polarization region. This study
revealed the dominance of the Tafel region and thus a short



Fig. 8 Variation of EL–H with experimental inhibition efficiencies of ADN, GUN and HYP for CNDO, MNDO, RM1 and PM3

Hamiltonians.
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potential range. The values of corrosion current densities in the
absence (icorr) and presence of inhibitor (iinh) were used to esti-
mate the inhibition efficiency from polarization data (IEi%)

using Eq. (5) and the results are also presented in Table 3 [25]

IEi% ¼ 1� iinh
icorr

� �
� 100 ð5Þ
Adsorption study

The nature of interaction between the corroding surface of the

metal during corrosion inhibition can be explained in terms of
the adsorption characteristics of the inhibitor. In this study, re-
sults obtained for degree of surface coverage at 303 and 333 K

were fitted to a series of different adsorption isotherms including
Flory–Huggins, Langmuir, Freundlich and Temkin isotherms.
The tests revealed that Langmuir adsorption model best de-
scribed the adsorption characteristics of the studied purines [26]

C

h
¼ Cþ 1

bads
ð6Þ

where k is the adsorption equilibrium constant, C is the con-
centration of inhibitor and h is the degree of surface coverage

of the inhibitor. From the logarithm of both sides of Eqs. (6)
and (7) was obtained,

log
C

h

� �
¼ logC� logbads ð7Þ

By plotting values of log(C/h) versus values of logC,
straight line graphs were obtained as shown in Fig. 5 while
adsorption parameters deduced from the isotherms are pre-
sented in Table 4. From the results obtained, R2 values ranging
from 0.9972 to 1.000 were obtained. This indicated a high de-
gree of fitness of the adsorption data to the Langmuir model.

However, values obtained for slopes were less than unity indi-
cating the existence of interaction between the adsorbed spe-
cies and that some components of GU, AD and HPY

molecules will occupy more than one adsorption sites on the
Al surface [27]. Therefore, Flory Huggins and El Awardy
et al. isotherms were also used to explain the existence of

interaction.
Flory–Huggins adsorption models consider that prior to

adsorption, some molecules of water must be replaced by cor-

responding molecules of the inhibitor such that the following
equilibrium (Eq. (8)) is established [28],

Asoln þ nðH2OÞads ¼ AadsnðH2OÞsoln ð8Þ

h
ð1� hÞn ¼ badsC ð9Þ

where n is the number of adsorption site. From Eq. (8), Flory
Huggins derived an adsorption model expressed by Eq. (9).
The main characteristic of the above isotherm is the appear-

ance of the term, h/(1 � h)n in the expression. From the loga-
rithm and rearrangement of Eqs. (9) and (10) was obtained,

log
h
C

� �
¼ logbads þ nlogð1� hÞ ð10Þ

Fig. 6 shows the Flory–Huggins plots for the adsorption of
AD, GU and HPY on Al surface at 303 and 333 K. Adsorp-
tion parameters deduced from the plots are also presented in

Table 4. From the results obtained, it can be seen that the



Fig. 9 Variation of TE with experimental inhibition efficiencies of ADN, GUN and HYP for MNDO, AM1, RM1 and PM3

Hamiltonians.
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numerical values of n change from 1 to 2, 1 to 4 and 2 to 3 for

AD, GU and HPY at 303 and 333 K, respectively. These
changes indicated that the number of water molecules that
must be replaced by the respective inhibitor’s molecule in-
creases with increase in temperature supporting the formation

of multi-molecular layer of adsorption as the temperature in-
creases from 303 to 333 K.

The strength of adsorption of AD, GU and HPY on the

surface of Al and the possibility of formation of multi-molec-
ular layer of adsorption were also investigated using the
El-Awady et al. kinetic isotherm, which can be written as

Eq. (11) [29],

log
h

1� h

� �
¼ logb0 þ ylogC ð11Þ

where y is the number of inhibitor molecules occupying one ac-

tive site and 1/y represents the number of active sites on the
surface occupied by one molecule of the inhibitor. ‘y’ is also re-
lated to the binding constant, B through B = b(1/y). Fig. 7
shows El-Awady et al., isotherm for the adsorption of the stud-

ied purines while adsorption parameters deduced from the iso-
therm are also presented in Table 4. The results obtained
reveal that values of 1/y are less than unity confirming that a

given inhibitor’s molecules will occupy more than one active
site (i.e. 1/y < 1). Also, B values were found to increase with
temperature. Generally, larger value of the binding constant

(B) implies better adsorption arising from stronger electrical
interaction between the double layer existing at the phase
boundary and the adsorption molecule. On the other hand,
small values of the binding constant suggest weaker interaction

between the adsorbing molecules and the metal surface. There-
fore, the extent of adsorption of AD, GU and HPY on Al sur-
face increases with temperature,

The equilibrium constant of adsorption (bads) obtained
from the adsorption models, is related to the standard free en-
ergy of adsorption DG0

ads according to Eq. (12) [30]:

bads ¼
1

55:5
exp

DG0
ads

RT

� �
ð12Þ

where R is the molar gas constant, T is the absolute tempera-
ture and 55.5 is the molar concentration of water in the solu-
tion. Values of DG0

ads calculated from Eq. (12) are also
presented in Table 4. From the results obtained, the free ener-

gies are negatively less than the threshold value (�40 kJ/mol)
expected for the mechanism of chemical adsorption hence
the adsorption of AD, GU and HPY on Al surface is consis-

tent with electrostatic interactions between the inhibitors’ mol-
ecules and charged metal surface, which support physisorption
mechanism [31].

Effect of temperature

The adsorption of an organic inhibitor can affect the corrosion

rate by either decreasing the available reaction area (geometric



Fig. 10 Variation of EE with experimental inhibition efficiencies of ADN, GUN and HYP for MNDO, AM1, RM1 and PM3
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blocking effect) or by modifying the activation energy of the
anodic or cathodic reactions occurring in the inhibitor-free
surface in the course of the inhibited corrosion process. The

adsorption mechanism of AD, GU and HYP onto aluminum
was investigated by changing the temperature of the systems
from 303 to 333 K. The apparent activation energies (Ea) for

the corrosion process in the absence and presence of AD,
GU and HYP were calculated using a modified form of the
Arrhenius equation [32]:

log
CR1

CR2

¼ Ea

2:303R

1

T1

� 1

T2

� �
ð13Þ

where CR1 and CR2 are the corrosion rates at temperatures T1

and T2, respectively. Calculated values of Ea are presented in

Table 5. The activation energies are higher in inhibited HCl
solutions compared to the uninhibited system (blank). This is
frequently interpreted as being suggestive of formation of an

adsorption film of physical/electrostatic nature [33].
The heat of adsorption (Qads) was quantified from the trend

of surface coverage with temperature using the following equa-

tion [34]:

Qads ¼ 2:303R log
h2

1� h2

� �
� log

h1

1� h1

� �� �
� T1T2

T2 � T1

ð14Þ

where h1 and h2 are the degrees of surface coverage at temper-
atures T1 and T2, and R is the gas constant. Negative Qads val-
ues were obtained for the inhibition behavior of AD, GU and
HYP (Table 5). This implies that the inhibition of Al corrosion
by the studied purines is exothermic and that their inhibition

efficiencies decreased with increase in temperature (see Table 1)
which is a good indication of a physisorptive kind of interac-
tion between these purines and the metal surfaces.

Quantum chemical study

Global reactivity

Quantum chemical principles have been widely used to study

corrosion inhibition including structure optimization calcula-
tions, semi-empirical, ab initio and DFT calculations. In this
study, calculated values of semi-empirical parameters for dif-

ferent Hamiltonians (namely, CNDO, MNDO, AM1, RM1
and PM3) were correlated with experimental inhibition effi-
ciencies, while Fukui functions were used to study electrophilic
substitution within the inhibitors.

Table 5 presents values of the frontier molecular orbital
energies (i.e. energy of the highest occupied molecular orbital
(EHOMO), energy of the lowest unoccupied molecular orbital

(ELUMO) and the energy gap (EL–H)), total energy (TE),
electronic energy (EE), core core interaction energy (CCR)
and dipole moment (l). Figs. 8–11 present plots for the

variation of EL–H, TE, EE and Eb with experimental inhibition
efficiencies of the studied inhibitors. EHOMO indicates the
tendency of an inhibitor to donate electron while ELUMO is



Fig. 11 Variation of Eb with experimental inhibition efficiencies of ADN, GUN and HYP for CNDO, MNDO, RM1 and PM3

Hamiltonians.
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an index that indicate the tendency of a molecular specie to ac-

cept electron. The difference between ELUMO and EHOMO is
the energy gap (i.e. EL–H). In view of this, corrosion inhibition
efficiency is expected to increase with increasing values of

EHOMO and with increase in the value of ELUMO and that
of the energy gap. Correlations between calculated values of
EHOMO and experimental inhibition efficiencies were very poor

and R2 were lower than 0.45 for all the Hamiltonian consid-
ered. Similarly, calculated values of ELUMO did not correlate
significantly with values of experimental inhibition efficiencies.

This observation suggests that the inhibition efficiencies of the
studied purines are not affected by electron transfer process, a
mechanism that favors physical adsorption as proposed ear-
lier. On the other hand, better correlation was obtained be-

tween EL–H and experimental inhibition efficiencies of the
studied purines. Generally, the energy gap of a molecule is a
quantum chemical parameter that indicates hardness or soft-

ness of molecular specie. Hard molecules are characterized
with larger value of energy gap and are less reactive than soft
molecules, which are characterize by small energy gap [35].

Therefore, corrosion inhibition potential of a molecule is ex-
pected to increase with decreasing value of EL–H as observed
in the present study. Although PM3 Hamiltonian did not give

excellent correlation between experimental inhibition efficiency
with EL–H, calculated values of R2 for CNDO, MNDO, AM1
and RM1 Hamiltonians were within the range of 0.7297 and
0.8155 indicating better relationship between EL–H and the

measured inhibition efficiency (Fig. 8). Excellent correlations
were also found between experimental inhibition efficiency
and TE and also for EE and Eb (Figs. 9–11). Correlations be-
tween IEexp and TE were excellent for MNDO, AMI, RM1

and PM3 Hamiltonians as indicated in the plots (Fig. 9). Sim-
ilarly, excellent correlations were found for MNDO, AM1,
RM1 and PM3 Hamiltonians with respect to the variation of

IEexp and EE of the molecules. However, AM1 Hamiltonian
did not give excellent correlation between IEexp and Eb. Since
each Hamiltonians is based on specific assumption, it can be

stated that the failure of some of these assumptions for some
molecules can lead to poor correlation.

Ionization energy and electron affinity of the inhibitors

were calculated using the method of finite difference approxi-
mation as follows [36],

IE ¼ EðN�1Þ � EðNÞ ð15Þ

EA ¼ EðNÞ � EðNþ1Þ ð16Þ

where IE and EA are ionization energy and electron affinity
respectively, E(N�1), E(N) and E(N+1) are the ground state ener-
gies of the system with N � 1 and N+ 1 electrons respectively.

Calculated values of IE and EA are presented in Table 6. Cor-
relation between IEexp and IE and between IEexp and EA were
excellent (R2 ranged from 0.79 to 0.89). Also, strong correla-

tions were obtained between IE and EHOMO and between EA
and ELUMO indicating that IE is associated with the tendency
of the inhibitor to donate electron while EA is associated with

the tendency of the inhibitors to accept electron. Similar find-
ings have been reported by other researchers [37]. The global
hardness which is the inverse of the global softness (i.e.
g = 1/S) can be evaluated using Eq. (17),



Table 7 Milliken charges of GU, AD and HPY radical (N), cation (N � 1) and anion (N + 1) calculated from DFT.

Atom no. N N � 1 N+ 1 N N � 1 N+ 1 N N � 1 N+ 1

1 �0.7902 �0.7589 �0.8082 �0.7660 �0.7341 �0.7915 �0.5819 �0.5061 �0.6562
2 0.2771 0.3325 0.1718 0.2733 0.3244 0.1761 0.2015 0.2458 0.1719

3 �0.5039 �0.4366 �0.5719 �0.5251 �0.4609 �0.5798 �0.5401 �0.4290 �0.6267
4 0.4495 0.5163 0.3833 0.4391 0.4784 0.3539 0.4080 0.4416 0.3438

5 �0.5341 �0.4344 �0.6306 �0.6336 �0.5295 �0.6736 0.2737 0.3327 0.2470

6 0.1986 0.2895 0.1636 0.8830 0.9417 0.8213 0.6021 0.6408 0.5002

7 �0.5637 �0.4845 �0.6381 �0.7965 �0.7318 �0.8196 �0.7857 �0.6776 �0.8196
8 0.6477 0.7381 0.5186 �0.8149 �0.8037 �0.8267 �0.4961 �0.4242 �0.5629
9 �0.5898 �0.5137 �0.6474 0.6750 0.7290 0.5698 0.2766 0.3166 0.1733

10 0.2463 0.3025 0.2252 �0.5217 �0.3956 �0.6328 �0.7631 �0.7213 �0.7845
11 0.0.2485 0.3283 0.2080

Table 8 Condensed Fukui functions for AD, GU and HPY calculated from Milliken charges using DFT.

Atom no. HPY GU AD

fþk fþk fþk fþk fþk fþ�k

1 �0.0180 �0.0313 �0.0255 �0.0319 �0.0742 �0.0759
2 �0.1053 �0.0554 �0.0972 �0.0512 �0.0296 �0.0443
3 �0.0680 �0.0673 �0.0547 �0.0642 �0.0867 �0.1111
4 �0.0662 �0.0668 �0.0852 �0.0394 �0.0643 �0.0336
5 �0.0965 �0.0997 �0.0401 �0.1041 �0.0267 �0.0590
6 �0.0350 �0.0909 �0.0617 �0.0588 �0.1019 �0.0387
7 �0.0744 �0.0792 �0.0231 �0.0647 �0.0339 �0.1081
8 �0.1291 �0.0904 �0.0118 �0.0112 �0.0669 �0.0719
9 �0.0575 �0.0762 �0.1053 �0.0540 �0.1033 �0.0400
10 �0.0212 �0.0562 �0.1111 �0.1261 �0.0214 �0.0418
11 �0.0405 �0.0798

Table 6 Some quantum chemical descriptors for AD, GU and HPY.

Inhibitor Hamiltonian IE (eV) EA (eV) S g (eV) v (eV) d

HYP CNDO 10.9662 �2.0136 0.0770 12.9798 6.4899 �0.0128
MNDO 9.4434 �0.1960 0.1037 9.6394 4.8197 0.0694

AM1 9.4234 �0.2467 0.1034 9.6701 4.8351 0.0684

RM1 9.3801 0.9197 0.1182 8.4604 4.2302 0.1140

PM3 9.1975 �0.4223 0.1040 9.6198 4.8099 0.0701

QU CNDO 9.1143 �2.4394 0.0866 11.5537 5.7769 0.0165

MNDO 8.5389 �0.2467 0.1138 8.7856 4.3928 0.1005

AM1 8.4968 0.0251 0.1180 8.4717 4.2358 0.1135

RM1 8.3759 0.0642 0.1203 8.3117 4.1558 0.1205

PM3 �4.8242 13.2261 �0.0554 �18.0503 �9.0252 �0.4206

AD CNDO 10.1571 �2.7802 0.0773 12.9373 6.4687 �0.0120
MNDO 9.1715 �1.1005 0.0974 10.2720 5.1360 0.0498

AM1 8.9903 �0.7983 0.1022 9.7885 4.8943 0.0646

RM1 8.1140 �0.6235 0.1144 8.7375 4.3687 0.1024

PM3 8.4825 �0.3308 0.1135 8.8134 4.4067 0.0994
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S ¼ 1

½ðEðN�1Þ � EðNÞ � ðEðNÞ � EðNþ1ÞÞ�
ð17Þ

where S is the global softness and g is the global harness. Cal-
culated values of S and g are also presented in Table 6.

Although calculated values of S and g did not show strong
correlation with the experimental inhibition efficiencies
(R2 = 0.589 and 0.657 respectively), correlations between
these parameters and EL–H were strong indicating that S and
g are related to EL–H which is an index for measuring the soft-
ness of a molecule.

The fraction of electron transferred, d can be calculated

using Eq. (18) [38],

d ¼ ðvAl � vinhÞ
ðgAl þ ginhÞ

ð18Þ



Table 9 Huckel charges and condensed Fukui functions for GU calculated from Milliken and Lowdin charges using MP2 level of

theory.

Atom and atom number Huckel charge Milliken Lowdin

fþk f�k fþk f�k

N(1) 0.2591 �0.0370 0.0048 �0.0613 0.0219

C(2) 0.1757 �0.0674 0.0180 �0.1075 0.0323

N(3) �0.5442 0.0079 �0.1262 0.0372 �0.1346
C(4) 0.2082 �0.1063 0.0433 �0.1192 0.0434

N(5) �0.5898 �0.0672 �0.1977 �0.0705 �0.2581
C(6) 0.3965 �0.0376 �0.0576 �0.0235 �0.0526
N(7) 0.0237 �0.0208 �0.0533 �0.0250 �0.0719
N(8) 0.2467 �0.0004 �0.0422 �0.0292 �0.0515
C(9) 0.4078 �0.2194 0.0627 �0.2545 0.1051

O(10) �0.8803 �0.1562 �0.2689 �0.1693 �0.3117
C(11) �0.0993 0.0386 �0.1307 0.0569 �0.1385

Table 10 Huckel charges and condensed Fukui functions for AD calculated from Milliken and Lowdin charges using MP2 level of

theory.

Atom and atom number Huckel charge Milliken Lowdin

fþk f�k fþk f�k

N(1) �0.5113 �0.0769 �0.0716 �0.0841 �0.0577
C(2) 0.2450 �0.0286 �0.1250 �0.0402 �0.1479
N(3) �0.3972 �0.0658 �0.1378 �0.0584 �0.2491
C(4) 0.1554 �0.0116 �0.0552 0.0161 �0.0348
C(5) �0.0362 �0.0552 �0.0397 �0.0587 �0.0249
C(6) 0.3228 �0.0495 �0.0680 �0.0433 �0.0767
N(7) �0.0216 �0.0168 �0.0369 �0.0211 �0.0498
N(8) �0.4966 �0.1472 �0.0482 �0.1892 �0.0315
C(9) 0.1837 �0.1299 �0.0509 �0.1957 �0.0621
N(10) 0.2447 �0.0163 �0.0241 �0.0567 �0.0303

Table 11 Huckel charges and condensed Fukui functions for HPY calculated from Milliken and Lowdin charges using MP2 level of

theory.

Atom and atom number Huckel charge Milliken Lowdin

fþk f�k fþk f�k

N(1) 0.2471 �0.0166 �0.0401 �0.0447 �0.0594
C(2) 0.2316 �0.1389 �0.0396 �0.2119 �0.0499
N(3) �0.5196 �0.1297 �0.0810 �0.1636 �0.0671
C(4) 0.2621 �0.0249 �0.0320 �0.0016 �0.0235
N(5) �0.4258 �0.1048 �0.0867 �0.1223 �0.0911
C(6) 0.2277 �0.0254 �0.0904 �0.0318 �0.1241
N(7) �0.3770 �0.0738 �0.0389 �0.0788 �0.0177
C(8) 0.3372 �0.0945 �0.1278 �0.0996 �0.1486
O(9) �0.2551 �0.0426 �0.0776 �0.0410 �0.0812
C(10) �0.0292 �0.0053 �0.0815 0.0206 �0.1285
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where vAl and vinh are the electronegativities of Al and the inhib-
itor respectively and can be evaluated as v = (IP + EA)/2.
gAl and ginh are the global hardness of Al and the inhibitor
respectively. Calculated values of d are also presented in Table 6.
d values did not correlate strongly with the experimental inhibi-
tion efficiencies of the inhibitors andwere relatively low, indicat-
ing that fewer electrons were transferred from the inhibitor to

the metal surface. Therefore, the inhibition of the corrosion of
aluminum byAD,GU andHYP supports the transfer of charge
or electron from the inhibitor to the metal surface indicating the
occurrence of physical and chemical adsorption mechanism.
However, physical adsorption mechanism precedes chemisorp-
tion mechanism.
Local reactivity

In this study, local reactivity was investigated using the Fukui

functions deduced through DFT and MP2 calculations. The
Fukui function has been formally defined as
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Fig. 12 HOMO and LUMO molecular orbitals of AD, GU and HPY.
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fðrÞ ¼ dl
dvðrÞ

� �
N

ð19Þ

where v(r) is the external potential and the functional deriva-

tives must be taken at constant number of electrons. Assuming
that the total energy E as a function of N and functional of v(r)
is an exact differential, the Maxwell relations between deriva-
tives may be applied to write

fðrÞ ¼ dqðrÞ
dN

� �
v

ð20Þ

Eq. (20) is the most standard presentation of the Fukui func-
tion. Owing to the discontinuity of the chemical potential at
integer N, the derivative will be different if taken from the right

or the left side. Therefore, there are three different functions,
f+(r) (corresponding to the situation when the derivative is ta-
ken as N increases from N to N + d), f�(r) corresponding to a
situation when N decreases to N � d) and f0(r) the average of

the two. In practice, condensed Fukui function is often used
and are defined as follows,

f�k ¼ qkðNÞ � qkðN� 1Þ ð21Þ

fþk ¼ qkðNþ 1Þ � qkðNÞ ð22Þ
In this work, condensed Fukui functions were calculated

using Huckel and Muliken charges at DFT and MP2 level of
theories. Values of Mulliken charges and Fukui functions cal-
culated for DFT level of theories using Muliken charges are

presented in Tables 7 and 8 respectively. Fukui functions com-
puted for MP2 level of theory using Muliken and Lowdin
charges are also presented in Tables 9–11. From the results ob-

tained, values of condensed Fukui functions were negative
indicating unphysical results [39]. Therefore, calculation of
the binding energies between Al and the inhibitors, for the var-
ious positions of hetero atoms was carried out.

The interaction energy between the inhibitor and the alumi-
num atom can be calculated using Eq. (23) [40],

Eint ¼ EðAl�XÞ � ðEx þ EAlÞ ð23Þ

where EAl is the total energy of the iron atom, Ex is the total en-

ergy of inhibitory compound and E(Al�X) is the energy of inter-
action between aluminum and the inhibitor. When absorption
occurs between the compound and the aluminum atom, the en-
ergy of the new system is expressed asEx + EAl. Table 12 shows

the binding energies for various positions of the hetero atoms in
AD,GUandHPY respectively. Since every systems prefer to re-
main in states of lowest energy, it can be stated that in GU the



Table 12 Binding energies for various positions of hetero atoms in AD, GU and HPY.

Inhibitor Atom E(Al�X) (J/mol) Einh + EAl (J/mol) Eint (J/mol)

GU N1 18.433 18.376 0.057

N3 13.156 18.376 �5.22
N5 17.266 18.376 �1.11
N7 18.531 18.376 0.155

O10 16.714 18.376 �1.662

AD N1 17.202 19.061 �1.859
N3 17.786 19.061 �1.275
N7 18.992 19.061 �0.069
N8 13.056 19.061 �6.005
N10 20.081 19.061 1.02

HPY N1 21.895 20.294 1.601

N3 15.206 20.294 �5.088
N5 18.204 20.294 �2.09
N7 19.122 20.294 �1.172
O9 22.539 20.294 2.245
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adsorption of the inhibitor (hence inhibition mechanism) oc-
curred in the imine nitrogen (i.e. N5), in AD, the adsorption site
is emanine nitrogen (i.e. N7) and in HPY, the adsorption site is
in the pyridine nitrogen (i.e. N5). Considerations of Huckel

charges for these sites (Tables 9–11) also revealed that these sites
possess reasonable negative charges that can interact with the
charged metal (Al) surface. Since inhibition efficiency of an

inhibitor is closely related to the strength of adsorption, it can
be stated that the listed adsorption sites enhances the efficiencies
of the studied purines due to the high concentration of elec-

trons. Hence the HOMO and LUMO molecular orbital of
AD, GU and HPY are produced in Fig. 12. It is significant to
note that the LUMO corresponds to f+(r) (i.e. tendency to ac-

cept electron) while the HOMO corresponds to f�(r) (i.e. ten-
dency to donate electron). Therefore, the nature and
distribution of the lopes in the HOMO and LUMO diagrams
(Fig. 12) also support the findings deduced from the interaction

energies and from Huckel charges (Table 12).

Conclusions

From the results and findings of this study, the following con-
clusions were made,

i. AD, GU and HPY are excellent corrosion inhibitors for
the corrosion of Al in acidic medium.

ii. The inhibitors are adsorption inhibitors and their

adsorptions on Al surface were spontaneous and were
consistent with physiosorption mechanism. The adsorp-
tion behavior of the inhibitors supported the models of

Flory Huggins, Langmuir and El Awardy et al.
iii. Inhibition efficiencies of AD, GU and HPY strong cor-

relations with some quantum chemical parameters.
Fukui functions at DFT and MP2 levels of theory are

unphysical in predicting the sites for electrophilic and
nucleophilic attacks but considerations of interaction
energies between Al and various sites of the hetero

atoms revealed likely adsorption sites.
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