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a b s t r a c t

Protein complexes are the main molecular machines that support all major cellular path-

ways and their in-depth characterization are essential to understand their functions.

Determining the stoichiometry of the different subunits of a protein complex still remains

challenging. Recently, many label-free quantitative proteomic approaches have been devel-

oped to study the composition of protein complexes. It is therefore of great interest to

evaluate these different methods in a stoichiometry oriented objective. Here we compare

the ability of four absolute quantitative label-free methods currently used in proteomic
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studies to determine the stoichiometry of a well-characterized protein complex, the 26S

proteasome.
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within protein complexes [6], whereas in vivo crosslinking
As protein complexes regulate most cellular pathways,
determining their composition, structural organization and
dynamics are important challenges of modern biology. Affin-
ity purification coupled to mass spectrometry (AP-MS) is a
well-suited tool to access the protein composition of cel-
lular protein complexes [1–3]. Most major cellular protein

complexes have now been well characterized using this
approach. Several large scale studies based on AP-MS have also
been performed and have revealed that at least 500 protein
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complexes are present in Saccharomyces cerevisiae [4] or
Drosophila melanogaster [5] cells. Chemical cross-linking meth-
ods have also been successfully used in association with
AP-MS strategies. In vitro crosslinking, performed after the
purification step, enables to map protein–protein interactions
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helps to preserve the integrity of the complex during the
biochemical steps [7]. However, quantitative data about the
stoichiometries of the proteins involved in these complexes
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nd their dynamics upon cell stress conditions are still miss-
ng to understand their function.

During the last decade, several targeted proteomic
pproaches relying on the isotope dilution method have been
eveloped to measure the absolute abundance of proteins

8]. In these strategies, the sample is spiked with defined
mounts of an isotope-labeled analog, either a proteotypic
eptide or a protein. Although these strategies are the most
recise to determine protein concentrations in biological sam-
les, they require time-consuming optimizations at different

evels and specific mass spectrometry acquisition methods.
herefore, quantification, because it is targeted, is performed

n a separate experiment from the one used to identify the
rotein complexes subunits. Alternatively, several label free
S-based relative quantification methodologies are widely
sed to define protein complexes composition or compare
ultiple proteomes. They have more recently been applied

o approximate the absolute quantities of proteins [9]. These
trategies have been used to evaluate the highly dynamic
ntracellular protein concentrations and their correlation with

RNA levels [10], but also to estimate protein complexes sub-
nits stoichiometry [11–15]. Recent reports have compared the
ccuracy of different label-free quantification methods using
he UPS (Universal Proteomics Standard, Sigma–Aldrich) pro-
ein standards spiked in Escherichia coli lysate as background
16,17]. However, the protein concentration dynamic range in
n E. coli lysate and in an affinity purified protein complex
ample are very different. This variation in background pro-
ein dynamic range can affect the behavior and the precision
f the different label-free quantification methods applied to
he determination of the stoichiometry of protein complexes
ubunits. In this report, we evaluated the precision of four
abel-free quantification approaches on protein complexes in

hich subunits stoichiometry has been clearly established.
In order to compare label-free quantitative methods, we

hose a structurally well characterized protein complex as
odel, the 26S proteasome. The proteasome is a macromolec-

lar complex of 2.4 MDa responsible of the degradation of most
ntracellular proteins [18]. The 26S proteasome is composed of
wo sub-complexes, a 20S core particle bearing the catalytic
ubunits responsible for the proteolytic activities of the pro-
easome, and a 19S regulatory particle which function is to
ecognize, unfold and translocate the substrate into the core
article [19]. The subunits stoichiometries within these com-
lexes are very well characterized, in particular for the 20S
ore particle which crystal structure is available [20,21]. It is
omposed of constitutive (�1–�7 and �3, �4, �6 and �7) and
atalytic (�1, �2, �5, called “standard”, and their respective
immuno” counterparts �1i, �2i, �5i) subunits (Fig. 1A) [18].
ll constitutive subunits are incorporated at a stoichiome-

ry of 2 proteins per 20S core particle (Fig. 1A) whereas the
ntegration of catalytic subunits into the 20S proteasome is

ore complex and leads to several 20S subtypes possibly
earing a mixed assortment of standard and immunosub-
nits. Therefore, the stoichiometry of each catalytic subunit
s expected to be variable across tissues or cell types [22].
ecent reports have largely contributed to major breakthrough

n the knowledge of 26S proteasome structure using cryo-
lectron microscopy combined with other techniques [23,24].
4 ( 2 0 1 4 ) 82–86 83

It is now established that mot 19S subunits are incorporated
at a stoichiometry of 1 into the 19S regulator (Fig. 1B), except
for the ubiquitin receptor Rpn13 which has been described to
be dynamic and probably sub-stoichiometric [25,26]. Consid-
ering the stoichiometries of the 19S and the constitutive
20S subunits, the 26S proteasome therefore provides a valu-
able tool to compare label-free quantitative methods for the
determination of the relative quantities of subunits within a
protein complex. Proteasome complexes were purified from
different in vivo crosslinked cells using the MCP21 antibody
which allows to immunoprecipitate the whole 26S protea-
some complex in a single step, as previously described [27].
A total of 24 biological replicates of 26S proteasome purified
from nine different human cell lines were used in this study.
Samples were prepared for mass spectrometry, as previously
described [27]. The peptides mixtures were analyzed using
nano-LC–MS/MS using a LTQ-Orbitrap XL mass spectrome-
ter. Data were searched using Mascot server and validated
and quantified using the MFPaQ software [28], as previously
described [27]. The stoichiometries of the different protea-
some subunits were determined by label-free quantitative
proteomics. Four quantitative approaches were compared: the
TOP 3 [29], the iBAQ [10], the sum of the MS intensities normal-
ized by the molecular weight [30] (MS1 based quantification
approaches – called “MS1 over MW”) and the spectral counting
normalized by the molecular weight [31] (MS2 based quan-
tification approach – called “MS2 over MW”). The TOP3 is
calculated as the mean of the three highest peptides areas
measured for each protein. The iBAQ corresponds to the sum
of all the peptides intensities divided by the number of observ-
able peptides of a protein. The MS1 over MW and MS2 over MW
were obtained by dividing respectively, the sum of peptides
intensities or the sum of MS/MS events for the peptides of a
protein by its molecular weight. Each of these methods has
been described as a valuable tool to estimate protein abun-
dance and to compare the relative quantities of proteins [32].
For each quantitative approach, we calculated the ratio of the
subunit abundance index (sAI) (abundance value obtained for
each 26S proteasome subunit using the four label-free quan-
titative methods) over the mean of the abundance indexes
(mAI) (mean of the sAI of the 20S or the 19S complexes) for all
the subunits of the complex. This ratio, also called hereafter
“observation”, gives the deviation of each quantitative method
from the expected value of 1. The distribution of all the ratios
of the 20S constitutive (264 observations) and 19S (except
rpn13) (384 observations) subunits were computed and box-
plots were obtained for the different quantitative approaches
(Fig. 1C and D). As 11 constitutive subunits of the 20S protea-
some (�1–�7, �3, 4, 6 and 7) and 16 subunits of the 19S regulator
(Rpt1, 3–6, Rpn1–3 and Rpn5–12) were quantified in 24 biologi-
cal replicates of purified proteasome complexes, we obtained
264 observations for the 20S and 384 ones for the 19S com-
plexes. The mean standard deviation, defined as the deviation
from the expected value of 1, was calculated for the TOP3, the
iBAQ, the MS1 over MW and the MS2 over MW methods and

was found to be equal to 28.1, 31.8, 33.6 and 26.6%, respectively,
for the 20S (Fig. 1C) and 20.9, 29.3, 31.7 and 23.3%, respec-
tively, for the 19S (Fig. 1D). The four label-free quantification
methods therefore show low standard deviations, below 30%

dx.doi.org/10.1016/j.euprot.2014.06.001
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Fig. 1 – Comparison of four label-free quantification methods for the determination of the stoichiometry of the 26S
proteasome subunits. (A and B) Composition and subunits stoichiometry of the 20S (A) and the 19S (B) proteasome.
Distribution of the ratio of abundance index of each subunit (sAI) over the mean abundance indexes of all the subunits
(mAI) of the 20S (C) and the 19S (D) proteasome, as determined by Top3, iBAQ, “MS1 over MW”, and “MS2 over MW”
label-free quantification methods. The 20S (C) and 19S (D) ratio distribution are represented with blue and orange box-plots,
respectively. Gray box-plots represent the distribution of the ratios of the abundance index of each protein of the random
proteins set (AIRD) over the mean abundance indexes of all the proteins in the same random protein set (mAIRD) (C and D),
as determined by four different label-free quantification methods. Red crosses and blue dots represent the mean and
extreme values, respectively. (E) Ratio of the standard deviations of the stoichiometries of the proteasome subunits over the

chos
standard deviations of the stoichiometries of the randomly

in most cases, when applied to the determination of the pro-
teasome subunits stoichiometry. This relatively good ability to
determine subunit stoichiometry within the complex might be
explained by the low dynamic range observed in such biologi-
cal sample. Greater deviations would probably be expected for
higher protein dynamic ranges.

To study further the behavior of the quantitative methods
in their ability to discriminate differences in the stoichiom-
etry of several protein complex subunits, we then used a
set of 16 randomly selected proteins identified in the protea-
some affinity-purification samples as background proteins [7],
which served as a negative control. The ratio distribution (384
observations) of the abundance index of the protein in the ran-
dom set (AIRD) over the mean of all the abundance indexes of
all the proteins in the same random set (mAIRD) was compared
for each quantitative approach, as already performed for the
20S and 19S subunits.

The distributions of proteasome subunits ratios (19S and
20S) show median values close to the mean value of 1 (median
values of 1.041, 0.886, 0.961, and 0.915 for the 20S calcu-

lated with the TOP 3, iBAQ, “MS1 over MW”, and “MS2 over
MW” quantitative methods, respectively, and median values
of 0.999, 0.964, 0.969, and 1.032 for the 19S, respectively) (Fig. 1C
and D), which is representative of a symmetric distribution like
en proteins.

the normal distribution. This can be explained by the fact that
all the ratios are representative of an expected stoichiometry
of 1 between the different subunits of the proteasome com-
plexes, and can thus be interpreted as multiple observations
of the same relative quantity of proteins. Conversely, in the
case of the proteins chosen randomly, the median ratio values
are highly different from the mean ratio of 1 (median values
of 0.351, 0.172, 0.204, and 0.71 calculated with the same quan-
titative methods) (Fig. 1C and D). This therefore confirms the
selection of a set of proteins which are uncorrelated regarding
their stoichiometry.

Strikingly, the random set ratio values distribution
observed for the MS1-based quantitative methods (TOP 3,
iBAQ, and “MS1 over MW”) were also found to be more scat-
tered (Fig. 1C and D) than the ones obtained for the MS2
based quantification approach,“MS2 over MW” (Fig. 1C and
D). When we then compared the standard deviations of the
stoichiometries of the proteasome subunits with the ones of
the randomly chosen proteins, we observed that the ratios of
these standard deviations were higher for the “MS2 over MW”

method (0.24 and 0.26, for 20S and 19S complexes, respec-
tively) than for the MS1-based quantification methods (Fig. 1E).
This result shows that the MS2-based quantification method
is less discriminant than the methods based on the integration

dx.doi.org/10.1016/j.euprot.2014.06.001
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f the MS1 signal in the objective to highlight a difference
or an absence of difference) in the stoichiometry of protein
omplex subunits. This could be probably explained by the
act that the MS2-based quantification method has a lower
ynamic range compared to MS1 based approaches [32]. This
esult suggests that the “MS2 over MW” method tends to flat-
en the stoichiometry values between the subunits of a protein
omplex.

To conclude this study, we have compared four label-free
uantitative methods for the determination of the 26S pro-
easome complex subunits stoichiometry. We have found that
ll the quantification methods have low standard deviations
less than 34%) and represent straightforward and reasonably
recise tools to determine the stoichiometry of the different
roteins involved in a complex. Importantly, this quantifi-
ation can be performed using the same experimental data
s the one used to identify the protein complexes subunits
nd do not require any specific optimization steps, as needed
or isotopic dilution methods. However, the spectral counting
pproach flattens the measured ratios, as determined using
he random set of proteins, which can bias the determina-
ion of the relative stoichiometries of the different subunits
omposing a protein complex. In the goal to determine the rel-
tive abundances of different subunits of a protein complex,
abel free MS1-based quantification methods might represent
lternative and straightforward strategies to isotopic dilution
S-based approaches.
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