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Abstract
Neuroblastoma (NB) is a common malignancy in children but rarely occurs during adolescence or adulthood. This
subgroup is characterized by an indolent disease course, almost uniformly fatal, yet little is known about the biologic
characteristics. The aim of this study was to identify differential features regarding DNA copy number alterations,
α-thalassemia/mental retardation syndrome X-linked (ATRX) protein expression, and the presence of tumor-
associated inflammatory cells. Thirty-one NB patients older than 10 years who were included in the Spanish NB
Registry were considered for the current study; seven young and middle-aged adult patients (range 18-60 years)
formed part of the cohort. We performed single nucleotide polymorphism arrays, immunohistochemistry for immune
markers (CD4, CD8, CD20, CD11b, CD11c, and CD68), and ATRX protein expression. Assorted genetic profiles were
found with a predominant presence of a segmental chromosome aberration (SCA) profile. Preadolescent and
adolescent NB tumors showed a higher number of SCA, including 17q gain and 11q deletion. Therewas also amarked
infiltration of immune cells, mainly high and heterogeneous, in young and middle-aged adult tumors. ATRX negative
expressionwas present in the tumors. The characteristics of preadolescent, adolescent, young adult, andmiddle-aged
adult NB tumors are different, not only from childhood NB tumors but also from each other. Similar examinations of a
larger number of such tumor tissues from cooperative groups should lead to a better older age–dependent tumor
pattern and to innovative, individual risk-adapted therapeutic approaches for these patients.
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Introduction
Neuroblastoma (NB), a common solid tumor in childhood, is
infrequent in patients over 10 years of age. Adolescent and young
adult (AYA) NBs are usually included as older patients, whereas NB in
middle-aged and elderly adults is often ignored in these studies [1–5].
Several studies have demonstrated that tumors of older NB patients
present a worse prognosis than their childhood NB counterparts,
despite the presence of very few unfavorable biologic markers [3,6–8].
Recent results from studies of older high-risk NB patients showed
an age-dependent pattern in overall response, in that patients older than
18 years appeared to have a higher response rate than adolescent patients
[9]. Franks et al. reported that the course of the disease was highly
dependent on stage; the majority of adolescents presented with stage 4,
in comparison with localized disease observed among adults [7].
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Nevertheless, resistance to cytotoxic therapy, a phenomenon that is
probably multifactorial in etiology, has been shown to be a major
indicator of poor survival in older NB patients [2,3,10].

In childhood NB, a genomic profile is a key requirement for the
accurate identification of molecular prognostic markers, especially
indicated when the MYCN oncogene is not amplified (MNNA)
[11–13]. At present, segmental chromosome aberrations (SCAs) at 1p,
11q, and 17q are commonly seen in AYA and middle-aged adult NB
tumors, while MYCN amplifications (MNA) are a very rare event
[1,3,6]. In addition, Cheung et al. in 2012, using whole-genome
sequencing, identified that mutations on the α-thalassemia/mental
retardation syndrome X-linked (ATRX) gene are recurrently present in
older NB and less frequent in childhood NB patients [14]. ATRX is a
tumor suppressor gene involved in chromatin remodeling, and its
recurrent somatic mutations have also been associated with stage 4 NB
patients [14,15]. Moreover, ATRXmutations are mutually exclusive of
MNA tumors and have been associated with complete or mosaic loss of
protein expression [14–16].

The lack of efficient therapies and the limited knowledge on genomic
prognostic markers are challenging exigencies to improve the
suboptimal survival of AYA and middle-aged adult NB patients.
Recent studies have recognized the potential importance of the
background inflammatory cells in the pathophysiology and prognosis
of NB [17,18]. Depending on the type of stimuli, immune cells of the
tumor microenvironment can adopt different activation states that are
associated with tumor-permissive, tumor-promoting, and/or tumor-
inhibitory phenotypes [19]. Immune cell infiltration at the intratumoral
level could play a role in the slow tumor growth rate observed in AYA
and middle-aged adult NB [1,10,14]. Moreover, multiple ongoing
immunotherapeutic approaches have been successfully applied in
childhood and older relapsed or refractory stage 4 NB [20–24].

Our group has previously studied clinical and histopathologic
features and multiplex ligation probe amplification (MLPA) profiles
of 22 NB cases [6]. In the present study, the group carried out a more
comprehensive study, substantially extending the characterization of
older NB by updating the clinical data, adding nine cases,
incorporating single nucleotide polymorphism array (aSNP) results,
ATRX expression data, and a description of immunomarker-based
stromal cell heterogeneity. The purpose of the study was to search for
hypothetical older age–dependent patterns in NB, reflected as SCA,
along with a polarization of immune cell infiltration and/or ATRX
protein aberrations as the most salient features to search for innovative
therapeutic approaches.

Materials and Methods

Clinical and Histopathologic Characteristics
The database of the Spanish Society of Hematology and Pediatric

Oncology includes 31 of the 750 (3.4%) NB patients ≥10 years of age
diagnosed between January 1997 and December 2012. Updated and
enlarged clinical and histopathology data of the 31 cases are provided in
Table 1. Age at diagnosis ranged from 10 to 60 years (mean 14.5 years,
median 12.8 years). For the purposes of the study, the patients were
divided into two main groups as follows: group 1, preadolescents and
adolescents (range 10-17 years, n = 24) and group 2, young adults and
middle-aged adults (range 18-60 years, n = 7). Median follow-up time
was 50.7 months (range 2-179). To aid in-depth analysis by age,
subdivisions of groups according to accepted classifications are shown in
Tables 3–6. Updating previously published cases (2010) increased
follow-up time to an average of 49.9 months for 10 cases [6]. Tumors
were histopathologically classified according to the International NB
Pathology Classification system [25]. Primary tumors for 30 patients
and the lymphatic ganglia metastasis for one patient (patient 18) were
studied. The mitosis-karyorrhexis index (MKI) was scored as low,
intermediate, or high in 27 cases [25].

Genomic Profile Determination
For determination of the final genomic profiles, aSNP, MLPA, and

fluorescence in situ hybridization (FISH) analyses were used in tumors
with adequate DNA quality (17 cases). New and published data
obtained by these techniques are shown in Table 1. DNAwas extracted
from fresh (n = 14) and formalin-fixed paraffin-embedded tissue (n = 3)
in samples with at least 50% of tumor cell content, as previously
reported [26,27]. The following two aSNP platforms were used:
Genechip Human Mapping Nsp Array (262,256 markers) and
HumanCytoSNP-12 DNA Analysis BeadChip (299,140 markers)
from Affymetrix, Inc (Santa Clara, CA) and Illumina Inc (San Diego,
CA), respectively. For the Affymetrix arrays, the protocol provided by
the supplier was used in eight cases as previously described (http://www.
affymetrix.com) [26]. The primary data analysis was made using the
GDAS software (Affymetrix), while genomic profiles were generated
using CNAG v3.0 (Copy Number Analyzer for Affymetrix GeneChip
Mapping arrays) with the AsCNAR (allele-specific copy-number
analysis) function [28]. DNA amplification, tagging, and hybridization
to Illumina chips were performed in six cases according to the
manufacturer's protocol (http://www.illumina.com). Data were
analyzed using GenomeStudio Genotyping and KaryoStudio
software (Illumina) with standard settings. For exclusion of constitu-
tional copy number polymorphisms, the Database of Genomic Variants
was used (http://projects.tcaq.ca/variation). Genomic position annota-
tions were based on the hg19 build of the human genome sequence
(http://genome.ucsc.edu/). To describe the number of numerical
chromosome aberrations (NCAs) and SCA per case, only aSNP results
were considered. TheMLPA technique was performed using the SALSA
Kit P251/P252/P253 (MRC-Holland, Amsterdam, Netherlands), and
only data from three cases were used for the genomic profile
determination (marked in Table 1 as “c”). The technique and the
interpretation guidelines are described elsewhere [29,30]. MYCN
status was classified by FISH results in the entire cohort as MNNA,
homogeneousMNA (homMNA, all tumor cells were amplified), and
heterogeneous MNA (hetMNA, coexistence of amplified and non-
amplified tumor cells) [29].

Immunohistochemical Analysis
Immune cell infiltration and/or ATRX expression were evaluated

by immunohistochemical (IHC) analysis in 20 cases. In 13 cases,
adequate material for both cluster of differentiation (CD) and nuclear
ATRX protein analysis was available. Commercially available
antibodies for CDs and ATRX and the dilutions used are listed in
Table 2. Formalin-fixed paraffin-embedded 4-μm sections were
automatically IHC stained (Autostainer Link 48; Dako, Glostrup,
Denmark). For the description of immune cell location within the
tumor, two regions were differentiated: the stroma-rich region, region
A, and the neuroblast-rich region, region B. Positivity for the immune
cell infiltrate in each region was semiquantitatively graded according
to the following criteria: 1) minimal, less than 10% of positive cells;
2) moderate, 10% to 25% with positive expression; 3) high, between
25% and 50%; and (4) very high, when positive expression was

http://www.affymetrix.com
http://www.affymetrix.com
http://www.illumina.com
http://projects.tcaq.ca/variation
http://genome.ucsc.edu/


Table 1. Summary of Published a and New Clinical and Biologic Features of the Cohort.

Patient ID Age (years) Sex Location Metastases Stage Event Time to First
Relapse/Progression (Months)

Outcome Histopathology
(MKI)

MLPAa Profile Final Genetic Profiles b

1 10.1 f AbNA LG, O 4 R 22 DOD pdNB (low) – homMNA, SCA
2 10.18 f A – 1 – – ADF pdNB (intermediate) – MNNA, NCA
3 10.25 f AbA – 3 – – AWD nGNB (low) – MNNA, low tumor content
4 10.88 m AbNA + Tx LG, O 4 – – ADF uNB (low) – MNNA, low tumor content
5 10.93 m A B, BM 4 R 18 DOD NOS (low) SCA MNNA, SCA
6 11.14 m A BM 4 R 4 DOD pdNB (intermediate) SCA MNNA, SCA
7 11.15 f A BM, LG 4 R 13 DOD pdNB (intermediate) SCA MNNA, SCA
8 11.27 f A – 1 ND ND ADF pdNB (low) NCA MNNA, NCA
9 11.33 f A – 3 R 5 DOD NOS (low) – MNNA, low tumor content
10 11.37 f AbA – 3 R 13 ADF NOS (low) – MNNA, low tumor content
11 11.48 m AbA BM 4 R 15 DOD ND – ND, low tumor content
12 11.53 f AbNA B, LG 4 – – AWR pdNB (intermediate) – MNNA, SCA
13 11.91 m AbA LG 4 P 14 DOD pdNB (low) SCA MNNA, SCA
14 12.73 f AbA ND 4 R 14 DOD NOS – MNNA, low tumor content
15 12.89 m AbA – 3 – – AWD pdNB (intermediate) SCA MNNA, SCA
16 13.33 f A B, BM 4 R 106 AWT uNB (low) SCA MNNA, (SCA) c, no DNA available
17 13.55 m Tx – 1 – – ADF iGNB – MNNA, low tumor content
18 13.73 f AbA B, BM, 4 R 23 DOD NOS (low) – MNNA, low tumor content
19 13.86 m AbNA B, BM 4 R 32 DOD pdNB (low) – MNNA, low tumor content
20 14.37 f AbA B, LG 4 R 20 DOD dNB (low) NCA MNNA, SCA
21 14.65 m P B 4 R 88 AWT ND (low) – MNNA, low tumor content
22 14.94 m P B, BM, O 4 R 24 DOD ND – ND, low tumor content
23 16.55 m A B, LG, ST 4 R 38 AWT uNB (low) – MNNA, low tumor content
24 16.98 m A + coeliac – 3 R 9 DOD pdNB (high) – MNNA, low tumor content
25 18.59 m P – 2B R 1 ADF pdNB (low) – MNNA, (SCA) c, no DNA available
26 19.21 f A – 3 ND ND ADF NOS – MNNA, low tumor content
27 21.71 m P B, BM 4 R 11 DOD uNB (low) – MNNA, SCA
28 24.69 m A CNS 4 – – DOD NOS (low) – MNNA, no DNA available
29 36.43 f A B, BM 4 – – AWT GNB (low) – MNNA, SCA
30 39.74 f A – 2 – – ADF pdNB (low) – MNNA, SCA
31 60.98 f ND – 2 ND ND DOD pdNB (high) – hetMNA, SCA

a Data published in Castel et al. [6].
b Data from aSNP, MLPA, and FISH.
c Cases included in Table 2 with only MLPA profile; f, female; m, male; AbA, abdominal adrenal; AbNA, abdominal non-adrenal; A, adrenal; B, bone; BM, bone marrow; CNS, central nervous system; LG, lymphatic ganglia;

O, other; P, pelvic; ST, soft tissue; Tx, thoracic; R, relapse; P, progression; DOD, died of disease; ADF, alive disease-free; AWD, alive with disease; AWT, alive with treatment; ND, no data; pdNB, poorly differentiated NB; uNB,
undifferentiated NB; GNB, ganglioneuroblastoma; iGNB, intermixed GNB.
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N50%. Diverse ATRX expression patterns were described as follows:
1) negative expression or complete loss of expression, none of the
neuroblast cells were positive; 2) mosaic expression, b50% of the
neuroblast cells were positive; and 3) positive expression, N50% of
the neuroblasts present in the sample were positive to a moderate or
high intensity. For negative ATRX expression, an ATRX gene–
deleted tumor from our paraffin tumor bank was used as a control.

Results

Clinical and Histopathologic Characteristics
The primary tumor location was predominantly abdominal

(25 cases, 83.3%). Advanced disease stages were highly prevalent
(80.6%). Bone and bone marrow were the most frequent sites of
metastases; an unusual metastasis at the central nervous system was
documented for only one case. The most predominant histology shown
Table 2. List of Antibodies, Source, and Dilution.

Antibodies Source Dilution

Anti-CD4 Dako Not diluted
Anti-CD8 Dako Not diluted
Anti-CD20 Dako 1/100
Anti-CD11b Novus Biologicals (Cambridge, UK) 1/100
Anti-CD11c Novus Biologicals (Cambridge, UK) 1/100
Anti-CD68 Dako 1/5000
Anti-ATRX Sigma-Aldrich (St. Louis, MO, USA) 1/500
was poorly differentiated NB (13/29, 45%). The results of the MKI
evaluation were given as follows: low in 20/27 tumors (74.1%),
intermediate in 5/27 (18.5%), and high in 2/27 (7.4%). The median
overall survival for the analyzed cohort was 43 months (CI 23.1-62.58)
with an estimated overall survival rate at 5 years of 44.8% (SE 0.09).
Mean time to first relapse was 24.7 months (median 15 months). To
date, 16 patients have died of disease after a mean of 28.6 months
(median 25.5 months).

Genomic Findings
A summary and detailed description of the genetic findings are

presented in Tables 3 and 4, respectively; a summary representation of
the genomic profiles by aSNP is shown in Figure 1. Two of 29 cases
(0.7%)wereMNA (Table 1). By aSNP and/orMLPA, 2 of 17 cases had
the NCA profile (12%), 2 other cases showed an SCA profile with
MNA (12%), and the remaining 13 cases had an SCA profile without
MNA (76%). The twoNCA cases exhibited several chromosome losses
and gains. In one of these, two copy-neutral losses of heterozygosity
(cnLOH) were also found. These were the only stage 1 cases in the
cohort. As expected, fewer SCAs were seen in the MNA cases. In the
homMNA tumor, NBAS and DDX1 genes co-amplified withMYCN,
presenting 1p and 2p losses and a gain of 2q as SCAs. Gains of small
chromosomal regions (0.2-2 Mb), known as focal SCAs (FSCAs), were
also found. The hetMNA tumor showed an amplification of MYCN
and 3p and 11q losses. The MNNA cases with only MLPA genomic
data (n = 3) had an SCA profile with between one and three SCAs per



Table 3. Summary of the Genetic Findings by aSNP/MLPA.

Patient ID Main Age Group Age Subgroup Genetic Group Number of SCAs ct Number of NCAs 11q− +17q FSCA cnLOH

1 Group 1 Preadolescents homMNA 3 N 2 N N Y N
2 NCA 0 N 7 N N N Y
5 SCA 5 N 2 Y Y N N
6 SCA 12 N 5 Y Y N N
7 SCA 8 N 2 Y Y N N
8 NCA 0 N 12 N N N N
12 SCA 17 Y 0 N Y Y Y
13 SCA 5 N 1 Y Y Y N
15 Adolescents SCA 11 Y 1 Y Y Y N
16 SCA a 3 a N 1 a Y Y ND ND
20 SCA 5 N 10 N N Y N
25 Group 2 Young adults SCA a 2 a N 1 a N N ND ND
26 SCA a 1 a N 1 a N N ND ND
27 SCA 4 N 0 N N Y Y
29 Middle-aged adults SCA 8 N 2 N N N N
30 SCA 3 N 0 N Y Y N
31 hetMNA 2 N 0 Y N N Y

a Genomic profile from MLPA data; Y, yes; N, no; ND, no data; ct, chromothripsis.
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case. The distribution of the SCAs, detected by aSNP, in the 10MNNA
cases was rather heterogeneous with an average of 7.8 SCAs (range 3-17,
median 5). FSCAs affected six cases and cnLOH affected two cases.
Most of the SCA cases were also affected by NCA (10/13, 77%).
Considering older age–dependent genomic patterns, tumors in group 1
patients had a higher median of SCAs when compared with group 2
(6.5 vs 3.5). The recurrent chromosome regions ordered by frequency
were given as follows: +17q, 11q−, +1q, +2p, 1p−, 3p−, and 4p−. For
group 1, 11q− was present in all MNNA tumors except two, while it
was absent in all MNNA tumors from group 2. Moreover, a higher
frequency of 17q gain occurred in group 1 tumors compared with group
2 tumors (87.5% vs 16.6%). A shattered pattern of chromothripsis at
chromosome 7q, and chromosome 4 were observed in two cases. For
the 7q arm chromothripsis, 10 breakpoints leading to gained SCAs
were annotated. For chromothripsis at the whole chromosome 4, N30
SCAs (losses and gains) were present. Finally, gain of chromosome 7
(nine cases) was the most frequent NCA in the entire cohort.
Table 4. Detail of the Genetic Findings by aSNP/MLPA.

Patient ID Main Age
Group

Age Subgroup Genetic Group Partial Chromosome Gains Partial C

1 Group 1 Preadolescents homMNA 2q 1p, 2p
2 NCA – –

5 SCA 17q 1q, 6q,
6 SCA 1q, 2p, 5q(i), 7q(i), 12q, 17q 4p, 4q(i
7 SCA 16q, 17q, 18q 1q, 3p,
8 NCA – –

12 SCA 2p(2), 5q, 7p, 7q, 12pq(i), 12q(i),
15q, 16pq, 17pq, 17q(i), 17q, 18pq

1p, 1p(

13 SCA 4q, 11q, 17q 3p, 11q
15 Adolescents SCA 5p, 11q(2), 17q, 20p, 20q 4p, 5q(i
16 SCA a 12q, 17q 11q
20 SCA 1q, 5q, 12q 5p, 10q

25 Group 1 Young adults SCA a 1q 4p
26 SCA a – 4p
27 SCA 7q, 19pq 10p, 19

29 Middle-aged
adults

SCA 1q, 2p, 20q, 21q 11p(2),
30 SCA 4p, 17q, 18q –

31 hetMNA – 3p, 11q

a Genomic profile from MLPA data; (i), intrachromosomal (two breakpoints); ct, chromothripsis; amp amp
Immune Cell Infiltration Study
The IHC results of the immune cell marker expression are shown in

Table 5. In general, the number of positive cells was higher in the
stroma-rich region (A) than in the neuroblast-rich region (B). A
tendency toward higher infiltration of immune cells in tumors from
group 2 was also seen. In addition, group 2 tumors had a heterogeneous
pattern related to infiltration percentages of CD expression in cells. In
summary, related to the age-dependent immune cell infiltration pattern,
tumor region A from group 2 patients presented a clearly higher
percentage of immune cells positive for CD4, CD8, CD20, and CD68
markers and a slightly higher percentage for CD11b+ and CD11c+
cells, compared with both their region B counterpart and both regions
in tumors from group 1. In relation to the genetic pattern-dependent
immune cell infiltration, the NCA tumors tended to present small
percentages of positive immune cell markers. Both MNA tumors
showed the highest quantity of CD11b+ cells and a high amount of
CD68+ cells in region A; only the hetMNA case presented a high
hromosome Losses Regions
with ct

Complete
Chromosome
Gains

Complete
Chromosome
Losses

FSCA cnLOH

– – 3, 10 +4q, +19q –

– 7, 8, 11, 17, 20, 21 14 – 7q, 16q
11q, 16p – 7, 18 – – –

), 5p, 7q, 11q, 19p – – 3, 6, 8, 14, 15 – –

11q, 15q, 19p – 7, 13 – – –

– 1, 2, 4, 6, 7, 8, 20, 21 3, 13, 14, 19 – –

i), 2q, 19p 4 – – +7q, 11q− 9p

– 7 – 12q amp –

), 11q, 18p(i), 18p 7q – 14 4p−, +20p –

– 7 – ND ND
– 6, 7, 8, 9, 13, 17, 18,

20, 21
11 4q− –

– 17 – ND ND
– 7 – ND ND

p – – – +5p 4q, 11p, 11p,
12q, 19p

19p, 22q – 7, 8 – – –

– – – +20p –

– – – – 6p

lification.



Figure 1.Representation of the genomic profiles by aSNP. Losses are indicatedby a plain bar on the left, gains by a plain bar, and cnLOHbyan
empty bar on the right of each chromosome ideogram. Chromosome number and ID of the patients are indicated above and below
respectively. Chromothripsis is indicated to the right of the chromosome ideograms. FSCAs and MNA are marked by * and §, respectively.
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amount of CD68+ cells in region B. For the SCA cases, a wide variation
in percentages was seen.

ATRX Expression
A summary of clinical data and nuclear ATRX protein expression is

presented in Table 6 and Figure 2. Thirteen of 17 cases (76.5%) were
negative. Seven cases had completely negative tumor cell staining, and
in six cases, some tumor cells retained ATRX and some lacked ATRX
nuclear staining. Four positive cases (23.5%) without ATRX gene
deletion were found. The homMNA case showed the highest
immunopositivity for ATRX. A mosaicism immunophenotype was
found in the ATRX gene deleted control case.

Discussion
Applying high-density aSNP and IHC techniques, the present study
has identified similarities and differences between tumors from
preadolescent and adolescent patients (group 1) and young adult and
middle-aged adult patients (group 2). Genetically, as is described in
childhood NB, we have identified cases with MNA (hom and het),
with MNNA, with the NCA profile, and with the SCA profile (11q
deleted and non-deleted) [29,31,32]. Patients with a localized stage
and NCA tumor remained without recurrence or progression in
accordance with results previously described in childhood NB [11]. In
childhood NB, homMNA is frequent at a median age of 28 months,
and tumors with homMNA appear to have rapid growth [31,33–36].
These facts indicate that homMNA tends to be an early phenomenon
in oncogenesis, implying a different route of tumor evolution
[11,34,37]. According to the literature, hetMNA in childhood NB
tends to be more frequent in advanced stages; nevertheless, in our
study hetMNA was present in a low stage [38]. Neither median age
nor impact of hetMNA on outcome has been reported in large
cohorts to date [38,39]. The rarity of homMNA in NB tumors after
childhood was not unexpected. Its low frequency has been
consistently described throughout the literature; however, hetMNA
has not previously been described in older NB [1,3,4,7,8,40,41]. In
our study, the hetMNA case was found in the oldest patient, which
may indicate that the acquisition of hetMNA may be a late event
associated with early death after diagnosis. Furthermore, in contrast to
childhood tumors, a drift toward a mixed profile with recurrent SCA
and NCA has also been found [32]. The predominant SCA profile
found in group 1 is in accordance with some reports, including the
latest AYA International NB Risk Group [1,6]. Schleiermacher et al.
suggested a hypothesis in childhood NB for progression of NCA
tumors, whereby they evade clinical examination and then acquire



Table 5. Expression of Immune Cell System Markers by IHC.

Patient ID Main Age
Group

Age Subgroup Genetic Group CD4 CD8 CD20 CD11b CD11c CD 68

A B A B A B A B A B A B

1 Group 1 Preadolescents homMNA 1 1 1 1 1 1 4 1 1 1 4 0
2 NCA 0 0 2 1 2 1 1 0 1 1 0 0
5 SCA 0 0 2 2 1 1 2 2 0 0 2 1
7 SCA 0 0 2 2 3 3 1 1 0 0 2 1
8 NCA 0 0 2 1 1 1 1 1 1 1 1 1
13 SCA 0 0 2 1 1 1 1 1 1 1 2 1
15 Adolescents SCA 1 1 2 1 1 1 1 1 1 1 2 0
16 SCA a 0 0 1 1 0 0 1 1 1 1 2 2
23 NE 0 0 4 1 1 0 1 1 1 0 1 0
24 NE 0 0 2 1 2 1 1 1 1 2 2 2
25 Group 2 Young adults SCA a 1 1 2 0 4 1 2 1 2 1 3 1
26 SCA a 2 1 4 2 4 3 2 2 2 1 4 3
28 Middle-aged adults NE 1 0 2 1 1 0 2 1 1 1 4 2
29 SCA 1 0 3 1 3 0 2 1 4 1 3 1
30 SCA 3 1 4 2 4 1 1 1 2 1 4 4
31 hetMNA 0 0 1 1 1 0 4 1 4 0 3 4

a Genomic profile from MLPA data; A, stroma-rich region; B, neuroblast-rich region; 0, negative; 1, minimal; 2, moderate; 3, high; 4, very high; NE, not evaluated.
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SCAs. In agreement with this hypothesis, the present cohort of older
age patients at diagnosis correlates with the high frequency of this
mixed profile. Most of the patients with SCA tumors with NCAs are
short-term survivors [42]. A complete gain of chromosome 7, the
most frequently gained NCA in childhood NB, was also present in
our cases [31,43]. The negative impact of the recurrent SCAs in NB is
well reported [32,44,45]. Nevertheless, the role of the amount of
SCAs in the oncogenic pathophysiology is not clear. Several studies
have explored the SCA cutoff number to discriminate the impact in
event-free survival (EFS) and/or overall surival. Among all NB tumors
with an SCA profile, a threshold of three SCAs could distinguish
between long- and short-term survivors in high-risk children [46].
Moreover, it has been proposed that a higher number (more than seven
SCAs) has prognostic impact [42]. The present study found a higher
frequency of cases with more than three SCAs than that reported for
general childhood NB (88% vs 53%) [42]. Indeed, the average number
of SCA per sample, despite the dispersion, falls within the range
described in a recent study for stage 4 NB in patients older than 18
months [43,46]. The present study found no differences in either EFS
or in OS in relation to the number of SCA (data not shown). An
interesting finding is that most of the tumors with a lower number of
SCA were from group 2; this may indicate a distinct evolutionary
Table 6. ATRX Expression and Main Clinical and Genetic Features of the Tumors.

Patient ID Main Age Group Age Subgroup Sex ATRX Protein Outcome

1 Group 1 Preadolescents f Positive AWT
2 f Positive ADF
3 f Negative ADF
5 m Negative ADF
8 f Negative ADF
9 f Negative DOD
13 m Mosaic DOD
15 Adolescents m Negative ADF
16 f Negative ADF
18 f Mosaic DOD
20 f Positive DOD
24 m Mosaic DOD
25 Group 2 Young adults m Positive ADF
26 f Mosaic DOD
28 Middle-aged adults m Mosaic DOD
30 f Mosaic AWT
31 f Negative DOD

f, female; m, male; AWT, alive with treatment; ADF, alive disease-free; DOD, died of disease.
mechanism that requires investigation. When considering the SCA
in NB of all ages, 11q deletion is linked to a higher age at diagnosis (41-
48 months) and to a higher instability [34,37]. Inconsistent data have
been reported in relation to 11q− frequency and older age NB: a
decreased presence of 11q− when considering patients over 7 years of
age at diagnosis and a relatively stable proportion of 11q− tumors in
patients from18months toN10 years of age [1,35]. Our study included
a slightly higher proportion of 11q− tumors than previously reported
(41% vs 32-33%) [1,35]. The most outstanding and recent complex
genetic finding is chromothripsis; this has been found with high
prevalence in neuroepithelial tumors (NB, medulloblastoma, and
glioblastoma) [15,47–50]. In NB of all ages, it affects chromosomes 2,
5, 6, 7, and 8 and is associated with 1p deletion and amplification of
CDK4 or MNA [48]. Until now, chromothripsis at chromosome 4
has been described in only one large-scale study, although structural
variants in genes located at chromosome 4q (i.e., ODZ3, 4q35.1) have
been found in aggressiveNB tumors [15,51]. Restructuring of theODZ
gene family, implicated in the neuronal growth cone, has been found in
NB lacking MNA as a frequent alteration associated with chromo-
thripsis [15]. Strikingly, the chromothripsis of chromosome 4 coexisted
with a focal loss of the ODZ4 gene and with a restructuring at 5q
affecting the ODZ2 gene. Although this catastrophic event has been
associated with poor prognosis, it is not clear if it contributes to tumor
development as a driver mutation or if it represents a secondary event as
a consequence of genomic instability with different implications for
tumor progression [48]. The fact that both patients are still alive without
relapse leads to the hypothesis that chromothripsis in these tumors
might be a marker of an underlying genomic instability contributing to
tumor inhibition.

The identification of genetic mutations in older NB has attracted
much interest as its protracted course is not completely understood.
ATRX mutations and the subsequent loss of the nuclear protein
expression are more frequently identified in patients older than 12 years
with stage 4 disease. Exome sequencing studies point to an inactivation
of both ATRX copies through mutation and chromosome X
inactivation [14,15]. Immunolabeling loss of ATRX is also associated
with mutation in other cancers [52,53]. Cheung et al. found ATRX
gene deletions in 43% of older NB (N12 years old) and in 11% of
childhood NB (5-12 years) patients [14]. Some of the ATRX deletions
described are too small (16 kb) to be detected with the aSNP platforms,



Figure 2. ATRX protein expression by IHC in three NB tumors. (A) Strong positive nuclear expression of neuroblast cells. (B) Mosaic
expression of neuroblast cells, less than half of the neuroblasts cells retained the expression. (C) Negative nuclear expression. Scale bar,
50 μm (image at ×40 and ×100).
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which could explain why none of the cases of the present cohort
displayed the ATRX deletion [51]. Loss of ATRX protein expression, as
in mosaicism, is less often represented than the complete negative
expression in older NB [11]. In our cohort, mosaicism is more closely
linked to the tumors of group 2.
Additional prognostic factors such as the NB microenvironment, a

complex structure relating to the interaction between neuroblasts and
Schwann cells, normal host cells, and extracellular matrix elements are
now being considered as a potential focus for research [54,55]. In
childhood NB, data describing immune cell infiltration are limited
except in NB associated with Opsoclonus-Myoclonus syndrome
[17,56,57]. It is assumed that the host immune response to a human
solid tumor could be reflected in immune cell infiltration, and
chronic local inflammation has been described as being involved in
the initiation of many adult neoplasias [58–62]. It has been
postulated that analyzing the composition, distribution, and
architecture of the immune infiltrate for each tumor type could
offer new prognostic or predictive biomarkers [63,64]. Assuming that
the innate and adaptive immune system must be well developed
beyond the age of 10, an interesting comparative study of pediatric
and adult tumors was carried out by Vakkila et al. [65]. This
comparative study revealed that pediatric tumors are characterized by
a less diverse leukocyte composition, consisting almost exclusively of
macrophages, with fewer infiltrating leukocytes, a lack of dendritic
cells, and a more scattered distribution of infiltrating cells. A diverse
composition and organized distribution of the tumor-associated
leukocytes in adult tumors was ascertained. Nevertheless, no
significant differences in the total number of tumor-associated
immune cells were detected between adult and pediatric tumors. The
age-related infiltration pattern existing between groups 1 and 2

image of Figure�2
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resembled that of Vakkila et al. [65]. A pattern with a low diversity of
immune cells, almost exclusively macrophages in composition, was
observed in group 1. In our cohort, it is remarkable that infiltration
and diverse composition was more evident in group 2, both in the
stroma and the neuroblast-rich regions. Neuroblastic cells present a low
expression of major histocompatibility complex class I and II molecules
and may be much better targets for natural killer (NK) cells than for
cytotoxic T lymphocytes [24]. The presence of the CD8+ T cells alone
does not necessarily imply an anti-tumor response but, in combination
with high percentages of CD11b+ cells, prompts us to hypothesize that
the CD8 cells become activated and display effector actions like tumor-
growth and progression or tumor permissiveness [66]. Based on the
literature, it is plausible to assign the extended positivity found for the
CD11b marker in our samples to a subset of naïve CD8+ T cells.
Consequently, it should be ascertained whether or not this subset of
cells completely overlaps the CD8+ T cells, especially for the cells
within the neuroblast-rich region [67–69]. In a study describing the
differentiated distribution of immune cells in childhood NB tissue, few
CD4+ and CD8+ cells were able to infiltrate the peritumoral stroma
but were unable to infiltrate the tumor nests [70]. The present study
detected different percentages of immune cell infiltration between
stroma-rich and neuroblast-rich regions. Although the percentages were
higher in the stroma-rich region, CD8 and CD20 positive cells were
also present in the neuroblast-rich region. Regarding the hetMNA case,
despite being in group 2, the infiltration pattern was similar to that of
group 1; the stroma-rich region was highly infiltrated with CD11b+
and CD68+ cells in comparison to the neuroblast-rich region. It could
be useful, using quantitative analysis, to study the balance of the
immune cell infiltration in both regions [71,72].

In summary, we corroborate the high prevalence of SCA, low
MNNA, and negative expression of ATRX in NB after childhood.
Confirmation of the differences relating to both number and type of
SCA as well as the composition and distribution of the immune cells
should lead to a better understanding of disease outcome. It is
imperative that biologic studies by cooperative groups continue on a
larger number of such valuable tumor tissues to better establish
differences among the patterns found in this cohort.
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