
Theoretical
Computer Science

ELSEVIER Theoretical Computer Science 178 (1997) 1-36

Fundamental Study

From regular expressions to DFA’s
using compressed NFA’s’

Chia-Hsiang Chang”, Robert Paigeb%*

‘Institute of Information Science, Academica Sinica. Teipei, Taiwan, ROC
bCourant Institute of Mathematical Sciences, New York University, 251 Mercer St.,

New York, NY 10012, USA

Received July 1993; revised January 1996
Communicated by M. Nivat

Abstract

There are two principal methods for turning regular expressions into NFA’s - one due to
McNaughton and Yamada and another due to Thompson. Unfortunately, both have drawbacks.
Given a regular expression R of length r and with s occurrences of alphabet symbols, Chang
and Paige (1992) and Briiggemamr-Klein (1993) gave O(m + r) time and O(r) space algorithms
to produce a O(m) space representation of McNaughton and Yamada’s NFA with s + 1 states
and m transitions. The problem with this NFA is that m = O(.?) in the worst case. Thompson’s
method takes O(r) time and space to construct a O(r) space NFA with O(r) states and O(r)

transitions. The problem with this NFA is that r can be arbitrarily larger than s.
We overcome drawbacks of both methods with a O(r) time O(s) space algorithm to construct

an O(s) space representation of McNaughton and Yamada’s NFA. Given any set V of NFA states,

our representation can be used to compute the set U of states one transition away from the states
in V in optimal time 0(1 V I+ 1 U I). McNaughton and Yamada’s NFA requires O(1 VI x I UI) time
in the worst case. Using Thompson’s NFA, the equivalent calculation requires O(r) time in the
worst case. Comparative benchmarks show that an implementation of our method outperforms
implementations of competing methods with respect to time for NFA construction, NFA accepting

testing, and NFA-to-DFA conversion by subset construction.
Throughout this paper program transformations are used to design algorithms and derive pro-

grams. A transformation of special importance is a form of finite differencing used previously
by Douglas Smith to improve the efficiency of functional programs.

* Corresponding author. E-mail: paige@cs.nyu.edu.
’ This research was partially supported by Office of Naval Research Grant No. N00014-93-1-0924, Air Force
Office of Scientific Research Grant No. AFOSR-91-0308, and National Science Foundation grant MIP-

9300210. An earlier version of this paper appeared in the Conference Record of the Third Symposium on

Combinatorial Pattern Matching (1992).

0304-3975/97/$17.00 @ 1997 -Elsevier Science B.V. All rights reserved

PI1 SO304-3975(96)00140-5

2 C-H. Chaq, R. Paiyel Theoretical Computer Science 178 (1997) l-36

Contents

I. Introduction

2. Terminology and background

3. McNaughton and Yamada’s NFA

4. Faster NFA construction

5. Improving space for McNaughton and Yamada’s NFA

6. Computational results

7. Conclusions

Acknowledgements

Appendix A. CNNFA construction in O(S) auxiliary space

References

2

4

6

11

18

26

31

31

31

35

1. Introduction

The growing importance of regular languages and their associated computational

problems in languages and compilers is underscored by the granting of the Turing

Award to Rabin and Scott in 1976, in part, for their ground-breaking logical and

algorithmic work in regular languages [191. Of special significance was their construc-

tion of the canonical minimum-state DFA that had been described nonconstructively

in the proof of the Myhill-Nerode theorem [17, 181. Rabin and Scott’s work, which

was motivated by theoretical considerations, has gained in importance as the number

of practical applications has grown, In particular, the construction of finite automata

from regular expressions is of central importance to the compilation of communicating

processes [4], string pattern matching [l], model checking [12], lexical scanning [3],

and VLSI layout design [25]; unit-time incremental acceptance testing in a DFA is

also a crucial step in LRk parsing [151; algorithms for acceptance testing and DFA

construction from regular expressions are implemented in the Unix operating system

POI.
Throughout this paper we use a uniform cost sequential RAM [2] as our model of

computaton. However, our algorithms will avoid any RAM operation with hidden costs

(that might show up under a logarithmic cost criterion). We report the following four

results.

1. Berry and Sethi [5] used results of Brzozowski [7] to formally derive and im-

prove McNaughton and Yamada’s algorithm [161 for turning regular expressions into

NFA’s. NFA’s produced by this algorithm have fewer states than NFA’s produced by

Thompson’s algorithm [24], and are believed to outperform Thompson’s NFA’s for

acceptance testing. Berry and Sethi did not publish the resource bounds of their algo-

rithm or the details for an efficient implementation. Nevertheless, they knew that their

algorithm could be implemented in worst case time O(m + Y) [21], where r is the

length of the regular expression accepted as input, and m is the number of edges in

the NFA produced. More recently, Briiggemann-Klein [6] presented another algorithm

to compute McNaughton and Yamada’s NFA, and she provided the full details and a

C.-H. Chang, R. Paigel Theoretical Computer Science 178 (1997) l-36 3

convincing analysis that it does run in O(m + r) time and O(r) auxiliary space. The

algorithms due to Berry and Sethi and to Briiggemann-Klein use multiple passes over

the regular expression.

Section 3 of our paper reformulates a proof of McNaughton and Yamada’s algorithm

from an automaton-theoretic point of view. In Section 4 we transform this algorithm

into a new algorithm that runs in the same resource bounds as Briiggemann-Klein, but

offers a practical improvement by computing the same NFA in a single left-to-right

scan over the regular expression without producing a parse tree. That algorithm was

discovered by Chang and Paige independently of Briiggemann-Klein, and reported in

the short form [lo] of the current paper.

2. One disadvantage of McNaughton and Yamada’s NFA is that its worst case

number of edges is m = O(s2). More specifically, its adjacency list representation

takes up 3s + s2 space in the worst case. Thompson’s NFA has between r and 2r

states and between r and 4r edges. Its adjacency list representation takes up between

2r and 6r space, but r can be arbitrarily larger than s.

In Section 5 we introduce a new compressed data structure, called the CNNFA, that

uses only O(s) space to represent McNaughton and Yamada’s NFA. The CNNFA can

be constructed from a regular expression R in O(r) time and O(s) auxiliary space.

It supports acceptance testing in worst-case time O(sJx]) for arbitrary string x, and

a faster way to construct DFA’s using an improved implementation of the classical

subset construction of Rabin and Scott [19].

3. When using McNaughton and Yamada’s NFA to perform either acceptance testing

or NFA-to-DFA conversion, it is necessary to repeatedly compute the set of states U

one edge away from an arbitrary set of states V. This next-states operation is a costly

critical step of a local nature, since all we know about the two sets U and V is that they

depend on the internal structure of the NFA, and that the sizes of neither set can exceed

the global parameter s. Section 5 contains Theorem 5.5, our main theoretical result,

which proves that the CNNFA can be used to perform this operation in optimal time

O(lVl+ lul). Th e P revious best worst-case time is O(1 VI x 1 UI). This is the essential

idea that explains the computational advantage of the CNNFA over alternative NFA’s

in both acceptance testing and DFA construction.

4. Section 6 describes how to exploit the structure of the CNNFA to obtain an ef-

ficient implementation. It also gives empirical evidence that our algorithm for NFA

acceptance testing using the CNNFA outperforms competing algorithms using either

Thompson’s or McNaughton and Yamada’s NFA. We give more dramatic empirical

evidence that constructing a DFA from the CNNFA using our implementation of next-

states in the classical Rabin and Scott subset construction [19] (cf. [3, Ch. 31) can be

achieved in time one order of magnitude faster than starting from either Thompson’s

NFA or McNaughton and Yamada’s NFA. Our benchmarks also indicate better perfor-

mance using Thompson’s NFA over McNaughton and Yamada’s NFA for acceptance

testing and subset construction. This observation runs counter to the judgment of those

using McNaughton and Yamada’s NFA throughout Unix.

4 C.-H. Chang, R. Paigel Theoretical Computer Science 178 (1997) 1-36

2. Terminology and background

With a few exceptions the following basic definitions and terminology can be found

in [3, 131. By an alphabet we mean a finite nonempty set of symbols. If C is an

alphabet, then C* denotes the set of all finite stings of symbols in ,E. The empty

string is denoted by 1. If x and y are two strings, then xy denotes the concatenation

of x and y. Any subset of Z* is a language over C.

Definition 2.1. Let L, L,,Lz be languages over C. The following expressions can be

used to define new languages.

1. 0 denotes the empty set

2. Ll L2 = {xy : x E LI, y E Lz} denotes product

3. Lo = if L # 0 then (1) else 0

4. L’+’ = LL’, where i 30

5. L* = UFO L’
6. LT = {x : 3a E Flax E L} denotes the tail of L

In later discussions we will make use of the identities below, which follow directly

from the preceding definition.

Lemma 2.2. 1. L(A) = {i}L = L

2.L0=0L=0
3. 0T=P-=0

4. (L, u L# = LT u L;
5. (LIL2)T = if /I # LI then LTLz else LTL2 U L;

Because of Lemma 2.2, identities (1) and (2), we will sometimes use (1) inter-

changeably with true, and 0 interchangeably with false.
Kleene [14] characterized a subclass of languages called regular languages in terms

of regular expressions.

Definition 2.3. The regular expressions over alphabet C and the languages they denote

are defined inductively as follows.

l 0 is a regular expression that denotes the empty set

l A is a regular expression that denotes the set (1)

l a is a regular expression that denotes {a}, where a E Z

If J and K are regular expressions that represent languages LJ and LK, then the fol-

lowing are also regular expressions:

l JIK (alternation) represents L_, U LK
l JK (product) represents LJLK
l J* (star) represents lJz, Ls

By convention, regular expressions can be written with fewer parentheses by allowing

star to have higher precedence than product, and product to have higher precedence

C.-H. Chany, R. Pa@/ Theoretical Computer Science 178 (1997) l-36 5

than alternation. Both product and alternation are left associative. Parentheses are used

to override precedence. Without loss of generality, we will assume throughout this

paper that regular expressions have no occurrences of 0.

Based on the preceding rules for defining regular expressions, we can recognize

and distinguish different subexpressions occurring within a given regular expression.

We say that J and K are the immediate subexpressions of regular expressions JIK

or JK, and J is the immediate subexpression of (J) or J*. The subexpressions of

regular expression R consists of R itself together with subexpressions of the immediate

subexpressions of R.
Regular expressions have been used in a variety of practical applications to specify

regular languages in a perspicuous way. The problem of deciding whether a given string

belongs to the language denoted by a particular regular expression can be implemented

efficiently using finite automata defined below.

Definition 2.4. A nondeterministic finite automaton (abbr. NFA) M is a 5-tuple (C, Q,J,

F, S), where Z is an alphabet, Q is a finite set of states, IL Q is a set of initial states,

F C Q is a set of final states, and 6 : (Q x (C U {A)) --f 2Q) is a state transition map,

where 28 denotes the power set of Q. It is natural to represent transition map 6 as a

labeled graph. If q E Q and y E C U {,I}, then 6(q, y) denotes the set of states p E Q
reachable from state q by a single edge labeled y.

If V c Q, a E c, X E c*, and B C C*, then it is useful to define an extended

transition map 6, so that 6,(q,x) denotes the set of states reachable from q along any

path whose labels spell x. More formally, we have,

l 6,(q, A) = the smallest set s of states such that {q} U {p : 3 E s 1 p E h(t, A)} C s
0 d,(q,a) = {p : 3t E 6,(q,A),3t’ E s(t,a)jp E s,(t’,l)}

. h*(V,a) = UqE$*(q’4
l Uq, ax> = &(h(q, a),x>

. d*(v,x) = uqcy d*(q,x)

l a*cV,m = U&j S*(V,x)
The language LM accepted by M is defined by the rule, x E LM if and only if &(l,x)n

F # 8. In other words, L M = {x E C*] 6,(1,x) ~7 F # 8). NFA M is a deterministic

finite automaton (abbr. DFA) if transition map 6 has no more than one edge with the

same label leading out from each state, if 6 has no edge labeled i, and if I contains

exactly one state.

Kleene also characterized the regular languages in terms of languages accepted by

DFA’s. Rabin and Scott [19] showed that NFA’s also characterize the regular lan-

guages, and their work led to algorithms to decide whether an arbitrary string is ac-

cepted by an NFA. Regular expressions and NFA’s that represent the same regular

language are said to be equivalent.
There are two main practical approaches for turning regular expressions into equiv-

alent NFA’s. Thompson’s approach [24] turns regular expressions into NFA’s with

A-edges as described above. McNaughton and Yamada’s approach [16] turns regular

6 C-H. Chang, R. PaiyrITheoretical Computer Science 178 (1997) I-36

expressions into a slightly different kind of NFA described in the next section. There is

one main approach for turning NFA’s (constructed by either the method of Thompson

or McNaughton and Yamada) into equivalent DFA’s. This is by Rabin and Scott’s

subset construction [191.

3. McNaughton and Yamada’s NFA

It is convenient to reformulate McNaughton and Yamada’s transformation [16] from

regular expressions to NFA’s in the following way.

Definition 3.1. A normal NFA (abbr. NNFA) is an NFA in which no edge can be la-

beled iL, and all edges leading into the same state have the same label. Thus, only states

need to be labeled, and we can represent an NNFA M as a 6-tuple (C, Q, 6, I, F, A),

where C is an alphabet, Q is a set of states, 6 C Q x Q is a set of (unlabeled) edges,

I G Q is a set of initial states, F C Q is a set of final states, and A : Q + Z maps

states x E Q into labels A(x) belonging to alphabet C. The language LM accepted by

NNFA M is the set of strings x E C* formed from concatenating labels on all but the

first state of a path from a state in 1 to a state in F. A McNaughton/Yamada NNFA

(abbr. MYNNFA) is an NNFA with one initial state of zero in-degree.

We sometimes omit alphabet C in NNFA specifications when it is obvious. It is

useful (and completely harmless) to sometimes allow the label map A to be undefined

on states with zero in-degree. For example, we will not need to define A on the initial

state of an MYNNFA. Fig. 1 represents an MYNNFA with six states (represented as

circles that enclose their labels) and eleven transitions (represented as directed edges

between states).

Definition 3.2. The tail of an MYNNFA M = (C,Q,d,I = {qo},F,,4) is an ~FA

MT = (CT, QT, dT,ZT, FT, AT), where CT = C, QT = Q - {qo}, dT = {[x, y] E 6 1 x #

qo), IT = b : [myI E 61, FT = F - {a), and AT = {[q,a] E A 1 q # 40).

Fig. 2 shows the tail of the MYNNFA given in Fig. 1. This example demonstrates

that the tail of an MYNNFA is an NNFA that need not be an MYNNFA. Note that

our definition of a tail machine only applies to an MYNNFA, and not to NNFA’s in

general.

Fig. I. An MYNNFA equivalent to the regular expression (a(b)*abb

C.-H. Chany, R. Paigel Theoretical Computer Science 178 (1997) I-36

Fig. 2. The tail of an MYNNFA equivalent to the regular expression (a(b)*abb.

Lemma 3.3. If MYNNFA M accepts language LM, then the identity LM~ = L,$

holds; that is, the language accepted by tail machine MT is the same as the tail of

the language accepted by M.

Proof. Let M = (C, Q, &I, F, A) be an MYNNFA. By Definition 2.1(6), x E L; iff

3a E Z1a.x E LM. By the definition of an MYNNFA, this is equivalent to saying that

there is a sequence qo, 41, qn of two or more states in Q that forms a path in 6 from

the unique initial state qo to a final state qn in which q1 is labeled a, and the labels on

states q2, qn spell x (which is i if n = 1). Since the initial state qo of an MYNNFA

must have in-degree zero, qo must be different from 41,qn. Hence, by Definitions

3.1 and 3.2 this is equivalent to saying that there is a sequence 91,qn with n 2 1

of states in QT that forms a path in hT in which q1 E IT, qn E FT, and the labels

for states 41,qn are the same in MT as in M. And this is equivalent to saying that

XELL. 0

However, given the tail of an MYNNFA M, we cannot compute an MYNNFA

equivalent to M without also knowing whether 1, E LM; i.e., we do not know whether

the starting state of M is also a final state unless we know that 3, E LM. If we know

the value of

null,cr dAf tf I E LM then (3,) else 0,

then MYNNFA M = (C, Q, 6,Z, F, A) can be reconstructed from its tail MT = (CT, QT,

JT, IT, FT, AT) and nullM using equations,

c = CT, Q = QT U (401, 6 = dT U {ho, ~1 : Y E IT), I= {qo),

F = FT U {qo}null~, A =AT, (1)

where qo is a new state.

Lemma 3.4. If M = (Q,c?,I = {qo}, F,A) is an MYNNFA that accepts language L,

then an MYNNFA M* that accepts language L* can be formed from M by using

the same set Q of states, the same starting state qo, and the same label map A as

M. The set of final states of M* is F U (40); the transition map is 6 U FIT.

Proof. If LM* is the language accepted by MYNNFA M*, then it is easy to see that

L* CLM.. To prove that LM- C L*, consider any path P = [qo, 41,. . . , qn] that follows

8 C.-H. Chang, R. Paiyel Theoretical Computer Science 178 (1997) l-36

transitions in M’ from starting state qo to any final state q,,. We show that the labels

A(q,) . . .A(q,) along P spell a word that belongs to L”. If n = 0, then the labels spell

1, which certainly belongs to L*. Suppose n> 1. Let transition [qi,qi+i] be called a

reversal if it belongs to FIT for some i = 1,. . . , n - 1. We show by mathematical

induction on the number t of reversals that the concatenated labels along path P spell

a word that belongs to L’+’ .
(Basis) If there are no reversals, then P is also a path in M, and the concatenated

labels must spell a word in L.

(Induction) Suppose the claim holds for t 3 0, and suppose P contains t + 1 reversals.

If transition [qi, qj+l] is the last reversal in P, then labels A(ql) . . .A(qj) along the path

qo, 41,. . . , qj must spell a word that belongs to L’ by the induction hypothesis. Since

there are no reversals along the path qj+i, . . . , qn, the labels A(qj+l) . .A(q,) along the

path qjtqj+i,..., qn spell a word that belongs to L. Hence, the labels A(ql). . .A(q,)

along the path P spell a word in L’+‘. 0

It is a desirable and obvious fact (which follows immediately from the definition

of an MYNNFA) that when A is one-to-one, then no state can have more than one

edge leading to states with the same label. Hence, such an MYNNFA is a DFA. More

generally, an MYNNFA is a DFA if and only if the binary relation {[x, y] E 6 1 A(y) =

u} is single-valued for every alphabet symbol a E C.

McNaughton and Yamada’s algorithm inputs a regular expression R, and computes

an MYNNFA M that accepts language LR. To explain how the construction is done,

we use the notational convention that AIR denotes an MYNNFA equivalent to regular

expression R. Because of its importance in Rule (1) nulls will be regarded as an

essential component of A4:.

Theorem 3.5. (McNaughton and Yamada [161). Given any regular expression R with

s occurrences of alphabet symbols from C, an MYNNFA MR with s + 1 states can

be constructed.

Proof. The proof uses structural induction to show that for any regular expression R,

we can always compute Mz for some MYNNFA MR, where Mz contains one distinct

state for every alphabet symbol that occurs in R; i.e., Mz contains s states altogether.

Eqs. (1) can be used to obtain MR, which has one more state than M:.

We assume a fixed alphabet C. There are two base cases, which are easily verified

from Lemma 2.2(3) and Definition 3.2.

Ml = (Qf = 8,Sfi = 8, I: = 8, FT = 8, A: = 0, nuIl;L = {A})

M,’ = (QT = {q), 8,’ = 8, 1,’ = {q), F,’ = {q}, AZ = {kal), null, = 01,

(2)

(3)

where a E Z, and q is a new distinct state.

Note that the tail machine for a single alphabet occurrence contains one new distinct

state introduced by Rule (3).

C.-H. Chang, R. Paigel Theoretical Computer Science 178 (1997) I-36 9

To use induction, we assume that J and K are two arbitrary regular expressions in

which the occurrences of alphabet symbols within J are distinct from the occurrences

of alphabet symbols within K. Assume also that J and K are equivalent, respec-

tively, to MYNNFA’s MJ and AUK with MT = (QI,IJ’,FJ’, G~,A~,null~) and Mz =

(Qf, I& F$, Si, Ai, nulls), where Q,’ and Qi are disjoint sets of states that correspond

to the distinct sets of alphabet symbol occurrences within J and K respectively. Then

we can use Lemma 2.2 (4) and (5) to verify that

M& = (Q;,K = Q,’ U Qf, ~3;~~ = SJ’ U &, I& = ZJ’ U I;,

F& = FJ’ U F;, A& = A; u A;,

null~~k: = nullJ U nullK)

M& = (QJK = Q,’ u Q;, 13;~ = 6; u S’K u F,TI;,

I& = IJ’ U null~I~, F& = Fl U nullify,

A:K = A: U Ai, nullJK = null~null~)

We use Lemmas 3.3 and 3.4 to verify that

(4)

(5)

M; = (Q;* = Q,‘, ST* = SJ’ u F,TZ,T, I;* = ZJ’, F;s = F,T,

AT, = A;, nullJ* = {A}) (6)

The preceding formulas are illustrated in Fig. 3.

Since each set Q,‘,, and Q& is the disjoint union of Q,’ and Qi by Rules (4)

and (5), we know by the induction hypothesis that the number of states in each set

QT JIK and QTK equals the number of occurrences of alphabet symbols in J IK and JK,

respectively. Since QJ’* = Q,’ by Rule (6), it follows from the induction hypothesis

that IQ:_ 1 equals the number of occurrences of alphabet symbols in J*. The result

follows. 0

McNaughton and Yamada’s algorithm can be implemented within a left-to-right,

bottom-up, shift/reduce parse (by operator precedence, for example) of regular expres-

sion R without actually producing a parse tree. The algorithm depends on a stack of

elements, each of which is either a symbol from R, or a record Np that stores 6;, A&

I:, Fp, and nullp for some subexpression occurrence P of R.

The following procedure can be used:

1. Initialize the stack to empty.

2. For each input symbol c in a left-to-right scan through R do the following:

(a) Push c onto the stack.

(b) Repeat the following step until it can no longer be applied:

(Reduction) If the topmost elements of the stack match one of the following

cases, replace them in the prescribed way. Otherwise, terminate the Reduction

Step.

(case A) Replace by N;. according to Rule (2).

10 C.-H. Chany, R. Paiyel Theoretical Computer Science 178 (1997) 1-36

IT JIK F$K
, . . ‘..

“..._, FTK = F^’ ” F;nuif~‘.
MJTK ” ,. ._...

,._...‘.

‘. :

: .:

MT. .. .’

Fig. 3. Tail machine construction.

(case a, an alphabet symbol) Replace by N, according to Rule (3).

(case NJINK) Replace by NJJK using Rule (4).

(case NJN~) Replace by NJK using Rule (5).

(case NJ *) Replace by NJ- using Rule (6).

(case (NJ)) Replace by NJ.

3. If the stack contains only one entry, which is a record, then that entry is NR,

which stores components of MJ. Compute MYNNFA MR from NR according to

Rule (1). If the stack is of any other form, then R is not a regular expression.

Lemma 3.6. (1) All unions appearing in Rules (4) and (5) are disjoint. (2) If P is

a regular expression, then FF and IF are both nonempty isf P contains at least one

alphabet symbol.

Proof. 1. By the proof of Theorem 3.5 the unions Q,’ U Qi appearing in Rules (4)

and (5) are disjoint. Since FJ’ and IJ’ are subsets of QJ’, and Fz and 1; are subsets of

C.-H. Chary, R. PaiyeiTheoretical Computer Science 178 (1997) l-36 II

Qi, it follows that FJ’ is disjoint from Fi and that ZJ’ is disjoint from 1;. It is easily

shown that SJ’ and Si are also disjoint, because they are binary relations on Q,’ and

QfT respectively.

2. (+) Since FF and Ip’ are both subsets of Q:, then Q: is nonempty whenever

FF or Ip’ are nonempty. Since there are IQ;1 occurrences of alphabet symbols within

P by the proof of Theorem 3.5, then P must have at least one alphabet symbol when

Q: is nonempty.

(+) Suppose that P has s > 1 occurrences of alphabet symbols. Using structural

induction, the cases for Rules (3), (4), and (6) are easily verified. For Rule (5) suppose

that J contains occurrences of alphabet symbols but K does not. Then IJ’ and FJ’ are

both nonempty by hypothesis. It is trivial to show that if K has no alphabet symbols,

then nullK is true (.i.e, equals {A}), so that nullKF~ is nonempty. Hence, Z& and F&

are both nonempty. 0

Analysis determines that the algorithm mentioned above falls short of optimal per-

formance, because the operation SJ’ U FJ’ZJ’ within Rule (6) for M$ is not disjoint. By

Lemma 3.6 all other unions are disjoint and can be implemented in unit time. This

overlapping union makes McNaughton and Yamada’s algorithm use time 8(s3 logs) to

transform regular expression

into an MYNNFA with s + 1 states and s + s2 edges.

The sources of the overlapping union problem are made explicit in two examples.

In order to compute c?‘$**, Rule (6) would be applied twice; i.e.,

dT = dT u FTZT J’ J J Jt STeM = ~3:~ U F$IT*, where FJ_ = FJ’ and IT* = IJ’

which shows that product FJ’IJ’ is contained in both bT* and FT*IT*. For a second

example, if ndJ = nullK = {A}, then in order to compute 6&)., Rules (5) and (6)

would be applied; i.e.,

SJK = 6; u S; u F,TI,T, c?;~,* = ~5;~ u F;&,

where F&I& = FJ’IJ’ U FTIz U Fi(ZJ U I:)

which shows that product FJ’I: is contained in both S& and FT IT JK JK.

4. Faster NFA construction

By recognizing the overlapping union SJ’ U FJ’ZJ’ within Rule (6) as the main source

of inefficiency within our implementation of McNaughton and Yamada’s algorithm,

we can speedup the algorithm by augmenting tail machine MF with a new component

nredp that satisfies Invariant

nredp = F:IF - Si (7)

12 C.-H. Chany, R. Paiyel Theoretical Computer Science 178 (1997) 1-36

and is stored in stack record Np for any regular expression P. This allows us to

replace the overlapping union within Rule (6) by the equivalent but more efficient

disjoint union

(8)

Invariant (7) is satisfied by the following inductive definition, which is obtained by

simplifying expression FpTIF - SF in the context of Eqs. (2)-(6).

nred; = 0

nred, = FZIT, where a E C

(9)

(10)

nredJIK = nred_, U nredK U FJ’IK U FzIT

nredJK = FiIT U nullKnredJ U null~nred~

(11)

(12)

nredJ. = 0 (13)

The preceding idea of program improvement by maintaining and exploiting invari-

ants embodies a general method of symbolic finite differencing for deriving efficient

functional programs. This method has been mechanized and used extensively by Dou-

glas Smith within his program transformation system called KIDS (see, for example,

rw.

Lemma 4.1. Rules (9)-(13) satisfy Invariant (7). Each union operation occurring

within Rules (9)-(13) and Rule (8) is disjoint.

Proof. Correctness of Rules (9)-(13) is proved by structural induction on regular

expressions based on the correctness (from the proof of Theorem 3.5) of Rules (2)-

(6). Rules (9), (10) and (13) are trivial. Rule (11) follows from applying Rule (4) to

the right-hand side of Identity (7) to obtain

which is then expanded by distributive laws, and simplified by ‘folding’ Definition

(7). Rule (12) follows from applying Rule (5) to the right-hand side of Identity (7)

to obtain

which is then expanded using distributive laws, and simplified by ‘folding’ Definition

(7) as in the previous case.

By the proof of Lemma 3.6, sets FT, IJ’, and Q,’ are all disjoint from sets Fi,

I$, and Qi within Rules (11) and (12). By Invariant (7), we know that the union

occurring in Rule (8) is disjoint, and that nredp is a binary relation defined on @ for

C.-H. Chang, R. Paigel Theoretical Computer Science 178 (1997) l-36 13

any regular expression P. Hence, nred.t and nredK are disjoint within Rules (11) and

(12). The result follows immediately. 0

Although we are now able to calculate MYNNFA MR with only disjoint unions

(which are 0(1) time implementable), our solution creates a new problem. Edges

contributed to nredJiK and nred.tK by potentially costly product operations within Rules

(11) and (12) may never get added to transition map C?R. This phenomenon can arise

when (1) regular expression R is star-free, or (2) Rule (12) is used and either nredJ

is true (i.e., equals (1,)) and nullK is false (i.e., equals 0) or nredK is non-empty and

nullJ is false.

To overcome this problem we will use lazy evaluation to compute products only

when they actually contribute edges to 6~. A lazy product AB is represented by a pair

[A,B] of sets A and B. For an arbitrary regular expression P a lazy representation for

nredp (which is a union of products) is a set lazynred, of pairs of sets satisfying the

following invariant,

nredp = u xY (14)
[X,Y]ElaZynrrd,

As an optimization, only pairs that contain two nonempty sets will be stored in

lazynred,. We will interpret the collective union over the empty set as resulting

in the empty set (so the right-hand side of formula (14) evaluates to empty when-

ever lazynred, is empty). By replacing component nredp within both I@ and NT by

lazynred,, we can replace Rule (8) for calculating SJ’* from nredJ by the equivalent

calculation

s;*=sJ’u(u XY) (15)
[x,Y]Ehqmrrd,

We use the following macro,

nesets(X, Y) dAf if X # 0 A Y # 0 then {[X, Y]} else 0

to specify the inductive definition below, which satisfies Invariant (14).

lazynrediL = 0

lazynred, = { [Fz,Iz]}, where a E Z

lazynredJIK = lazynredJ U lazynred, U nesets(FT,ii) U nesets(Fz, I,‘)

lazynredJK = null~lazynredJ U nullJlazynred, U nesets(Fi,ZT)

lazynred,, = 0

(16)

(17)

(18)

(19)

(20)

Lemma 4.2. Rules (16)-(20) satisfy Invariant (14). Each union operation occurring
within Rules (16)-(20) and Rule (15) is disjoint.

Proof. Correctness of Rules (16)-(20) is proved by structural induction on regular

expressions based on the correctness (by Lemma 4.1) of Rules (9)-(13). Essentially,

14 C.-H. Chany. R. Paigel Theoretical Computer Science 178 (1997) 1-36

Rules (16)-(20) are obtained from trivially turning every nonempty product that occurs

in Rules (9)-(13) into a lazy product. Disjointness of unions follows immediately from

Lemma 4.1, Invariant (14), and the disjoint union in Rule (8). 0

Although this approach allows us to avoid computing any products until they are

needed to (implicitly) reconstruct wed_, and to augment SJ’* in Rule (15), a new

problem arises. Copying and storing sets Fi and I: within lazynredp for arbitrary (and

not just immediate) subexpressions J and K of regular expression P can consume too

much time and space. Fortunately, since, by Lemma 3.6, Rules (2)-(6) only use copy

operations and disjoint unions to construct FJ’ and lz, we can overcome this problem

by using a binary forest as a simple space-efficient persistent data structure (in the

sense of [ll]) that stores all intermediate values of sets Fi and ZJ’ in the order in

which they are computed by Rules (2)-(6) in the construction of 8;.

We represent a directed unoriented forest abstractly as a binary relation succ over a

finite set of nodes in which the inverse relation

succ -’ = {[y,x] : [J&y] E succ}
is the graph of a finite function. For each node n, the term succ{n} denotes the set

{y : [n, y] E succ} of children of n, and the term SUCC-~(~) denotes the unique

parent of n. Node n is a leaf iff succ{n} is empty; it is internal if it is not a leaf; it

is a root iff SUCC-~(~) is undefined. To represent a binary forest, we also require that

/succ{n}l = 2 for every internal node n.

Corresponding to each node n of succ is a subtree represented by the restriction of

succ to the set of nodes reachable along paths in succ from n to any leaf. The term

jiontier(n,succ) denotes the set of leaves of this subtree. It is convenient to denote an

undefined node by I for which,

fvontier(l, succ) dAf 0

The preceding forest relation succ can be implemented as an adjacency list (cf. an

early chapter of any elementary algorithms text; e.g. [2]) in which each node n in

succ is implemented as a distinct unit-space record. It is convenient to refer to a node

and its record implementation interchangeably. For each node n, its record stores a

pointer to a list of pointers to the children of n. Suppose that every internal node n

has more than one child; i.e., Isucc{n}I > 1. Then, for any node n, we can compute

frontier(n,succ) in time proportional to the number Ifrontier(n,succ)l of subtree leaves

(using almost any kind of search method; e.g., depth-first-search). Creating a forest with

one node n is a unit-time operation that forms a record for n with a nil pointer (since

succ{n} is empty). Augmenting the forest by adding a new root n, and adding edges

[n,xl], . . . , [n,xk] to succ from n to k distinct roots xi , . . . ,Xk is performed in O(k) time

by forming a new record for n with a pointer to a list of pointers to xi,. . . ,xk.

We consider a special case of the augmenting operation for binary forests. Let nl

and n2 be roots (possibly undefined) of binary forests succl and succ2 respectively,

where the nodes of succl and succ2 are disjoint. The following macro combines succl

C-H. Chang, R. Paiyel Theoretical Computer Science 178 (1997) l-36 15

and succ2 into a single binary forest succ. If nl and n2 are both defined, then a new

root q is created, and edges from q to nl and n2 are added to succ. The macro returns a

pair whose second component is the new value of succ. If nl and n2 are both defined,

then the first component is q; otherwise, if one of the two roots are defined, that root

is returned; otherwise, I is returned.

-- nl is either undefined or a root in binary forest succl ;

-- n2 is either undefined or a root in binary forest succ2

-- PRECONDITION: succl nodes are disjoint from succ2 nodes

punion(nl,succl,n2,succ2) dgf --persistent union

if nl # 1. n2 # -L then

return [q,succl U succ2 U {[q,nl], [q,n2]}]

where q is a new root

else

return [if nl # I then nl else n2,succl U succ2]

end if

end

Operation punion clearly takes unit time and space.

For regular expression P we use binary forests F~_-succ and I~_-sUcc as persistent data

structures that store sets FJ’ and 1J’, respectively, for every subexpression occurrence J

within P. Each such occurrence J is associated with (possibly undefined) nodes FT_,,,

and Lot that satisfy invariants,

FT =frontier(F~_,.oof, F~-SUcc)

IJ’ = frontier(I,T_,,,, I,‘_,,,,) (21)

Consequently, each set FJ’ (respectively 1,‘) is represented most efficiently by a single

node FT-,,, (respectively I,‘_,,,). We will exploit this idea by implementing each

lazy product [Fi,Ijj belonging to lazynred, more efficiently using a persistent product

[FLootJJT-r0Of 1. A persistent representation of lazynred, is a set pnredp of pairs [x, y]

of nodes satisfying invariant,

lazynred, = { [frontier(x, F;_-sUcc ,) frontier(y, &--succ >I : ix, VI E pnredp > (22)

We will reformulate the tail MYNNFA in terms of the preceding persistent represen-

tations, and improve the algorithm to compute MYNNFA MR from its tail Mi. We use

macro punion from the discussion above, and the following macro (similar to nesets)

nnpairs(X, Y) dzf if X # IY # I then {[X, Y]} else 0

in order to specify the inductive definition below of the tail MYNNFA satisfying

Invariants (21) and (22).

MT = (8; = 0, I:_,,,, = 0, I;T_,,, = I, F,T,,,, = 0, F,T_,,, = 1,

pnredi, = 8, AI = 8, nulls, = {A}) (23)

C.-H. Chang, R. Paigel Theoretical Computer Science 178 (1997) 1-36

(24)

M,’ = (6; = 0, l~--succ = 0, I,‘-,,, = 4, F’_,,,, = 0, F;f_,,, = q,

pnred, = {[q,ql}, AZ = {[q,al), null, = 0)

where a E C, and q is a new distinct state

M;K = @;,K = 6; U d;,

pnredJIK = pnredJ U pnredK U nnpair(FJ_,.OOt, Zi-root > U

nn pair(Fi_ root’ zJ’-,,,), A:,K = ‘1 ” A;,

nullJ,K = d/J u ndK) (25)

MJTK = (SJ, = SJ’ U Si U jirontier(FT_,,,, FJT_,U,,)frontier(ZKT_-root, Z~_sUCC),

[z~K-roof~z~K-succl = PUnion(‘JT-roof,‘JT,,,,

if rid/J then Zi_root else ~,Z$_-sUCC),

[F&-roof, F&-succ] = punion(if null, then FJ_,,, else I,

FT FT FT) J-SUCC, K-root, K-succ 7

pnredJK = nullK pnredJ U nullJ pnredK U

nnpair(F~_,,,,Z,T,,,), ATK = AT U Ai,

nullJK = nullJnullK)

M; = (8,‘. = SJU) U jiontier(x, F~_B,,)frontier(y,Z~-succ)r

[VI w+,

(26)

(27)

The preceding inductive definitions for constructing the tail MYNNFA together with

the following new rule, analogous to Rule (1), for constructing an MYNNFA from its

tail,

MR = (6R = hi U {qO}frontier(Z~_root,Z~_succ), ZR = 40,

ZR-WC,. = Z;-succ, FR = nullR{qO} Ufrontier(F’_rOOt, F~-SUCC),

FR-WC = F;-succ, A = AT),

where qo is a new distinct state

lead to our first theoretical result.

(28)

Theorem 4.3. For any regular expression R we can compute an equivalent MYNNFA

with s + 1 states in time O(r + m) and auxiliary space O(r), where r is the size of

regular expression R, m is the number of edges in the MYNNFA, and s is the number

of occurrences of alphabet symbols appearing in R.

C-H. Chang, R. PaigeITheoretical Computer Science 178 (1997) 1-36 17

Proof. As before, by applying Rules (23)-(27) during each reduction step of a shift/

reduce regular expression parse, and subsequently applying Rule (28), we can construct

MYNNFA MR equivalent to regular expression R. Each stack record Np will now store

all components of our persistent reformulation of A4pT for any regular expression P.

The correctness of Rules (23)-(28) is proved by structural induction of regular ex-

pressions P based on the correctness (by Theorem 3.5) of Rules (l)-(6), and the

correctness (by Lemma 4.2) of Rule (15) and Rules (16)-(20). The inductive defini-

tions of I~_rOOt, I~T-sUCC, F~_rOOf F~T--suCC within Rules (23)-(27) are shown to satisfy

Invariants (21) based on the semantics of punion and the inductive definitions for

Fp and IT within Rules (l)-(6). Invariants (21) justify the inductive definitions of

S& within Rule (26), and the specifications of 6~ and FR within Rule (28) which

are derived from their counterparts within Rules (5) and and Rule (1) by replacing

occurrences of FJ’ and I$ by equivalent frontier expressions.

Because it is derived by trivially replacing every lazy product that occurs in Rules

(16)-(20) with persistent products, the inductive definition for pnredp within Rules

(23)-(27) must satisfy Invariant (22). Invariant (22) allows us to directly derive the

inductive definition of 6:* within Rule (27) based on Rule (15).

All of the union operations appearing in Rules (23)-(28) are disjoint, and so unit-

time implementable. For any regular expression P disjointness of unions within rules

for pnredp follows immediately from Lemma 4.2 and Invariant (22). Disjointness

of unions within rules for SF follows from Lemma 3.6, Lemma 4.2 (which proves

disjointness of unions appearing in Rule (15)), and Invariants (21).

Analysis of the time bound for the algorithm is straightforward. Scanning regular

expression R from left to right (and shifting each symbol onto the stack) takes O(r)

time altogether. A reduction, which triggers application of one of the rules (23)-(27), is

performed once for each occurrence of I, an alphabet symbol, or an operator appearing

in R. Each punion and nnpair operaton appearing in Rules (23)-(28) takes unit time,

and each frontier calculation takes linear time in the set it computes. The cross product

calculations in Rules (26)-(28) take linear time in the edges they compute. Since the

final MYNNFA SR is the disjoint union of such products, the cumulative cost of these

products is O(m). The remaining frontier calculation in Rule (28) computes the final

states FR in 0(IFRI) = O(s) time, and would be performed only once. Hence, the

cumulative time to perform all reductions is O(m + Y), and MYNNFA MR can be

constructed in O(m + r) time.

Next, consider auxiliary space. Because of occurrences of 1, and parentheses appear-

ing in the regular expression R, the stack can take up O(r) space. Recall that each

record Np stored on the stack represents some subexpression P occurring in the input

regular expression R. Since each record component for IPTroof, FF_roof, and nullp takes

up 0(1) space, O(r) space is needed overall to store these components on the stack.

Each record Np for which P contains no alphabet symbols is equivalent to NJ~ (as

implied by Lemma 3.6), which can be stored in unit space by Rule (23). Hence,

O(r) space is a bound on all such records. Since regular expression R contains s

occurrences of alphabet symbols, the stack cannot contain more than s records Np in

18 C.-H. Chang, R. Paigel Theoretical Computer Science 178 (1997) I-36

which P contains one or more alphabet symbol. Since punion maintains IJT_suCC and

FT_suCC as binary forests, since the nodes of I~_sucr (respectively F~_,y,,,) are disjoint

for distinct records NJ appearing on the stack at any one time, and since the union of

the frontiers of these forests appearing on the stack at any one time have O(s) nodes,

then the total space needed to store these forests on the stack is also O(s).

If P is a regular expression with c > 1 occurrences of alphabet symbols, then we

show by structural induction on regular expressions that lpnredpl<3(c - 1) + I. The

claim is true for any alphabet symbol a, since Ipnred,(= 1 by Rule (24). The claim

holds for J*, since IpnredJ*) = 0 by Rule (27). The claim also holds if P is of the

form JK or J/K, and either argument has no occurrences of alphabet symbols. In these

cases each nnpair operation performed in Rules (25) and (26) evaluates to 0, which

implies that

(pnredpl = IpnredJl + lpnredKl<3(c - 1) + I

by induction. Suppose that J and K have CJ 2 1 and cK 3 1 occurrences of alphabet

symbols respectively. If P is of the form JIK, then the two nnpair operations performed

in Rule (25) contribute one edge apiece to pnredp. Hence, by Rule (25) and induction,

A similar inductive argument using Rule (26) proves the claim when P is of the form

JK. Hence, the total space used to store pnredp for all records NP appearing on the

stack at any one time is O(s). We conclude that the algorithm uses O(r) auxiliary

space overall. 0

Theorem 4.3 leads to a new algorithm that computes the adjacency list form of

MYNNFA AIR in a single left-to-right, bottom-up, shift/reduce parse of the regular

expression R. It has the same asymptotic resource bounds as Briiggemann-Klein’s al-

gorithm [6], but has the advantage of using only one pass.

5. Improving space for McNaughton and Yamada’s NFA

As was remarked earlier, McNaughton and Yamada’s NFA has certain theoretical

disadvantages over Thompson’s simpler NFA. For regular expressions

((4 IAX.. . ((a,-~ I~>(a,l~>*>* . . .>*I*

the number of edges in McNaughton and Yamada’s NFA is the square of the number

of edges in Thompson’s NFA.

Nevertheless, we can modify the algorithm given in Theorem 4.3 so that in O(r)

time it produces an O(s) space data structure that encodes McNaughton and Yamada’s

NFA, and still supports acceptance testing in O(slxl) time for input strings x. In the

same way that nredp was represented in lazy, persistent form as pnredp for regular

C.-H. Chang, R. Paigel Theoretical Computer Science 178 (1997) l-36 19

expression P, we can represent ST, which is the union of Cartesian products, as a set

lazy@ of pairs of nodes from persistent data structures F;_suCC and IF_,,,, satisfying

invariant,

S’p = U fiontier(x, F~_S,,,)fiontier(y, I~_~,,,) (29)
[x,y] E k+Tp

Invariant (29) is satisfied by the following inductive definition, which results from

turning every nonempty product that occurs in the inductive definition of S’p for each

form of P within Rules (23)-(27) by an equivalent persistent product.

1azySz = 0

1azySg = 0

lazyyS& = IazySs U 1azySi

lazyo& = lazys; U lazysi U nnpair(F~_,O,, Is_rO,,)

lazyo:, = lazy65 U pnred,

(30)

(31)

(32)

(33)

(34)

Once 1azySi is computed, we can compute the compressed fcrm lazy6R of 6~ by the

rule,

lazybR = hzy6: u nnpair({qO},~~-root),
where qo is the new state generated in Rule (28) (35)

which satisfies the invariant

fiR = u frontier(x, F&_succ)fYontier(y, IR__s& (36)
b,YlElU~Y&

Rule (35) is obtained by turning the nonempty product within Rule (28) into persistent

form.

Lemma 5.1. Rules (30)-(34) satisfy Invariant (29), and Invariant (36) is correctly

established by Rule (35). Each union operation occurring within Rules (30)-(35) is

disjoint.

Proof. Correctness of Rules (30)-(35) is proved by structural induction on regular

expressions based on the correctness (by Theorem 4.3) of Rules (23)-(28). Disjointness

of unions follows immediately from Theorem 4.3 and Invariants (21). 0

In order to explain how kzy6R can be used to simulate SR, it is convenient to regard

hzy6R as a binary relation, and to introduce a few new operations on such relations.

20 C.-H. Chang, R. Paigel Theoretical Computer Science 178 (1997) I-36

Let E be a binary relation, and let S be a set. Then:

domain E = {x : 3y 1 [x,y] E E}, rangeE={y:&c / [x,y]~E}

E-’ = {[y,xl : kyl E E), E{x}={y:[u,y]~E (u=x}

E[Sl={y:lx~S 1 [x,y]~E}=uE{x)

XES

Els={[x,yl~E I XES}

The term E[S] is called the image of S under E; Els is called the restriction of E

to s.

If V is a subset of the MYNNFA states QR, then we can compute the collection of

states 6(V,a) for all of the alphabet symbols a E C as follows. First we compute the

set

F_domain(V) = {x E domain lazy6R 1 V n fiontier(x, FR+~~~) # 0)

of nodes in ~~~~~~~ whose frontiers overlap with V. Next, we compute the set

Z_image(V) = Zazy&[Fdomain(V)]

of nodes in I,L_~,,~~ that form the image of F-domain(V) under lazyh,. After that we

compute the set

6~(V, C) = {z : 3y E Z_image(V) I z E fiontier(y,l~_sucr)}

of states one transition away from V in 6~. Finally, for each alphabet symbol a E C,

we compute the set

of states one transition away from V and labeled with symbol a.

We call our compressed MYNNFA MR = (lazy&, ZR, I,-,,,,, FR, ~~~~~~~~ a

pre_CNNFA. To make simulation efficient, we need to modify the pre_CNNFA only

slightly. To compute F_domain(V) efficiently, it is better to use a representation for
-I parent pointers FR_pred = FR_suCC than child pointers ~~~~~~~~ In order to implement

lazy6R, we will represent every node n in FR_-pred as a record containing a single parent

pointer, and a pointer to a list of pointers to the set lazy8R{n} of nodes in IR_succ. We

also gain efficiency by compressing forests FR_,,,d and IR_succ so that their internal

nodes are contained in domain lazyh, and range IazySR,, respectively. Such compres-

sion, which we call useless node elimination, removes intermediate nodes generated

by successive applications of the alternation Rule (32). The representation that results

from these modifications is called the CNNFA. Fig. 4 illustrates a CNNFA equivalent

to regular expression (aJb)*abb.

Procedure convert below is used to convert a pre_CNNFA to a CNNFA in O(s)

time and space. It performs useless node elimination together with the conversion of

FR-succ intO FR-pred in place; i.e., without relocating any node record that belongs to

C.-H. Chany, R. Paigel Theoretical Computer Science 178 (1997) 1-36 21

Fig. 4. A Compressed MYNNFA (CNNFA) equivalent to regular expression (alb)*abb. Solid lines represent

edges that belong to lazydn. Dotted lines represent edges that belong to F,+-pred and IR__s,,cc. Dashed lines

represent edges removed by useless node elimination.

the domain or range of la&R. Procedure conuert makes use of a predicate busy(n),

which is true if and only if a node n belongs to QR or to the domain or range of

lazy6R.

To perform useless node elimination on IR-_sUCC we execute convert(rt) for each root

rt in forest IR_s,,cc.

procedure convert(n)

(*I
if busy(n) then

I&&n) := nodelist --compression takes place here

return [n]

else

return nodelist

end if

end procedure

if leaf(n) then

return [n] -- busy(n) is true for leaf; return singleton

else

nodelist : = append lists convert(y) for each y E I&&n)

end if

To perform useless node elimination and transform ~~~~~~~ into FR_~~~~, we modify

procedure convert by replacing line (*) with

for x in nodelist loop

FR_-pred(x) := n --compression takes place here

end loop

and by replacing the remaining occurrence of I,_,,,, by ~~~~~~~~ If we allow ~~~~~~~

and FR-pred to be aliases, then simultaneous compression and conversion (implemented

so that a pointer to a list of children is replaced by a parent pointer) is achieved in

place.

22 C.-H. Chang. R. Paigel Theoretical Computer Science 178 (1997) 1-36

Thus, we have

Theorem 5.2. For any regular expression R, its equivalent CNNFA, consisting of

F,+red, IR-m, IR, FR, AR, and lazy&, takes up O(s) space and can be computed in
time O(r) and auxiliary space O(r).

Proof. Let us first consider the cost of constructing a pre_CNNFA. As in Theorem

4.3, ~~~~~~~ and IR_~~~~ are computed in O(r) time and take up O(s) space. Each

of the unions in Rules (30)-(35) is disjoint by Lemma 5.1, and, hence, unit-time

implementable for any regular expression P. In particular, pnredJ can be combined

with lazy&$ destructively (i.e., without hidden costs due to copying) in unit time in Rule

(34) since pnredJ. is subsequently assigned empty (in Rule (27), and pnredJ is never

needed again. Hence, the overall time bound for the rules to construct la&R is O(r).
By Theorem 4.3, O(s) space is needed to store Fi_Succ and Z~_-sUcc. Analysis of the

space needed to store lazy6R is tied to the analysis of pnredR. By the same argument

used to analyze the overall space for pnred contributed by Rule (26) in the proof of

Theorem 4.3, we see that Rule (33) contributes O(s) space overall to the calculation

of lazy& The O(s) space bound for pnredR was coarse in the proof of Theorem

4.3, since it only bounded the cumulative number of pairs that were added to pnredR
in every possible application of Rules (23)-(28). Since the union operation in Rule

(34) is disjoint, the collection of sets pnredJ that ever get added to ZazySi as a result

of applying this rule must be mutually disjoint. Hence the cardinality of their union

must be O(s). We conclude that O(s) space is needed to store lazy6. By the proof of

Theorem 4.3 the overall space exclusive of the stack is O(s). The overall space bound

due to the stack size is O(Y). Finally, the conversion from a pre_CNNFA to a CNNFA

takes O(s) time and space. 0

CNNFA /a&R also supports an efficient simulation of transition map bR. The best

previous worst case time bound for computing the collection of sets 6R(V, a) for an

arbitrary subset V C QR and all of the alphabet symbols a E C is @(/VI x (sR(v,c)l)

using an adjacency list implementation of McNaughton and Yamada’s NFA, or O(r)

using Thompson’s NFA.

In Theorem 5.5 we improve this bound, and obtain, essentially, optimal asymptotic

time. This is our main theoretical result. It explains the apparent superior performance

of acceptance testing using the CNNFA over Thompson’s. It explains more convinc-

ingly why constructing a DFA starting from the CNNFA is at least one order of magni-

tude faster than when we start from either Thompson’s or McNaughton and Yamada’s

NFA. These empirical results are presented in Section 6.

Before proving the theorem, we will first prove two technical lemmas.

Lemma 5.3. Let R be a regular expression containing occurrences of subexpressions
J, K, and P, each of which contains an occurrence of an alphabet symbol. The
following two properties hold for pre_CNNFA’s.

C.-H. Chany, R. PaigeITheoretical Computer Science 178 (1997) 1-36 23

1. If J is not a subexpression of K, and K is not a subexpression of J, then

F,T_,,, f FL-ro,, and k,, Z ko,,.
2. If J is a subexpression of K, and K is a subexpression of P, then (i) FT_,,, #

FT_-root whenever F$-roor # F?-,,, or Fk,,, # FF-root3 and (ii) IJTroot # IF-root

whenever Ik,,, # IJ’-,,I or Ikroot # IF-roar.

Proof. Since J, K, and P contain alphabet symbols, then IT_root, FT_loof, Ii_,,,,

F;-,,,, I:-rw and F:--roof are all defined nodes, according to Lemma 3.6(2) and

Invariants (2 1).

(1) Since J and K have no common occurrences of alphabet symbols, then Q,’ and

Qi are disjoint. Hence, so is FJ’ and Fz, so is IJ’ and I:, and the inequalities are

established.

(2) It suffices to prove implication (i). The proof is by structural induction on regular

expression P. Suppose implication (i) holds for any immediate subexpression S of P.

If P is of the form S*, then F~_-root = Fi_,,, according to Rule (27), so impliciation

(i) must also hold for P. Suppose P is either of the forms SJH or S H. By Rules

(25) and (26) F~--mot is either the same as Fi_roof, the same as F;_,,,, or different

from F~_,.OOt, FL-,.,,,,, and from any node FT_,,, for any subexpression occurrence J

within S or H. In any case Fi_,,, is different from Fs_,.oot by part (1) of the lemma.

Hence, if FF_-root is different from FL_,.oor, then implication (i) must hold for P. If

FP-roar = G-root7 then implication (i) must also hold for P, because F$_,,, # FI_,,,

by part (1) of the lemma. 0

Lemma 5.4. Let V be any subset of states in the pre_CNNFA built from regular

expression R, and let lazy& = {[x, y] E lazysR 1 frontier(x,FR_succ) n V # 0). Then

Ikazy6vj = O(lI_image(V)\).

Proof. We note, first of all, that

I_image(V) = lazyc?R[F_domain(V)] = lazysR[domain EazyGv]

The lemma is proved by showing that lazybv is the union of three one-to-one maps,

one one-to-many map, and one many-to-one map whose cardinality is less than or equal

to the cardinality of one of the other maps. Since the cardinality of a one-to-many map

equals the cardinality of its own range, the cardinality of each of the five maps must

be bounded by II_image(V)I.

Any pair that belongs to binary relation lazy& is contributed by either Rule (33) (for

product) or Rule (34) (for star). First consider the set of pairs f 1 C lazySv contributed

by Rule (33). Whenever pair [FT_,.oot,I$_-roof] is added to lazy@, by Rule (33), we

know that both FT_,.oot and Ii_,,, are defined. By Lemma 3.6 (2) and by Invariants

(21), this implies that IT_,,, and Fi_,,, are also defined. Hence, by Rule (26) we

know that F~~_,.oot must be either a new node or the same node as Fi_,,,, and I&_loof

must be either a new node or the same node as IJ_,.oor, depending on the values of

nullJ and nullK. Let PS be a subexpression of R different from JK, and consider the

24 C-H. Chang. R. Paigel Theoretical Computer Science 178 (1997) 1-36

pair [Fp_ rOOf,I~_-rOO~] contributed to lazy&s y T b Rule (33). If neither PS or JK is a

subexpression of the other, then F~_,,, # F~_-root and I~_-roof # I~_,,, by Lemma

5.3 (1). Suppose that JK is a subexpression of P. Then I~_,.oor # Ii_,,, by Lemma

5.3 (1). Since F$_,.oot # FT-,,, by Rule (26), we know that F~_,,, # Ff?_,.oot by

Lemma 5.3(2). A similar argument is used for the case where JK is a subexpression

of S. Hence, the set of pairs [F~_roor,I~_roof] that gets added to pnredJ;r; over every

subexpression JK of R forms a one-to-one map whose restriction f 1 to domain lazy6v

must also be one-to-one.

We split all of the pairs contributed by pnredJ to lazy& via Rule (34) (over all

such J where Rule (34) is applied by our algorithm) into three subsets, based on the

way that pnredJ is built up according to Rules (24) (25), and (26) respectively.

The set f of pairs [q,q] added to pnred, by Rule (24) over all alphabet symbol

occurrences a within R is clearly one-to-one, since a unique pair is added for each

occurrence a of an alphabet symbol within R. Its restriction f2 to domain ZazySv must

also be one-to-one.

In the case of Rule (25), each application of this rule adds either two new pairs

%m&rooJ and F’i-rod;-ma1 or no new pairs to pnredJlk-. Let P/S be a

subexpression of R different from JIK, and suppose that the two pairs [F~_roof,I~_ro,t]

and [F?-,.oof, I~-,otl are contributed to pnredslp by Rule (25). If neither PIS or JIK

is a subexpression of the other, then the four pairs of nodes have no node in common

by Lemma 5.3(l). Suppose that JIK is a subexpression of P. Then I&ro,, # I~_,oof,

I~-,,, # I~_root, %,,, # F~-root, and F;-‘_,o, # F:-,,, by Lemma 53(l). BY

Rule (25) we bow that F~lK_roor # F!-roott F$_-root # Fk.ooll I&+,t # I?-rool,

I&_roof # I&voOf, F~_,.oot # F~_,.ool, and I~-,.ool # IJ’-,,t. It follows from Lemma

5.3(2) that F!-ron, # F~-roo12 Fkroor # F~-,oof9 k.o,, f I~-roof~ and I,k-roof #
IT_,oot, A similar argument is used for the case where J/K is a subexpression of S.

Hence, all of these pairs forms a one-to-one map whose restriction f 3 to domain 1azySv

must also be one-to-one.

Finally, consider the set f of pairs [F~_-lOOf,I~_TOOf] contributed by Rule (26) to

pnredJK over all subexpressions JK of R. Whenever any such pair [F~_-roof,I~_-root] is

added to pnredJK, then F&,,, and IJ’_,,, must be defined. By Lemma 3.6(2) and by

Invariants (21), Fi_root and IJ’_,,, are defined if and only if F~_,,, and Ii_,.OOi are

defined. Finally, F~_,,, and I&,.oot are defined if and only if the pair [F~_roof,I~_root]

is added to lazy& by Rule (33).

Consider any pair [F~_roof,I~_rool] E f contributed by subexpression JK. For any

other pair [F~_-TOOf,Z&,Of] E f to have I&,,, = IJ_roof, it must be that either GH is

a subexpression of J or JK is a subexpression of G by Lemma 5.3(l). This implies

that for any I E range f the set {JlK,, . . . , JkKk} of all those subexpressions JK of

R such that F~_,,, E f -’ {I} and I~_roor = I can be totally ordered such that JiKi is

a subexpression of Ji+l for i = 1,. . . , k - 1. Among the k pairs contributed by these

subexpressions to f, we call pair [FiA _,.oof,I~_-roof] the representative for I. Let g be

the set of representative pairs in f, and let h = f - g. Clearly g is one-to-many,

and its restriction f4 to domain 1azySv must also be one-to-many. Unfortunately, the

C.-H. Chang, R. Paigel Theoretical Computer Science 178 (1997) 1-36 25

restriction fs of h to domain lazyfiv is many-to-one. For example, regular expression

(GH)K contributes pairs [Fi_root,Z&root] and [FT_ K ,.o&+oof] to Pnr’+?tf)K such

that FLOot # F.L,,, and Kroot = &Loot whenever nullc is false, nullH is true,

ntll/K is true, and G, H, and K all have occurrences of alphabet symbols.

We will show that the cardinality of f 5 is bounded by the cardinality of fl. The

proof rests on two observations. The first is that FIK,_root either is equal to or is the

parent of Fi,_,.OOt in F~_-succ for i = 1,. . . , k. This observation follows immediately

from Rule (26), and implies that F&_Yoot E domain lazy6v whenever Fi,_,,, E

domain lazy6v. The second observation is that F&_-roof = FI+, _-TOOf for i = 1,. . , k-

1. Thus, for i = 1,. . , k - 1, if [F~~_-roor,I~_-root] belongs to both f and lazyhv, then

FIK,_,,t E domain lazy6v by the first observation, FI+,_,,, E domain lazydv by the

second, and [F;s,, -,&+, --roof] belongs to one-to-one map fl by previous analysis.

Hence, we have a one-to-one correspondence between f 5 and a subset of f 1.
To prove the second observation let 1 fi <k - 1. Since Il_,,OOt = I:+, _-looI, and

since Ji is a subexpression of JiKi, which is a subexpression of Ji+l, then II_YOOt =

IT J, K, -roof = I:+, --Ioot by Lemma 5.3(2). Either J;+I equals JiKi or not. If it does, then

F:+, --root = F:K,--roof trivially. Otherwise, let Eo = J,Ki, let lI?j = Ji+l, and let Ei be the

immediate subexpression of Ej+, for i = 0,. . ,j - 1. We note, first of all, that since

IT J, K, -roof = I:+,, --roo12 then ILoor = Ii, for i = 0,. . . , j by Lemma 5.3(2). We show by

induction that FiO = Fz, for i = 1,. . , j.

Assume that F& = Fz, for i 2 0. By hypothesis Ei+l cannot be of the form JK where

neither J or K is equivalent to i,. Hence, by Rules (23)-(27), only when E/+1 is LIE,,

Ei\L, LE;, E,L, or Ei *, where L is equivalent to I,, does ~~~~~~~~ = IE,+,--rOOI. And in

all these cases we also have FE,_~*~~ = FE,+,_,.~~~. 0

Since lazy6” and I_image(V) are the same values in both the pre_CNNFA and the

CNNFA (i.e., useless node elimination only removes nodes not incident to lazyGv),

the bound Ilazydv(= O(Il_image(V)I) established by Lemma 5.4 for pre_CNNFA’s

also holds for CNNFA’s. Hence, we have

Theorem 5.5. Given any subset V of the CNNFA states, we can compute all of the

sets hR(V, a) for every alphabet symbols a E C in time 0(1 VI + I&(V, C>l).

Proof. Because of useless node elmination, the set of all nodes in the CNNFA along

the paths in ~~~~~~~ starting from nodes in V is just the set V U F-domain(V), which

can be found in O(l V/ + \F_domain(V)l) time by a marked traversal of parent pointers

in forest FR+,,.~~. Although IF_domain(V)I can be much larger than I V 1, the fact that

F_domain(V) = domain lazy& together with Lemma 5.4 guarantees that

IF_domain(V)I = Id omain lazy6$ d IlazyGvI = O((l_image(V)(

Computing Z-image(V) involves taking the union of sets lazydR{n} for each n that

belongs to F-domain(V). That is, for each n E F-domain(V) we traverse the list

storing lazydR{n}, and mark every unmarked node in IR+,cc pointed to by an element

26 C.-H. Chang. R. Paigel Theoretical Computer Science I78 (1997) 1-36

V

FR-pred

Fig. 5. To compute fi~(V, a) in a CNNFA.

of the list. I-image(V) is the set of all such marked nodes. Overall, this takes time

linear in the sum of the lengths of these lists, which is O(lluzyG~I).

Calculating SR(V, Z) involves computing the union of the sets frontier(n, IR_succ)
for each 12 that belongs to Z_image(V). This is achieved in O(]S,(V,C)() time using

a depth-first-search through I&$,,. starting from Z-image(V), marking all unmarked

leaves. The set of marked leaves is ~R(V,C). Multiset discrimination [8] can be used

to separate out all of the sets {q E 6,(V,C) (A(q) = u} for each a E C in time

0(~SR(V, C)i). See Fig. 5 for an illustration of the 6~(V, a) computation. 0

Consider an NFA constructed from the following regular expression:

k t’.s

(Xl(AI(. . . (nlu)*)*)~. .>*’)”

In order to follow transitions labeled ‘a’, we have to examine @(n2) edges and O(n)

states in @(n2) time for McNaughton and Yamada’s NFA, O(kn) states and edges in

O(kn) time for Thompson’s machine, and o(n) states and edges in O(n) time for the

CNNFA.

We end this section with the following theoretical result, originally proved by Chang

[9], which improves the auxiliary space given in Theorems 4.3 and 5.2.

Theorem 5.6. Given any regular expression R with length r and with s occurrences of

alphabet symbols, its equivalent CNNFA can be computed in time O(r) and auxiliary

space O(s).

Proof. See the Appendix. 0

6. Computational results

The unique structure of the CNNFA lends itself to further compression suitable

for a practical implementation. Our implementation is developed starting from binary

C.-H. Chany, R. Paigel Theoretical Computer Science 178 (1997) I-36 21

forests FR_pred and I& sUcL’ without useless node elimination. For practical reasons we

also equip forest ~~~~~~~ with parent pointers as well as pointers to children. Then,

in a single linear time bottom-up traversal through fOreitS FR_pred and IR__succ, we

repeatedly perform the following two promotion transformations, which reduce the

number of edges in lazyfiR. In FR_pred promotion we replace edges [xl, y] and [XX, y]

within 1uzyS~ by the single edge [z, y] when edges [XI ,z] and [x~,z] belong to FR_~~~(~.

In I&.YUcc promotion we replace edges [x, yr] and [x, ye] within lazy& by the single

edge [x,z] when edges [z, yt] and [z,xz] belong to IR__succ (see Fig. 6). In the case of

regular expression ((al In)(’ ” ((a,_] Il)(o,yln)*)* ” ‘)*)* promotion can simplify /azydR

from 3s - 1 edges to two edges.

Recall from Section 5 that useless node elimination removes forest nodes so that the

internal nodes of FR_-pred (respectively IR_sUcc) are contained in the domain (respec-

tively range) of lazy6R. In developing our irr@eIIIentatiOn, we carry out useless node

elimination at the same time as promotion.

We dS0 modify useless node elimination so that it can remove leaves of FR-pred

and IR_,YjLcc. Whenever there is an internal node z of FR_Pred all of whose children are

leaves ql , . . . ,qk, none of which belong to domain lazy6~ or to range hzy6R, and all

of which share a common parent w in IR_.sU,,,., then these leaves can be replaced by a

single leaf z. For i = 1 , . , k, edge [qi,Z] is removed from FRPpred, and edge [w, qi] is

replaced by [w,z] within /R-_sUcc. We also need to assign the set {A(qi) : i = 1,. . . , k}

of symbols to A(z) (cf. [9] for details). Finally, if q1 , . . . , qk are all final states (they

must be all final or none final), then they must be replaced in the set FR of final states

by z.

As an example, consider expression ((al I2)(. . ((u,_l IA)(u,(A)*)* . .)*)* once again.

After promotion the CNNFA has 4s - 1 states; after useless node elimination it has

only two (cf. Fig. 7). In using our CNNFA to simulate an NFA, the transition edge t

can be taken only if the input symbol being scanned belongs to {at, a2,. . a,}, which

- 0.m
FR-prcd IR-WC

FE-pred Promotion

Fs-prcd IR-mm Ff+rcd IR-succ

IR_."CC Promotion

Fig. 6. FR_-pred and IR--succ promotion.

28 C.-H. Chany, R. Paiqel Theoretical Computer Science 178 (1997) 1-36

Ci?1a,,a...Q,l
QO Cl

Fig. 7. A CNNFA equivalent to ((al In)(. ((a,_l ~l)(asll.)*)* .)*)* resulting from promotion and useless

node elimination.

Fig. 8. A CNNFA equivalent to regular expression (aJb)*abb resulting from promotion and useless node

elimination.

labels node Ct. Fig. 8 illustrates a CNNFA resulting from applying promotion and

useless node elimination to the CNNFA of Fig. 4.

We mention one more useful transformation called tree contraction, which we did

not implement. Tree contraction considers the union of edges in &y6R, FR-pred, and

I&p&. When an internal node n of Fs_-p,.ed has kl outgoing edges and k2 incoming

edges, and if kl k2 < kl + k2, then we can replace node n and the kl + k2 edges incident

to n by klk2 edges (see Fig. 9); and (2) when an internal node n of ~~~~~~~ has kl

incoming edges and k2 outgoing edges, and if kl k2 d kl + k2, then we can replace node

n and the kl + k2 edges incident to n by klkz edges (see Fig. 9).

After applying tree contraction to the CNNFA of Fig. 8, one IR_sUcc node is elimi-

nated (see Fig. 10). It contains 5 states and 6 edges in contrast to the 9 states and 14

edges found in the pre_CNNFA of Fig. 4.

Experiments to benchmark the performance of our CNNFA implementation have

been carried out for a range of regular expression patterns against a number of machines

including Thompson’s NFA, an optimized form of Thompson’s NFA, and McNaughton

and Yamada’s NFA. We build Thompson’s NFA according to the construction rules

described in [3]. Thompson’s NFA usually contains redundant states and I-edges. How-

ever, to our knowledge there is no obvious/efficient algorithm to optimize Thompson’s

NFA without blowing up the linear space constraint. We therefore devise some simple

but effective transformations that eliminate redundant states and edges in most of the

test cases.

Our acceptance testing experiments show that the CNNFA outperforms Thompson’s

NFA, Thompson’s optimized NFA, and McNaughton and Yamada’s NFA. See Fig. 11

C.-H. Chang, R. Paigel Theoretical Computer Science 178 (1997) l-36 29

F R-pred IR-WCC

FR-pred Fbpred

Fig. 9. Tree contraction

Fig. 10. A CNNFA equivalent to the regular expression (a(b)*abb.

Fig. I I. CNNFA acceptance test speedup ratio.

for an acceptance testing benchmark summary. The benchmark summary indicates that

the CNNFA is slower than all other machines for (abc . . .) and (abc . . .)* patterns. This

is an anomalous shortcoming of our current implementation, which can be overcome

easily.

30 C.-H. Chany. R. Paigel Theoretical Computer Science 178 (1997) I-36

Fig. 12. CNNFA subset construction speedup ratio.

pattern
(abc. - .)’
‘-“,c... l

. ..Q ,”

prog. lang. 10 timec

Fig. 13. DFA size improvement ratio starting from the CNNFA.

The benchmark for subset construction is more favorable. The CNNFA outperforms

the other machines not only in DFA construction time but also in constructed machine

size. Subset construction is compared on the following five starting machines: the

CNNFA, Thompson’s NFA, Thompson’s optimized NFA, Thompson’s NFA using the

kernel items heuristic [3], and McNaughton and Yamada’s NFA.

We implemented subset construction tailored to the CNNFA and other machines.

The only differences in these implementations is in the calculation of 6~(V, C), where

we use the efficient procedure described by Theorem 5.5 for the CNNFA, and needed

the standard procedure for traversing /z edges for Thompson’s NFA and Thompson’s

optimized NFA. The CNNFA achieves linear speedup and constructs a linearly smaller

DFA in many of the test cases. See Figs. 12 and 13 for benchmark summaries. The

raw timing data is found in [9]. All the tests described in this paper are performed on a

lightly loaded SUN 3/250 server. We used getitimer 0 and setitimer 0 primitives

[23] to measure program execution time. It is interesting to note that the CNNFA has

a better speedup ratio on SUN Spare-based computers.

Recently at Columbia University’s Theory Day, Aho reported a highly efficient

heuristic for deciding whether a given string belongs to the language denoted by a

regular expression, i.e. both string and regular expression are dynamic(cf. [3, p. 1281).

This problem is needed for UNIX tools such as egrep. Aho’s heuristic constructs Mc-

Naughton and Yamada’s NFA first, and subsequently builds a DFA specialized to the

input string incrementally as the string is scanned from left to right. Benchmarks show-

ing substantial computational improvement in adapting the CNNFA to Aho’s heuristic

are found in [9].

C.-H. Chang, R. Paigel Theoretical Computer Science 178 (1997) l-36 31

7. Conclusions

Theoretical analysis and confirming empirical evidence demonstrates that our pro-

posed CNNFA leads to a substantially more efficient way of turning regular expressions

into DFA’s than other NFA’s in current use. It would be interesting future research to

analyze the effect of promotion and useless node elimination on the CNNFA. It would

also be worthwhile to obtain a sharper analysis of the constant factors in comparing

the CNNFA with other NFA’s.

Acknowledgements

We are grateful for helpful comments from Deepak Goyal, Anne Brtiggemann-Klein,

and Ravi Sethi.

Appendix A. CNNFA construction in O(S) auxiliary space

In order to reduce the auxiliary space from O(r) to O(s) in CNNFA construction, we

will parse regular expressions so that the stack will only grow when an alphabet symbol

is encountered. Our approach depends on distinguishing between regular expressions

Rc formed by product, and regular expressions RD formed by alternation. We also

distinguish between regular expressions with and without occurrences of alphabet sym-

bols. That is, regular expressions RC (respectively RD) are partitioned into expressions

AC (respectively AD) that contain occurrences of alphabet symbols and expressions Lc

(respectively J~D) that do not. The following grammar with start symbol 2 generates

delimited regular expressions in terms of the syntactic categories just mentioned:

Z = ‘%‘RD‘%’

RD = LD I AD

LD = Lc 1 LD‘I’LD

Lc = 2 I Lc‘*’ I LCLC I ‘(‘LD‘)’

AD = AC 1 LD‘I’AD 1 AD‘I’RD

AC = A I LcAc I AcRc

A = a / A‘*’ 1 ‘(‘AD‘)’

(A.11

where a represents an alphabet symbol, and literal symbols are quoted to distinguish

them from meta-symbols.

Let input be a sequence of symbols storing the delimited regular expression %R%,

where the first symbol of R is stored at the second position denoted by input(2). Our

algorithm consists of three procedures that read but never modify input.

32 C.-H. Chany, R. Paigel Theoretical Computer Science I78 (1997) 1-36

Procedure right-re(barrier) accepts a single parameter barrier, which is the leftmost

position of the longest subexpression P of R of the form (either Rc or RD) uniquely

determined by the context in which this procedure is called. If the symbol just to the

left of barrier is either % or 1, then the context is either %P% or AD’I’P, where P is

of the form RD. Otherwise, the symbol just to the left of barrier must be ‘*‘, ‘)‘, or

‘a’, and the context is AcP, where P is of the form Rc. Procedure right_re(barrier)

returns record Np representing the tail of the CNNFA for P together with the rightmost

position of P. The tail of the CNNFA for input R is computed by the top-level function

call rightre(2).

In operational terms procedure right_re(barrier) scans and validates subexpression

P (determined by barrier) from left to right. It begins by assigning barrier-l to rpos,
which represents the rightmost position in P that has been scanned. It also sets the

parentheses count pcount to 0, and sets the current state to 5’1. After that, it scans

symbols of P from left to right (starting with position barrier), and takes actions

depending on the character rsymb (the next character on the right to be scanned)

stored in position input(rpos + 1) and a possible condition as specified in Table 1.

If no alphabet symbol is encountered during scanning, then P is equivalent to 2,

and N;. is returned along with the rightmost position of P. Otherwise, the first time an

alphabet symbol a is encountered, say at position pos, function expanda(barrier, pos)
is called to compute and return record Np and the rightmost position of P, which is also

returned by right_re(barrier). If the procedure fails to terminate (i.e., it gets stuck),

then input R is invalid.

Procedure expand_a(barrier, pos) does most of the work computing the CNNFA.

Its first parameter barrier defines the context P for which Np is computed. This pro-

cedure begins by computing record N, for symbol a in the initial one-symbol context

at position pos. It then recomputes the single record NA as context A is repeatedly

extended until the context becomes P. If NA is the current record representing con-

text A, then the following are the different ways of extending A. Because of the way

Table I
right_re(barrier)

rsymb condition action
State Sl

(rpos +:= 1; pcounf +:= 1

;
return ezpand_a(bartier, rpos + 1)
rpos +:= 1; goto State S2

State 52

1%] pcount = 0 or

I (syntyp = C and
pcount = 0) return [Nx, rpos]

!
pcounf # 0 rpos +:= 1; pcount -:= 1

rpos +:= 1

I (pcount # 0 OP
syntyp = D rpos +:= 1; got0 state Sl

b41 got0 State Sl

C.-H. Chang. R. Paigel Theoretical Computer Science 178 (1997) l-36 33

that right-re(barrier) is called, expand, cannot move outside of the context P de-

termined by barrier. We use the notation [(I A] to denote a single symbol belong-

ing to symbols listed between square brackets. The notation [-*I denotes any symbol

but *.

1. (Case: A*) Compute NA* from NA using Rules (27) and (34) and extend the

context to A*.

2. (Case: (A)) Leave the current record alone, but extend the context to (A).

3. (Case: A [(an]) A must be of the form AC in the context ARC. If rpos is the

position just to the right of A, then execute the call right_re(rpos), which returns NR<.

Compute NAR(. using Rules (26) and (33) and extend the context to ARC.

4. (Case: [(I %] A I) A must be of the form AD in the context of A(RD. If rpos is the

position just to the right of A, then execute the call rightre(rpos + l), which returns

N,Q . Compute NA lRD using Rules (25) and (32) and extend the context to A IRD.

5. (Case: [)*A] A [-*I, where A does not begin at barrier) A must be of the form

AC in the context of LcA, where Lc is restricted to be the longest subexpression that

does not extend to the left of barrier. If lpos is the position just to the left of A,

then execute our third procedure lefM(b arrier,Ipos) (which finds Lc), and extend the

context to LcA. Record NA remains unchanged, because /zA = A.

6. (Case:) A [)I%], where A does not begin at barrier) A must be of the form

AD in the context of LDIA, where LD is restricted to be the longest subexpression that

does not extend to the left of barrier. If lpos is the position just to the left of A, then

execute lef t_,I(barrier, lpos - 1) to locate L D, compute N;,I~ using Rules (25)and (32)

and extend the context to LDIA.

When the context can no longer be extended according to the preceding cases, then

the final context A is correct if it begins at barrier, and its surrounding symbols are

either (1) % A % (where NA represents the tail CNNFA for R), (2) / A [)%I (where

A is of the form AD), or (3) [)*Aa] A [I%] (w h ere A is of the form AC). In these

cases return record NA and the rightmost position of A. Otherwise, regular expression

R is invalid.

The simplest procedure is ZeftJ(barrier,pos). Whenever it is called by expand-a,

it returns a maximal subexpression of the form either Lc or LD (depending on the

symbol that occurs in input(pos + 1)) whose right boundary is at position pos, and

whose left boundary does not extend to the left of barrier. It begins by setting the

leftmost position lpos of the scanned context to pos, and assigning zero to parentheses

count pcount. We also set variable syntyp to D if input@- 1) = ‘I’, which indicates

that we are looking for a subexpression of the form LD. Otherwise, we assign C to

syntyp, which indicates that we are looking for a subexpression of the form Lc. After

initialization, the procedure scans symbols from right to left, taking actions depend-

ing on the character lsymb in position input(lpos - 1) and a condition according to

Table 2. Within Table 2 the term any means any symbol. Observe that no valida-

tion is necessary, since the symbols that are found have already been validated by a

right-to-left scan within right-r-e.

34 C.-H. Chang, R. Paigel Theoretical Computer Science 178 (1997) l-36

Table 2

lefi_l(barrier,pos)

lsymb condition action

1 lpos # barrier lpos -:= 1; pcount +:= 1

(syntyp = c

and pcount = 0) or
an?/ 1~0s = barrier or II _

I
pcount = 0

pcount # 0
otherwise

return lpos
lpos -:= 1; pcount -:= 1

lpos -:= 1;

The intuition behind the O(r) time O(s) auxiliary space of the preceding algorithm

stems from the fact that regular expression R is scanned once from left to right by calls

to rightye and expand-u. It is scanned no more than once from right to left by calls

to left-1 and expand-a. No more than unit time is spent scanning each symbol, and

no more than unit space is consumed for each alphabet symbol. The depth of recursive

calls is restricted to O(s), because expand-a is called only once for each occurrence

of an alphabet symbol, and right re can only be called once at the top level or from

expand-a. These arguments are made more formally in the following lemma, which

leads to Theorem 5.6.

Lemma A.1. Let P be the context uniquely determined by barrier in the function call

right_re(barrier). Let sp be the number of alphabet symbol occurrences in P, and let

rp be the length of P. Then the call computes record Np in time O(rp) and auxiliary

space 0(1 + sp).

Proof. The proof uses rule induction [26] with respect to grammar rules (A.1). When-

ever right-re(barrier) is called, the context P determined by position barrier must be

of the form Rn in the greater contexts %Rn% and An]Rn[)%], or of the form Rc in

the greater context AcRc[])%]. W e will only prove complexity here. The correctness

proof is tedious but straightforward.

Referring to grammar (A.l), we see that Rb may be either LD or An, and RC may be

either LC or AC. Since record NA used to store the tail CNNFA in procedure expand-a

takes O(SA) space by Theorem 5.2, then there is a constant bl > 0 such that blsA

bounds the space for NA. Since both left-A and the portion of rightre prior to its call

to expand-a take unit space, then there is a constant b2 > 0 that bounds both the cost

of calling and executing left-2 and the cost of calling and executing right-re prior to

the call to expand-a. Finally, there is a constant b3 > 0 that bounds the unit space

used by any invocation of expand-a without considering any of its calls or the storage

of record NA.

Letting b = bl + b2 + b3, we will prove that right-re uses space bounded by b2 + bsp

and time O(rp). When P is of the form LD or Lc (so that sp = 0) it is easy to see

that right_re(barrier) scans each symbol of P from left to right in linear time and that

b2 bounds the space. It remains to show that the lemma holds when P is of the form

AC or An.

C.-H. Chang, R. Paigel Theoretical Computer Science 178 (1997) 1-36 35

First consider when P is of the form AC. According to grammar (A.l) AC must be

of the form A, LcAc, or AcRc. First, suppose that P = PiP2, where PI is of the form

Lc and P2 is of the form AC. In this case function rightye carries out three tasks.

First it scans symbols of PI from left to right in linear time and space bounded by

bz. Second, it proceeds to scan P2 from left to right until it encounters an alphabet

symbol occurrence. At this point expands is called, and record Np2 is computed. This

second task goes through the same steps as when rightye is called with context P2.

By induction this second task takes time O(rp2) and space bounded by 62 + bsp,. At

the end of the second task after Np: is computed (when the call tree contains only the

top level call to right-re and its call to exand_a), the total space being used is bounded

by b2 + bs,+ - bz. At this point we begin the third task, which is the right-to-left scan

over PI when expand-a calls left-k This task consumes b2 additional units of space,

and takes O(YP,) time. Procedure left-lambda releases its b2 units of space on return,

and expund_a returns record Np2, which equals N;,p,, and takes no more than blsp,

space. Hence, the overall space bound is 62 + bsp.

Next, suppose that P = P1P2, where PI is of the form AC and P2 is of the form

Rc. In this case function right-re initially goes through the same steps as when P

is PI ; that is, when the first alphabet symbol is encountered, expand-a is called to

produce record Np,. These steps take time O(Q,) and space bounded by b2 + bsp,

by induction. After Np, is computed, the total space being used is b2 + bsA(. - b2.

Subsequently, expund_a calls rightre to handle the inner expression P2. If P2 is of

the form Lc, then b2 additional units of space are consumed, and the overall space is

bounded by b2 + bsp,. If P2 is of the form A C, then this call takes time O(rR,), and

space bounded by b2 + bsp2 by induction. Record Np2 is computed and returned with

space bounded by blsp,. Record Np2 is combined with Np, by expand-a in unit time

to produce Np,pzr which consumes no more than blsp space. Thus, the overall space

is bounded by b2 + bsp.

The last case needed to prove that the lemma holds for AC (and, hence, Rc) is A.

Grammar (A.l) allows A to be either an alphabet symbol a, A*, or (AD). It is easy to

prove the axiom that unit time and space are used when right-re is called in the context

a. Straightforward analysis of expand-a is enough to prove the inductive argument in

the other two cases.

Finally, in order to prove that the lemma holds for AD, grammar (A.l) indicates

that AD must be either AC, LDIAD, or ADIRD. Case AC has already been taken care

of. Proofs of the other two cases mirror the proofs for the earlier cases LOAD and

AcRc.. 0

[I] A. Aho, Pattern matching in strings, in: R.V. Book, ed., Formal Language Theory (Academic Press,

New York, 1980).

[2] A. Aho, J. Hopcroft and J. Ullman, Design and Analysis of‘ Computer Algorithms (Addison-Wesley,

Reading, MA, 1974).

36 C.-H. Chang, R. Paigel Theoretical Computer Science 178 (1997) 1-36

[3] A. Aho, R. Sethi and J. Ullman, Compilers Principles, Techniques, and Tools (Addison-Wesley,

Reading, MA, 1986).

[4] Cl. Berry and L. Cosserat, The esterel synchronous programming language and its mathematical

semantics, in: SD. Brookes, A.W. Roscoe and G. Winskel, eds., Seminar in Concurrency, Lecture

Notes in Computer Science, Vol. 197 (Springer, Berlin, 1985).

[5] Cl. Berry and R. Sethi, From regular expressions to deterministic automata, Theoret. Comput. Sci. 48
(1986) 117-126.

[6] A. Brilggemann-Klein, Regular expressions into finite automata, Theoret. Comput. Sci. 120 (1993)
197-213.

[7] .I. Brzozowski, Derivatives of regular expressions, J. ACM 11(4) (1964) 481-494.

[8] J. Cai and R. Paige, Using multiset discrimination to solve language processing problems without

hashing, Theoret. Comput. Sci. 145 (1995) 189-228.
[9] C. Chang, From regular expressions to DFA’s using compressed NFA’s, Ph. D. Thesis, New York

University, New York, 1992.

[lo] C. Chang and R. Paige, From regular expressions to DFA’s using compressed NFA’s, in: A. Apostolico,

M. Crochemore, Z. Galil and U. Manber, eds., Lecture Notes in Computer Science Vol. 644 (Springer,

Berlin, 1992) 88-l 08.

[I 1] J. Driscoll, N. Samak, D. Sleator and R. Tatjan, Making data structures persistent, Proc. 8th ACM
STOC (1986) 109-121.

[12] E. Emerson and C. Lei, Model checking in the propositional mu-calculus, in: Proc. IEEE Conf on
Logic in Computer Science (1986) 86-106.

[13] J. Hopcroft and J. Ullman, Formal Languages and Their Relation to Automata (Addison-Wesley,

Reading, MA, 1969).
[141 S. Kleene, Representation of events in nerve nets and finite automata, in: Automata Studies, Ann.

Math. Studies, Vol. 34 (Princeton Univ. Press, Princeton, NJ, 1956) 3-41.

[15] D. Knuth, On the translation of languages from left to right, Inform. and Control S(6) (1965) 607439.

[16] R. McNaughton and H. Yamada, Regular expressions and state graphs for automata, IRA Trans.
Electron. Comput. EC-9 (1960) 39-47.

[17] J. Myhill, Finite automata and representation of events, WADC, Tech. Rep. (1957) 57624.

[I81 A. Nerode, Linear automaton transformations, Proc. Amer. Math. Sot. 9 (1958) 541-544.
[19] M. Rabin and D. Scott, Finite automata and their decision problems, IBM J. Res. Develop. 3 (1959)

114-125.

[20] D. Ritchie and K. Thompson, The UNIX time-sharing system, Comm. ACM 17(7) (1974) 3655375.
[21] R. Sethi, private communication, 1989.

[22] D. Smith, KIDS - A knowledge-based software development system, in: Proc. Workshop on
Automating Software Design, AAAI-88 (1988).

[23] SunOS Reference Manual, Vol. II, Programmer’s Manual, SUN microsystems, 1989.

[24] K. Thompson, Regular expression search algorithm, Comm. ACM ll(6) (1968) 419-422.
[25] J. Ullman, Computational Aspects of VLSI (Computer Science Press, Rockville, MD, 1984).

[26] G. Winskel, The Formal Semantics of Programming Languages (MIT Press, Cambridge, MA, 1993).

