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Testosterone is known to mediate its effects by two different mechanisms of action. In the so-called “classical”
pathway testosterone binds to cytosolic androgen receptors (AR), which essentially function as ligand-
activated transcription factors. Once activated, these receptors bind to DNA and activate the expression of target
genes. In the “non-classical” pathway, the steroid hormone binds to receptors associated with the plasma
membrane and induces signaling cascades mediated through activation of Erk1/2. The precise nature of the
membrane-associated AR, however, remains controversial. Although some assume that the membrane and
cytosolic AR are identical, others propose that the AR of the membrane is a G-protein-coupled receptor
(GPCR). To evaluate these two possibilities we first searched for testosterone-induced signaling cascades in the
spermatogenic cell line GC-2. Testosterone was found to cause phosphorylation (activation) of Erk1/2, CREB,
and ATF-1, consistent with its non-classical mechanism of action. Silencing of AR expression by means of
siRNA did not influence testosterone-induced activation of Erk1/2, CREB, or ATF-1, indicating that this pathway
is not activated by the classical cytosolic/nuclear AR. In contrast, when the expression of the G-protein Gnα11
is suppressed, the activation of these signalingmolecules is abolished, suggesting that these responses are elicited
through a membrane-bound GPCR. The results presented here and the identification of the testosterone-specific
GPCR in future investigations will help to reveal and characterize new testosterone-mediated mechanisms asso-
ciated not only with fertility and reproduction but perhaps also with other physiological processes.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Steroid hormones influence the physiology of cells, organs and or-
ganisms inmultipleways. The classical view of their action proposes ge-
nomic effects as a result of their interactions with cytosolic steroid
receptors (SR), which upon binding of the steroid dimerize, translocate
into the nucleus, and modulate the expression of specific genes by act-
ing as ligand-activated transcription factors [1,2]. A second, non-
classical mode of steroid hormone action is characterized by rapid
events that lead to the activation of cytosolic signaling cascades normal-
ly triggered by growth factors such as the Src/PI3K/Akt or the Src/Ras/
Raf/Erk1/2 pathway [3,4]. These signaling events originate at the surface
of plasmamembranes, where specific steroid receptors localized within
rafts mediate the rapid activation of intracellular signaling cascades [5].
These membrane-bound steroid receptors are often G-protein coupled
receptors (GPCR) and therefore different from the nuclear SR [6–8].

Testosterone undoubtedly triggers both classical and non-classical
pathways of action, but the nature of the receptor involved in these
hysiologie und -Biochemie,
ität Giessen, Frankfurter Str.
72; fax: +49 641 9938179.
giessen.de (G. Scheiner-Bobis).
actions is a source of controversy. While some investigators favor the ex-
clusive participation of thewell-characterized cytosolic/nuclear androgen
receptor (AR) in both pathways [9], others propose a membrane-bound
AR, possibly from the family of G-protein-coupled receptors (GPCR), as
mediator of several testosterone-induced effects [10–14].

Testosterone action on cells of the male reproductive system is es-
sential for spermatogenesis and the maturation of spermatogonia to
spermatozoa. CREB activation in Sertoli cells, which is required for the
survival of spermatocytes and the production of mature spermatozoa
[15], is triggered by testosterone interactionswith the AR via the activa-
tion of the c-Src/c-Raf/Erk1/2 signaling cascade, part of the non-classical
testosterone signaling pathway [9,16,17]. The processes of spermato-
genesis and the maturation of spermatogonia to spermatozoa also de-
pend on the activation of Erk1/2 and other mitogen-activated protein
kinases (MAPK) [18,19]. In addition, Erk1/2 activation is an absolute re-
quirement for the production of haploid spermatozoa [20,21].

Thequestion still to be answered, however, iswhether all of these ef-
fects are due solely to the interaction of testosterone with the classical
AR localized in Sertoli cells or whether testosterone might exert some
of its actions on other cells of the reproductive system by interacting
with a different, thus-far unidentified receptor. Should the latter possi-
bility be the case, onewould have to supplement or even revise some of
the knowledge concerning the importance of testosterone for male
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reproduction. Having this in mindwe addressed the role of the classical
AR in testosterone-induced signaling in the spermatogenic cell line GC-
2. The results show that in addition to the cytosolic/nuclear AR, there is
also a GPCR that mediates the non-classical testosterone pathway in the
GC-2 cells. The findings indicate that testosterone may initiate some of
its actions by detouring the classical AR of Sertoli cells and interacting
more directly with GPCR of the other cells of the male reproductive
system.

2. Materials and methods

2.1. Cell culture

The spermatogenic cell line GC-2 spd (ts) [22] (hereafter referred
to as GC-2) was cultured in DMEM (1×) high glucose containing 1%
L-glutamine (Gibco, Darmstadt, Germany) supplemented with 10%
fetal calf serum (FCS), 1% penicillin/streptomycin combination (100
U/ml of each). Cells were incubated in a humidified incubator at
31 °C under 5% CO2. The medium was renewed every two days.
Experiments were carried out after the 20th day of culture (third
passage).

2.2. Cell lysates

GC-2 cells were seeded at a density of 105 cells in 5-cm culture
dishes and grown as described above until they reached 70–80% conflu-
ence. Cellswere then incubated for 24 hwith 1% FCS before testosterone
dissolved in ethanol was added to the medium to reach a final concen-
tration of 1 nM (see Supplementary data regarding choice of concentra-
tion). Controls received the equivalent amount of ethanol. After 30 min
of incubation (see Supplementary data regarding choice of incubation
time) the medium was removed by aspiration and cells were washed
twice with ice-cold phosphate-buffered saline (PBS; without Ca2+ or
Mg2+; Gibco) and lysed in 400 μl of a commercially available cell lysis
buffer (Cell Signaling Technology, Frankfurt, Germany) according to
the protocol of the provider. Immediately before use, 1 μM PMSF, 1×
protease inhibitor cocktail (Roche, Mannheim, Germany), and 2 μg/ml
pepstatin were added to the lysis buffer. All lysis steps were carried
out on ice. After 10min of incubation cells were harvested with a scrap-
er, transferred into vials, and sonicated 5 times for 5 s with intervals of
2 s. The reaction vials were then centrifuged at 13,000 ×g for 10 min
at 4 °C. The protein content of the supernatants was determined at
540 nm using the bicinchoninic acid (BCA) protein assay reagent kit
(Pierce, Southfield, MI, USA) and a Labsystems (Helsinki, Finland)
plate reader. The lysis buffer was included in the bovine serum albumin
protein standard. Aliquots of the supernatant taken for further analysis
were stored at −20 °C.

2.3. SDS-PAGE and western blotting

A total of 8 μg protein from cell lysates was separated by SDS-PAGE
on slab gels containing 10% acrylamide and 0.3% N,N′-methylene-bis-
acrylamide. Biotinylated proteins (Cell Signaling Technology, Frankfurt,
Germany) served as molecular weight markers. After electrophoresis
proteins were blotted onto PVDF membranes (Millipore, Bedford, MA,
Table 1
Antisera used and their providers (IF = immunofluorescence; WB = western blot).

Antibody Catalog no.

Anti-AR (H-280) (for IF) sc-13062
Anti-phospho-CREB and anti-phospho-ATF-1 (for WB) 4276
Anti-phospho-CREB (for IF) 9198
Anti-phospho-ATF-1 (for IF) 2456-1
Anti-phosho-Erk1/2 (for WB and IF) 4370
Anti-total Erk1/2 (for WB) 9102
Anti-pan-Actin (for WB) 4968
USA) for 30min at 200mA. Specific protein bandswere visualized by in-
cubating themembranes with primary antibodies according to the pro-
tocol of the providers (Table 1) and the appropriate secondary antibody
of the enhanced chemiluminescence kit (ECL; Pierce). For the simulta-
neous detection of p-CREB and p-ATF-1, western blots were probed
with an antibody that cross-reacts specifically with the two phosphory-
lated proteins (Cell Signaling Technology). Horseradish peroxidase-
conjugated anti-biotin IgG (Cell Signaling Technology) at a dilution of
1:2000 was included in the mixture containing the secondary antibody
in order to detect the biotinylated molecular weight marker. The
resulting chemiluminescence was recorded by exposure to film, which
was analyzed by the TotalLab gel image analysis software (biostep,
Jahnsdorf, Germany).

2.4. RT-PCR for the detection of mRNA/cDNA for glyceraldehyde-3-
phosphate dehydrogenase (GAPDH), androgen receptor (AR), and guanine
nucleotide binding protein, alpha 11 (Gnα11)

TotalmRNAwas isolated fromGC-2 cells by following the protocol of
the provider of the SVTotal RNA Isolation System (Promega,Mannheim,
Germany). Reverse transcription and PCR amplification of mRNA/cDNA
of interest were carried out by following the protocol of the Reverse
Transcription System provider (Promega). For PCR amplification a
total of 10 ng/μl of cDNAwas incubated with 20 pmol/ml of each prim-
er, 10mMTris HCl, 50mMKCl, 2.5mMMgCl2, 1mMdNTPs, and 2 units
Taq DNA polymerase. The final volume of the solutions was 25 μl. PCR
was carried out in a MasterCycler Gradient (Eppendorf, Hamburg,
Germany). Samples were incubated at 95 °C for 5 min, followed by
40 cycles of denaturation at 95 °C for 30 s, annealing at a temperature
of 54 °C for 1min, and cDNA extension at 72 °C for 45 s. After amplifica-
tion, a final extension at 72 °C was performed for 10 min.

GAPDH-specific mRNA/cDNA was detected using the oligonucleotide
5′GGAGATTGTTGCCATCAACG3′ as forward primer and 5′CACAATGCCA
AAGTTGTCA3′ as reverse primer. These primers amplify a fragment of
430 bp between bases 128 and 557 of mouse GAPDH-specific mRNA.

AR-specific mRNA/cDNA was amplified under the same conditions
used for the amplification of GAPDH. Forward and reverse primers
were the oligonucleotides 5′AGCGCAATGCCGCTATGGGG3′ and 5′GTGG
GGCTGCCAGCATTGGA3′, respectively. These amplify a 708-bp fragment
of mouse AR-specific mRNA localized between bases 1220 and 1927.

Gnα11-specific mRNA/cDNA was amplified under the same condi-
tions asGAPDH. Forward and reverse primerswere the oligonucleotides
5′GAACCGGGAAGAGGTAGGG3′ and 5′GACCAAGTGTGAGTGCAGGA3′,
respectively. These amplify a 917-bp fragment of mouse Gnα11-
specific mRNA localized between bases 70 and 986.

2.5. Silencing androgen receptor expression via siRNA

Expression of the androgen receptorwas silenced by using commer-
cially available siRNA and by following the protocol of the provider
(StealthTM RNAi; Invitrogen, Karlsruhe, Germany). The oligonucleotide
pair used was: 5′CCAGAUUCCUUUGCUGCCUUGUUAU3′ and AUAACA
AGGCAGCAAAGGAAUCUGG3′ (AR-siRNA). Control cells were treated
with StealthTM RNAi Negative Control, provided in the kit. Transfection
efficiency was estimated by the Block-iTTM Transfection Kit (Invitrogen,
Provider Address

Santa Cruz Biotechnology, Inc. Heidelberg, Germany
Cell Signaling Technology Frankfurt am Main, Germany
Cell Signaling Technology Frankfurt am Main, Germany
Epitomics Burlingame, USA
Cell Signaling Technology Frankfurt am Main, Germany
Cell Signaling Technology Frankfurt am Main, Germany
Cell Signaling Technology Frankfurt am Main, Germany
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Fig. 1. Silencing expression of AR-specificmRNAusing siRNA. GC-2 cells were treatedwith
either AR-siRNA or negative-control siRNA (nc-siRNA). Total RNA was then isolated and
subjected to RT-PCR to amplify AR-specific mRNA/cDNA fragments of 708 bp. Treatment
of the cells with AR-siRNA abolished the expression of AR-specific mRNA/cDNA. The
amount of GAPDHmRNAwas not affected by either nc-siRNA or AR-siRNA, indicating spe-
cific silencing of AR mRNA expression by AR-siRNA.

A

B

Fig. 2. Silencing AR protein expression by siRNA. Cells treated as described in Fig. 1 were
fixed inmethanol and incubatedwith a primary antibody against the AR and a fluorescent
secondary antibody (rabbit anti-goat IgG-FITC green). Nuclei were stained with DAPI. (A)
All cells treatedwith nc-siRNA show green fluorescence, indicating the presence of the AR.
(B)When cells were treated with AR-siRNA, no AR protein was detected by the combina-
tion of the antibodies used in A.
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Karlsruhe, Germany) according the protocol of the provider. After incu-
bation of the GC-2 cells for 72 h with the various siRNA primer pairs or
the negative control siRNA, mRNA for RT-PCR was isolated as described
above (previous paragraph). A second set of cells was stimulated with
1 nM testosterone and used for the detection of activated Erk1/2,
CREB, and ATF-1 by immunofluorescence, as described further below.
Finally, a third set of cells was stimulated with 1 nM testosterone and
used for the isolation of cell lysates to be investigated in western blots.

2.6. Silencing the expression of Gnα11 via siRNA

Control GC-2 cells were treated with the siRNA Negative Control as
supplied by the provider (Silencer® Select siRNA; Invitrogen). For si-
lencing Gnα11 expression, cells were treated like control cells with
the exception that commercially available siRNA directed against the
expression of Gnα11 (Silencer® Select siRNA; Invitrogen) was used.
The oligonucleotide pair used was 5′CAAGAUCCUCUACAAGUAUTT3′
and 5′AUACUUGUAGAGGAUCUUGAG3′ (Gnα11-siRNA). All other
steps were the same as described in the previous paragraph.

2.7. Immunofluorescence

GC-2 cells that had been treated with siRNA to silence either AR or
Gnα11 were incubated with vehicle alone or vehicle plus 1 nM testos-
terone for 30 min. The medium was then aspirated and the cells were
fixed using 200 μl of ice-cold methanol containing a total of 20 ng of
DAPI (4′,6-diamidino-2-phenylindole). After 15 min of incubation at
RT, the DAPI solution was aspirated and slides were allowed to dry for
15 min before washing 3 times with 500 μl PBS. The cells were then
blocked with 10% FCS and 0.3% Triton-X100 in PBS for 1 h at RT. The
first antibody (Table 1), diluted as recommended by the provider, was
then added and incubation was continued for 1 day at 4 °C in a humid-
ified chamber. The antibody against p-Erk1/2 was from Cell Signal-
ing Technology. The antibody against p-ATF-1 was from Epitomics
(Burlingame, CA, USA). This antibody is p-ATF-1 specific and does not
interact with p-CREB. For the specific detection of p-CREB, an antibody
from Cell Signaling Technology was used with negligible interaction
with p-ATF-1. The antibody against the androgen receptor was from
Santa Cruz Biotechnology (Heidelberg, Germany).

The slides were then washed 3 times for 5 min each with 500 μl PBS.
Staining was achieved by incubating for 20 min at room temperature
with an Alexa Fluor 488-labeled goat anti-rabbit IgG (Invitrogen, Karlsru-
he, Germany) diluted at 1:500 in 2% FCS, 0.1 Triton X100 in PBS. Images
were obtained by an inverse Olympus IX81 microscope equipped with
the corresponding fluorescence system (Olympus, Hamburg, Germany).
Fluorescence within cells was measured by using the software program
ImageJ (freely available at http://rsbweb.nih.gov/ij/). A total of 30 cells
within or closest to the diagonals of the square optical field were consid-
ered. Data points were transferred to and analyzed by the software pro-
gram GraphPad Prism4 (GraphPad Software, Inc., La Jolla, CA, USA).

2.8. Statistical analysis

Loading differences in the various western blots were corrected by
taking into consideration the optical density of unphosphorylated
Erk1/2 bands or total actin, detected in western blots that were run in
parallel. Data were analyzed by GraphPad Prism4 software and by ap-
plying one-wayANOVAwith repeatedmeasures andDunnett's compar-
ison of all data to the control. Significance was accepted at p b 0.05.

3. Results

3.1. Silencing the androgen receptor by siRNA

After 72 h of incubation of cells with the siRNA oligonucleotides
against the AR, mRNA was isolated for RT-PCR. Fig. 1 shows an agarose
gel with the RT-PCR products obtained before and after treatment of the
GC-2 cells with siRNA to silence AR expression. While having no effect
on the expression of GAPDH-specific mRNA/cDNA, AR-siRNA reduced
the biosynthesis of AR-specific mRNA/cDNA to a great extent (Fig. 1).
The expression of GAPDH- or AR-specific mRNA was not affected by
negative control siRNA (nc-siRNA; Fig. 1). Nevertheless, since a small
amount of AR-specific mRNA/cDNA was also detected after treatment
of the cells with AR-siRNA, and because silencing of mRNA might not
necessarily lead to a rapid decrease in the expression of the targeted
protein, we addressed by immunofluorescence whether the AR protein

http://rsbweb.nih.gov/ij/
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was still present in the cells despite the reduction of AR-specific mRNA/
cDNA by siRNA. Although green fluorescence, indicating the expression
of the AR protein, was visible in every GC-2 cell in the image shown in
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Fig. 3. Testosterone-induced activation of Erk1/2, ATF-1, and CREB in the presence or absence o
were incubated with testosterone and then fixed in methanol; nuclei were stained with DAPI. p
and anAlexa Fluor 488-labeled secondary antibody. Treatment of cells with 1 nMtestosterone fo
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Fig. 2A, it was entirely missing after treatment of the cells with
AR-siRNA to prevent expression of AR-specific mRNA (Fig. 2B). It is
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f AR detected by immunofluorescence. (A) GC2 cells that had not been treated with siRNA
-Erk1/2, p-ATF-1, or p-CREB was identified by using specific primary antibodies (Table 1)
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with AR-siRNA (Fig. 1) is the result of the strong amplification effects of
the RT-PCR.

3.2. Testosterone-induced activation of Erk1/2, CREB, and ATF-1 in GC-2
cells in the presence or absence of AR

In the non-classical action of testosterone, the steroid hormone trig-
gers the Src/Ras/Raf/Erk1/2 signaling cascade that results in the activa-
tion of the transcription factor CREB. Thus, our first aim was to
examine whether testosterone activates elements of this signaling cas-
cade in the spermatogenic GC-2 cells. In this respect we addressed a
possible testosterone-induced activation of Erk1/2, CREB, and ATF-1.
Both ATF-1 and CREB are members of the bZIP superfamily of transcrip-
tion factors and stimulate transcriptionwhen activated by phosphoryla-
tion at either Ser63 (ATF-1) or Ser133 (CREB). Simultaneous activation
of the two related transcription factors has been shown previously [23],
and we investigated whether testosterone might act on GC-2 cells in a
similar way.

Cells were incubated with either 0 or 1 nM testosterone for 30 min
and then subjected to a fixation/immunostaining procedure as de-
scribed under “Materials and methods”. Phosphorylated forms of
Erk1/2, ATF-1, or CREB were detected by using appropriate antibodies
(Table 1). Fig. 3A demonstrates that testosterone triggered activation
of the kinase and of both transcription factors in a highly significant
way (Fig. 3B). Erk1/2 activation was seen in the form of green fluores-
cence spread over the entire area of the testosterone-treated cells,
while the transcription factors ATF-1 and CREB (Fig. 3A) were visible
as green fluorescent signals within the nucleus. To our knowledge this
is the first report demonstrating ATF-1 activation by testosterone.

Remarkably, comparable results were obtained with cells that were
treated with AR-siRNA to silence AR expression. Testosterone induced a
clear activation of Erk1/2, ATF-1 and CREB that was not affected by the
absence of AR (Fig. 3E, F). Treatment with negative-control siRNA (nc-
siRNA) did not affect the testosterone-induced stimulation of Erk1/2,
ATF-1, or CREB (Fig. 3C, D).
3.3. Detection of p-Erk1/2, p-ATF-1, and p-CREB inwestern blots in the pres-
ence or absence of AR

Since immunofluorescence only reliably stains cells or proteins re-
sidingwithin the optical field of themicroscope, we carried outwestern
blot experiments to obtain a representative average by measuring the
testosterone action on all cells of the incubation mixture. Testosterone
effects on GC-2 cells treated with nc-siRNAwere compared to its effects
on cells treated with siRNA to silence AR expression (AR-siRNA). As can
be seen in Fig. 5B, treatment of GC-2 cells with AR-siRNA did not impair
the ability of testosterone to induce activation of Erk1/2 (Fig. 4C), which
is consistentwith the results shown in Fig. 3. The total amount of Erk1/2
was not affected by the steroid hormone (Fig. 4A).

Similarly, in the absence of AR testosterone still caused activation of
ATF-1 and CREB. In western blots with an antibody that cross-reacts
with p-CREB and p-ATF-1 (Fig. 5A), we observed significant activation
of both transcription factors following 30 min of incubation with 1 nM
testosterone (Fig. 5B and C). These results, which are consistent with
those shown in Fig. 3, indicate that the non-classical signaling pathway
of testosterone is not triggered by the interaction of the steroid with the
known cytosolic/nuclear AR.

3.4. Testosterone-induced activation of Erk1/2, CREB, and ATF-1 in GC-2
cells in the presence or absence of Gnα11

Many hormones, among them steroid hormones, elicit their actions
through G-protein-coupled receptors (GPCRs) [24–27]. In a previous in-
vestigation we found that dehydroepiandrosterone sulfate (DHEAS) in-
duces signaling cascades in GC-2 cells that overlap with the non-
classical pathway of testosterone; this signaling cascade is mediated
through a GPCR that interacts with Gnα11 [28]. For that reason, we in-
vestigated a possible involvement of GPCRs in the testosterone-induced
signaling cascade by silencing Gnα11 expression in these cells.

The results from RT-PCR shown in Fig. 6 demonstrate that after
treating GC-2 cells with the Gnα11-siRNA, the expression of Gnα11-
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specific mRNA/cDNA was considerably reduced. Untreated GC-2 cells
and cells treated with either nc-siRNA or with siRNA against Gnα11
(Gnα11-siRNA) were incubated with 0 or 1 nM testosterone for
30 min. The images in the right-hand panels of Fig. 7A show the stimu-
lation (phosphorylation) of Erk1/2, ATF-1, and CREB by 1 nM testoster-
one in GC-2 cells that had not been treated with any kind of siRNA.
These data are consistent with the results shown in Fig. 3A, and here,
too, the total cell-associated fluorescence corresponding to active
Erk1/2, ATF-1, or CREB was significantly higher in cells exposed to tes-
tosterone than the fluorescence measured in the absence of the steroid
(Fig. 7B). Similar resultswere obtainedwhen cellswere treatedwith nc-
siRNA (Fig. 7C and D). When cells were treated with Gnα11-siRNA, ex-
posure to testosterone had no effect (Fig. 7E, right-hand panels), clearly
demonstrating the involvement of Gnα11 in mediating the
testosterone-induced signaling that leads to Erk1/2, ATF-1, or CREB ac-
tivation. Fluorescence corresponding to active Erk1/2, ATF-1, or CREB
after 30min of incubationwith 1 nM testosteronewas negligible, corre-
sponding roughly to the fluorescence measured in the absence of the
steroid (Fig. 7F).

3.5. Detection of p-Erk1/2, p-ATF-1, and p-CREB inwestern blots in the pres-
ence or absence of Gnα11

The western blot shown in Fig. 8 confirms the immunofluorescence
experiments shown in Fig. 7. Silencing Gnα11 expression by
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transforming GC-2 cell Gnα11-siRNA (Fig. 8B) led to abolition of the
testosterone-induced activation of Erk1/2 (Fig. 8B: p-Erk1/2). At the
same time, cells treated with nc-siRNA still responded to testosterone
with Erk1/2 activation (Fig. 8B and C). The expression of total Erk1/2
was not influenced by treatment with either nc-siRNA or Gnα11-
siRNA (Fig. 8A).
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p-ATF-1 p-ATF-1

p-CREB p-CREB

Control + 
Test. (nM) 0 1
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C

Fig. 7.Detection of testosterone-activated Erk1/2, ATF-1, and CREB by immunofluorescence afte
panels) almost every single cell in the optical field was fluorescent, indicating activation of Erk
significantly higher than in the untreated controls. (C)When cells were treated with negative c
with any kind of siRNA, as shown in (A). (D) Here, too, testosterone induces a highly significa
siRNA testosterone fails to stimulate Erk1/2 and either of the transcription factors ATF-1 and
ATF-1 and p-CREB in cells that were exposed to testosterone and untreated cells (for all statist
Treatment of GC-2 cells with Gnα11-siRNA also prevented
testosterone-induced activation of ATF-1 and CREB (Fig. 9A), while
treatment with nc-siRNA did not impair significant activation of the
two transcription factors (Fig. 9A, C, and D). The detection of total
actin in the lysates served as loading control. Neither of the two siRNAs
nor testosterone influenced its expression (Fig. 9B).
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4. Discussion

Testosterone affects the physiology of various tissues by triggering
multiple signaling pathways. In the classical view of its action the ste-
roid diffuses into the cell, binds to a cytosolic AR that is associated
with Hsp90 and Hsp70 and inactive, and induces the release of both
Hsp; the AR then undergoes dimerization and translocates as a dimer
into the nucleus. By acting as a transcription factor, the AR/steroid com-
plex induces genomic responses that lead to the expression of specific
genes [1,2].

In the non-classical pathway the steroid hormone binds to
membrane-associated receptors and induces activation of various ki-
nases, leading to a great spectrum of cellular responses [9,29,30]. The
AR mediating these types of signaling cascades has not yet been identi-
fied. Inmuscle cells testosterone effects leading to Erk1/2 activation, cy-
tosolic [Ca2+] elevation, and protein kinase C activation seem to be
mediated by its interactionswith GPCR [13,14]. Similar effects of testos-
terone on [Ca2+] are seen in Sertoli cells, where the phospholipase C in-
hibitor U73122 or pertussis toxin prevent these testosterone actions,
thus indicating the involvement of GPCR [31]. A second non-classical
signaling pathway of testosterone in Sertoli cells leads to the activation
of the Ras/Raf/Erk1/2/CREB cascade [9,32]. Experiments utilizing siRNA
to silence expression of the cytosolic/nuclear AR have provided evi-
dence for its involvement in themediation of the signaling cascade lead-
ing to CREB activation [33]. It is thought that some of the AR temporarily
associate with the plasma membrane of Sertoli cells, and by interacting
with testosterone, they induce stimulation of c-Src followed by the acti-
vation of epidermal growth factor receptor and the other members of
the signaling cascade [9,32]. It is not known whether dimerization of
AR is required for this cascade or what happens to Hsp70 and Hsp90.

The actions of testosterone on Sertoli cells are essential for the mat-
uration of male germ cells into spermatozoa [17,34]. Nevertheless, AR
are not localized solely in Sertoli cells; they are also found in Leydig
cells and peritubular myocytes [35–39]. The presence of classical AR in
germ cells is controversial: whereas several publications challenge its
expression in germ cells in toto [38,40], others identify AR in human
sperm [41], in sperm of the Bonnet monkey [42], or the midpiece of
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flagella of mature human sperm [43]. In contrast to these contradicting
reports, the presence of AR in spermatogonia seems to be generally ac-
cepted [37,39,44,45], suggesting a direct role of testosterone in the early
stages of spermatogenesis. For this reason, and because testosterone
might act on other cells of the gonad through GPCR and influence
their physiology, we investigated non-classical testosterone-induced
signaling in the spermatogenic cell line GC-2 thatwas shown previously
to express AR [28].

GC-2 cells respond to testosterone with activation (phosphoryla-
tion) of Erk1/2 and the transcription factors CREB and ATF-1
(Figs. 3–5). This overlap with the non-classical action of testosterone
[9] suggested that, like in Sertoli cells, classical AR are also involved in
propagation of testosterone-induced signaling in the spermatogenic
GC-2 cells. This possibility was addressed in a series of experiments
after restricting AR expression at the mRNA (Fig. 1) and protein level
(Fig. 2) by means of siRNA. The results summarized in Figs. 3–5 clearly
show that silencing of classical AR does not affect the induction of
testosterone-induced signaling in GC-2 cells.

These data demonstrate that AR do not participate in the non-
classical testosterone signaling identified in GC-2 cells; nevertheless,
they contrast with earlier studies also employing AR-specific siRNA
that implicated a role of classical AR in Erk1/2 and CREB activation in
Sertoli cells [33]. In the absence of any alternative and satisfactory way
to explain the discrepancy between the two investigations, one can
speculate at the current stage that the differences arise from the differ-
ent cell types used.

Several investigations involving various cell types such as myocytes
[13,14] or even Sertoli cells [31,46] suggest the involvement of GPCR in
the generation of testosterone-induced signaling. In GC-2 cells DHEAS
activation of the Src/Ras/Raf/Erk1/2 signaling module, leading to CREB
and ATF-1 activation, is mediated by GPCR interacting with Gnα11
[28]. The similarities between DHEAS- and testosterone-induced signal-
ing prompted us to investigate a possible involvement of Gnα11 in the
actions of testosterone. The results obtained clearly demonstrate the
participation of this protein in the generation of the non-classical
testosterone pathway. Silencing of the expression of Gnα11 leads to
the complete abolition of testosterone-induced stimulation of Erk1/2,
ATF-1, or CREB demonstrated in immunofluorescence experiments
(Fig. 7) and in western blots (Figs. 8 and 9). We therefore have to as-
sume the existence of a membrane-bound GPCR for testosterone as
themediator of the non-classical testosterone signaling. Our conclusion
is in a good agreement with various other studies proposing GPCR as
mediators of the so-called non-genomic effects of steroid hormones. A
series of recent investigations unveiled a membrane-bound GPCR for
estrogen from the group of orphan receptors, referred to as GPER-1 [7,
47]. Until these data were published, the classical cytosolic/nuclear es-
trogen receptors ERα and ERβ were thought to mediate both genomic
and non-genomic effects of estrogen. Similarly, the newolfactory recep-
tor familymember PSGP (prostate-specific G-protein-coupled receptor)
has been identified as a receptor for the testosterone metabolite 6-
dehydrotestosterone [48]. The identification of steroid hormone-
specific GPCRs such as GPER-1 or PSGP, which is predominantly
expressed in prostate cancer cells, however, opens new avenues for in-
vestigation of the role of estrogens or androgens in organism physiolo-
gy. By analogy, we think that the study presented here, which clearly
shows the involvement of Gnα11 in the testosterone-induced non-
classical signaling pathway, and further work focussing on the identifi-
cation of the membrane-bound GPCR for testosterone will help to com-
plete our knowledge concerning the action of steroid hormones. It may
also help to distinguish between long-term genomic effects associated
with the classical testosterone pathway that lead to sexual maturation
and effects of the non-classical testosterone pathway that lead to
rapid and perhaps transient responses to extracellular stimuli.
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