
Hydrophobic, Hydrophilic, and Charged Amino Acid Networks
within Protein

Md. Aftabuddin and S. Kundu
Department of Biophysics, Molecular Biology & Genetics, University of Calcutta, Kolkata 700009, West Bengal, India

ABSTRACT The native three-dimensional structure of a single protein is determined by the physicochemical nature of its
constituent amino acids. The 20 different types of amino acids, depending on their physicochemical properties, can be grouped
into three major classes: hydrophobic, hydrophilic, and charged. The anatomy of the weighted and unweighted networks of
hydrophobic, hydrophilic, and charged residues separately for a large number of proteins were studied. Results showed that the
average degree of the hydrophobic networks has a significantly larger value than that of hydrophilic and charged networks. The
average degree of the hydrophilic networks is slightly higher than that of the charged networks. The average strength of the
nodes of hydrophobic networks is nearly equal to that of the charged network, whereas that of hydrophilic networks has a
smaller value than that of hydrophobic and charged networks. The average strength for each of the three types of networks
varies with its degree. The average strength of a node in a charged network increases more sharply than that of the
hydrophobic and hydrophilic networks. Each of the three types of networks exhibits the ‘‘small-world’’ property. Our results
further indicate that the all-amino-acids networks and hydrophobic networks are of assortative type. Although most of the
hydrophilic and charged networks are of the assortative type, few others have the characteristics of disassortative mixing of the
nodes. We have further observed that all-amino-acids networks and hydrophobic networks bear the signature of hierarchy,
whereas the hydrophilic and charged networks do not have any hierarchical signature.

INTRODUCTION

Network analysis is increasingly being recognized as a power-

ful tool to study complex systems. It helps us to understand

the interaction among individual components and hence to

characterize the whole system. Several researchers have

worked to shed light on the topology, growth, and dynamics

of different kinds of networks including the world-wide

web, food webs, gene coexpression networks, metabolic net-

works, and protein-protein interaction networks, etc. (1–9).

Efforts have also been made to transform a protein

structure into a network where amino acids are nodes and

their interactions are edges (10–17). However, these protein

structure networks have been constructed with varying def-

inition of nodes and edges. This network approach has been

used in a number of studies, such as protein structural

flexibility, prediction of key residues in protein folding,

identification of functional residues, and residue contribution

to the protein-protein binding free energy in given com-

plexes (10–14). Several groups have also studied the protein

network to understand its topology, small world properties,

and behaviors of long-range and short-range interactions of

the amino acid nodes, etc. (15–17).

In almost all of the previous studies on the protein struc-

ture networks, the protein has been considered as an un-

weighted network of amino acids. Very recently, we have

considered it as a weighted network (18). This investigation

has focused on degree and strength distribution, signature of

hierarchy, and assortative-type mixing behavior of the amino

acid nodes.

A protein molecule is a polymer of different amino acids

joined by peptide bonds. These 20 different amino acids

have different side chains and hence different physicochem-

ical properties. When a protein folds in its native conforma-

tion, its native three-dimensional structure is determined by

the physicochemical nature of its constituent amino acids.

Depending on the physicochemical properties, the different

amino acids fall into three major classes: hydrophobic,

hydrophilic, and charged residues. In this context, it would

be interesting to study the network structures of hydropho-

bic, hydrophilic, and charged residues separately. We have

also recently studied the hydrophobic and hydrophilic net-

works (19). Our analysis has mainly focused on the degree,

the degree distribution, and small world properties. We have

found that the average degree of a hydrophobic node is larger

than that of a hydrophilic node. We have also observed the

existence of small world properties in both cases. The

hydrophobic and hydrophilic networks we have studied

previously (19) are unweighted networks, but the study

presented here considers both the weighted and unweighted

networks of hydrophobic, hydrophilic, and charged residues’

networks. We have analyzed these networks to focus on their

topology including degree, strength, strength-degree rela-

tionships, clustering coefficients, shortest path length, exis-

tence of small world property and hierarchical signature, if

any, and mixing behavior of the nodes. In summary, in our

investigations, we have studied the anatomy of hydrophobic,

hydrophilic, and charged residues’ networks and have also
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performed a comparative study among them as well as with
all-amino-acids networks.

METHODS

Construction of hydrophobic, hydrophilic,
charged, and all-amino-acids networks

Primary structure of a protein is a linear arrangement of different types of
amino acids in one-dimensional space where any amino acid is connected
with its nearest neighbors through peptide bonds. But when a protein folds in
its native conformation, distant amino acids in the one-dimensional chain
may also corne close to each other in three-dimensional space, and hence,
different noncovalent interactions are possible among them depending on
their orientations in three-dimensional space. Moreover, each of the 20
amino acids has a different side chain and different physicochemical pro
perties. These different 20 amino acid residues have been grouped into three
major classes: hydrophobic (F, M, W, I, V, L, P, A), hydrophilic (N, C, Q, G,
S, T, Y), and charged (R, D, E, H, K). Here we are interested in studying the
hydrophobic, hydrophilic, and charged networks within proteins.

Any network has two basic components: nodes and edges. Only the hydro
phobic residues are considered as nodes of a hydrophobic network, whereas
hydrophilic and charged residues are considered as the nodes of hydrophilic
and charged networks, respectively. If any two atoms from two different
amino acids (nodes) are within a cutoff distance (5 A), the amino acids are
considered to be connected or linked. The cutoff distance is within the higher
cutoff distance of London-van der Waals forces (20). Further, in our cal
culations we have not considered the interaction of any of the backbone
atoms; we have included only the interactions of the side-chain atoms.

Thus, in a hydrophobic network, hydrophobic residues are nodes, and the
possible links among them are edges. The same logic is followed to con
struct the other networks.

Because we have also compared the network parameters of hydrophobic,
hydrophilic, and charged networks with those of an all-amino-acids network
within protein, we have also constructed the networks taking into account all
amino acids without any classifications. Thus, we have obtained the un
weighted networks of all-amino-acids (AN), hydrophobic (BN), hydrophilic
(IN), and charged (CN) amino acid network types.

Next, we discuss the basis of transforming the protein structure into a
weighted network. When we consider a protein's three-dimensional struc
ture, several atoms of any amino acid in a protein may be within the cutoff
distance of several atoms of another amino acid. This results in possible mul
tiple links between any two amino acids. These multiple links are the basis of
the weight of the connectivity, which may vary for different combinations of
amino acids as well as for different orientations of them in three-dimensional
conformational space. The intensity Wij of the interaction between two amino
acids i and j is defined as the number ofpossible links between the ith and the
jth amino acids. Considering the intensity of interaction between any two
amino acids, we have constructed the weighted BN, IN, CN, and AN.

We have collected a total of 161 protein structures from a protein crystal
structure data bank (21) with the following criteria:

1. Maximum percentage identity: 25.
2. Resolution: 0.0-2.0.
3. Maximum R-value: 0.2.
4. Sequence length: 500-10,000.
5. Non-x-ray entries: excluded.
6. CA-only entries: excluded.
7. CULLPDB by chain.

In some of the crystal structures, the atomic coordinates of some of the
residues are missing. We have not considered those structures because they
may give erroneous values of different network parameters (degree,
clustering coefficient, etc.). A final set of 85 crystal structures was taken
for the calculation and analysis of network properties. We have generated
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the BN, IN, CN, AN of each of the 85 proteins using the three-dimensional
atomic coordinates of the protein structures. Although ANs for each of the
proteins form a single cluster, the BN, IN, and CN, in general, have more
than one subnetwork. The number of nodes of these subnetworks varies over
a wider range. The subnetworks having at least 30 nodes have been collected
and analyzed.

Network parameters

Each of the networks has been represented as an adjacency matrix (A). Any
element of adjacency matrix (A), aij, is given as

aij = 1, if i # j and i and j nodes are connected by an edge.

Oif i # j and i andjnodes are not connected.

Oifi=j.

The degree of any node i is represented by ki = ~j aij'
The number of possible interactions between any two amino acids may

vary depending on their three-dimensional orientations and the number of
atoms in their side chains. If Wij is the number of possible interactions
between any ith and jth amino acids, then the strength (Si) of a node i is given

by Si = ~j aijWij'
This parameter represents the number of connectivities of any two amino

acids and is thus a characteristic of a weighted network. It should be clearly
mentioned that the weighted network analysis depends on 1), the number of
possible interactions between amino acid residues and also on 2), the energy
of interactions between them. Because the total energy of interactions again
depends on the total number of interactions between residues, we, for the
sake of simplicity of analysis, have considered only the number of inter
actions between residues.

We have determined the characteristic path length (L) and the clustering
coefficient (C) of each network. The characteristic path length L of a net
work is the path length between two nodes averaged over all pairs of nodes.
The clustering coefficient Ci is a measure of local cohesiveness. Tradition
ally the clustering coefficient Ci of a node i is the ratio between the total
number (ei) of the edges actually connecting its nearest neighbors to the
ith node and the total number of all possible edges between all these nearest
neighbors (ki (ki -1)/2 if the ith vertex has ki neighbors) and is given by Ci =

2e;lki (ki - 1). The clustering coefficient of a network is the average of all
of its individual CiS. For a random network having N nodes with average
degree (k), the characteristic path length (L,), and the clustering coefficient
(C,) have been calculated using the expressions L, "" InNlln(k) and C, ""
(k)/N given by Watts and Strogatz (3). To ascertain if there is any small
world property in a network, we have followed Watts and Strogatz's
method (3). According to them, a network has the small world property if
C » C, and L 2: L,. Combining the topological information with the
weight distribution of the network, Barrat et al. (22) have introduced an
analogous parameter to C and that is known as weighted clustering coef
ficient, qv. It takes into account the importance of the clustered structure
on the basis of amount of interaction intensity (number of possible inter
actions between amino acids) actually found on the local triplets and is given

by qv = [l/si(ki -1)]Lj,h(Wij+wih)aijaihajh/2.
To study the tendency for nodes in networks to be connected to other

nodes that are like (or unlike) them, we have calculated the Pearson cor
relation coefficient of the degrees at either ends of an edge. For our undi
rected unweighted protein network, its value has been calculated using the
expression suggested by Newman (23) and is given as:

r = (M-1Ijiki - [M-1IiO.5(ji + ki)]2)+

(M-IIiO.5(j~ + k~) - [M-1IiO.5(ji + ki )]2).

Here ji and ki are the degrees of the vertices at the ends of the ith edge,
with i = 1, ..M. The networks having positive r values are assortative in
nature.



RESULTS AND DISCUSSION

We have constructed the hydrophobic, hydrophilic, and

charged residues’ networks for each of the 85 proteins. It has

been observed that all the hydrophobic residues of the BN

for each of all the proteins do not form a single cluster. In

general, they form one (in some cases more than one) giant

cluster associated with small subclusters and isolated nodes.

The same feature has also been observed for both IN and CN.

Thus, all of the above three types of networks are sparse

networks. On the other hand, when we consider an AN

within a protein, the nodes (amino acids) do form a single

cluster. We have also observed that in each of the 85

proteins, the total number of subclusters and isolated nodes

of the BN is smaller than that of the CN and IN. In only one

protein the number of subclusters and isolated nodes of the

IN is higher than that of the BN. However, CNs of 56 pro-

teins (of the 85 proteins) show higher numbers of subclusters

and isolated nodes than the respective INs. Thus, we may say

that INs and CNs within a protein are more sparse in nature

than BNs.

To calculate and analyze different network properties, we

have selected those subclusters that have at least 30 nodes.

Thus, we have finally obtained 92 hydrophobic, 99 hydro-

philic, and 69 charged subclusters with the criteria of having

at least 30 nodes. We have further observed that the average

number of nodes (amino acids) of hydrophobic subclusters is

nearly double and quadruple, respectively, those of hydro-

philic and charged subclusters, as is evident from Table 1.

It should be clearly mentioned that all the network

parameters we have further calculated and analyzed are the

result of our finally selected different subclusters or ANs. In

the remainder of this article, we refer to these subclusters as

networks.

Average degree of the networks

For each of the four types of networks (BN, IN, CN, and AN)

we have calculated the average degree Ækæ. The values are

listed in Table 1. We find that the average degree of BNs

(Ækbæ), INs (Ækiæ), CNs (Ækcæ), and ANs (Ækaæ) varies from 2.97

to 5.47, from 2.22 to 3.81, from 2.06 to 4.18, and from 6.75

to 10.09, respectively. The average of the Ækbæ values for all
of the BNs, Ækbavæ, was found to be 4.84 with a standard

deviation 0.35. The average of the Ækiæ values for all of the
INs, Ækiavæ, was found to be 2.97 with a standard deviation

0.29. For the CNs, the average (Ækcavæ) was found to be 2.72

with a standard deviation 0.33.

It has been observed that the average of the Ækaæ of all of
the ANs, Ækaavæ shows expected higher values than that of BN,
IN, and CN. Our results also clearly show that Ækbavæ. Ækiavæ�
Ækcavæ. The Mann-Whitney U-test shows that these three

populations are significantly different (level of significance

is 0.001). To verify whether the observed trend is a result of

the network size or is purely the characteristic of the nature

of the nodes of the network, we have compared the Ækæ values
of different networks with similar sizes (i.e., nearly the same

number of nodes). The result confirms the trend previously

described. Hence, our observation (Ækbavæ . Ækiavæ � Ækcavæ) is
clearly an inherent nature of the network. We have also

observed that within the same populations the value of the

average degree does not depend on the network size (i.e., on

the number of amino acids of the protein).

Average strength of the networks

Next we have studied the strength of the nodes within dif-

ferent types of weighted networks. The average strength of

the BNs (Æsbæ) varies from 17.28 to 35.21, whereas that of the

INs (Æsiæ) and CNs (Æscæ) varies from 6.76 to 27.74 and from

14.71 to 50.63, respectively. On the other hand, the average

strength of AN (Æsaæ) varies from 34.85 to 83.86. The average

of Æsaæ for all of the ANs was found to be 41.94 with a

standard deviation 5.61. The average of the Æsbæ values for all
of the BNs, Æsbavæ, is nearly equal to that (Æscavæ) of the CNs,

whereas that of INs has smaller value than those of BNs

and CNs.

TABLE 1 Different network properties

Network

type ÆNræ Ækæ Æsæ ÆLæ ÆCæ ÆCwæ Æræ* Æpæ Æqæ Æbæy Æbwæy

BN 221.22 6
73.29

4.84 6
0.35

23.72 6
2.74

7.45 6
1.59

0.46 6
0.02

0.23 6
0.01

0.30 6
0.07

20.76 6
6.71

2.18 6
0.34

0.254 6
0.125

0.231 6
0.124

IN 92.78 6
56.08

2.97 6
0.29

14.59 6
2.95

7.96 6
2.38

0.49 6
0.05

0.25 6
0.02

0.20 6
0.10

14.98 6
8.22

1.94 6
0.40

CN 45.97 6
18.60

2.72 6
0.33

22.46 6
5.59

6.73 6
1.74

0.52 6
0.06

0.27 6
0.03

0.19 6
0.12

8.67 6
3.12

1.74 6
0.32

AN 612.15 6
134.82

7.58 6
0.38

41.94 6
5.61

6.61 6
0.88

0.37 6
0.07

0.19 6
0.01

0.30 6
0.04

29.71 6
6.46

2.09 6
0.22

0.208 6
0.110

0.166 6
0.106

Average number of nodes (ÆNræ), average degree (Ækæ), average strength (Æsæ), average characteristic path length (ÆLæ), average clustering coefficients of

unweighted (ÆCæ) and weighted (ÆCwæ) networks, Pearson correlation coefficient (Æræ), the average ratios (Æpæ and Æqæ), average scaling coefficients of

unweighted (Æbæ) and weighted (Æbwæ) networks of hydrophobic (BN), hydrophilic (IN), charged (CN), and all-amino-acids (AN) networks.

*Data shown only for positive Æræ.
yBecause there is no clear functional relation in the case of IN and CN, the values of scaling coefficients are not listed.
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It should be mentioned that the sizes of most of the hy-

drophobic and charged residues are larger than those of the

hydrophilic ones. We have also observed that there is a re-

lation of the volume of an amino acid with its strength. This

may be one of the causes of the higher values of the strengths

of the BNs and CNs.

Strength-degree relations

To understand the relation between the strength of a node

and its degree, k, we have further studied the average

strength Æsbæ(k), Æsiæ(k), and Æscæ(k) as a function of k. The
result is shown in Fig. 1. We have observed that the strength

of a vertex changes with its degree, k. The average strength
for all of the hydrophobic networks varies linearly with its

degree, k. On the other hand, the average strength of CNs and
INs increases linearly with k for smaller values of k but

sharply for higher values. It has been further noted that the

slope of the best-fit line is different for different types of

networks. The average strength of a node in CNs increases

more sharply than that of the BN and IN, as is evident from

Fig. 1.

Small world property

To examine whether the networks have the ‘‘small world’’

property or not, we have calculated the average clustering

coefficient ÆCæ and the characteristic path length ÆLæ for each
of the networks and their respective values (ÆCræ and ÆLræ) for
the random network having the same N (number of nodes)

and Ækæ. The averages of the ÆCæ and ÆLæ values for all of the
hydrophobic networks are given in Table 1. Those of IN and

CN are also presented in Table 1. The ratios [p ¼ ÆCæ/ÆCræ]
of average clustering coefficients of BN to that of a classi-

cal random graph vary from 3.55 to 40.37. The ratios for IN

and CN vary from 5.14 to 42.55 and from 3.69 to 24.32,

respectively. On the other hand, it has been observed that the

characteristic path length is of the same order as that of a

corresponding random graph, as is evident from q ¼ ÆLæ/ÆLræ
values listed in Table 1. Although the ratios (p) for networks
under study are not of the order of 102–104 as observed in

the cases of scientific collaboration networks and networks

of film actors, there are several other networks where p
may have smaller values (2,6,19,24,25). For example, the

ratio (p) for metabolic network, protein-protein interaction

network, food webs, and network of C. elegans have values
5.0, 4.4, 12.0, and 5.6, respectively. Even a recent study on

amino acid networks within proteins reported that the ratio

(p) varies from 4.61 to 25.20 depending on the size of

the network (18). Thus, we may conclude that each of the

three different types of networks (BN, IN, and CN) has

small world property. We have also examined the ANs of

the same proteins. We find that the ANs also have the small

world property as is evident from the p and q values listed

in Table 1.

We have further studied the dependencies of p and q on N,
number of nodes. The results are shown in Fig. 2. We find

that both the ratios p and q vary with N, but with different

relations. The ratio (p) of clustering coefficients varies

linearly with N, whereas the ratio (q) of characteristic path

lengths varies logarithmically with N. It should be mentioned

that the p values of ANs vary from 23.10 to 60.66. The

higher p values of ANs obtained in our study than those

reported by Aftabuddin and Kundu (18) may be because of

the larger size of networks.

Mixing behavior of the nodes

We have also calculated Pearson correlation coefficients (r)
for each of the networks. Almost all the BNs (except one)

have positive rb values, which vary from 0.02 to 0.43 with an

average 0.30. Although most of the hydrophobic networks

have positive r values, both the INs and the CNs have both

positive and negative r values. The positive r value of a

network suggests that the mixing behavior of the nodes of

that network is assortative type, whereas the negative r value
implies that the network is of disassortative type. The

percentage of INs having negative r values is significantly

higher and lower than that of BNs and CNs, respectively.

Among the networks having nonnegative r values, the r
values of INs (ri) vary from 0.00 to 0.52, and those of CNs

(rc) vary from 0.00 to 0.51. The average of the ri values was
found to be 0.20 with a standard deviation 0.10, whereas that

of rc values was found to be 0.19 with a standard deviation

0.12. In the case of ANs, the ra values varied from 0.22 to

0.43. The average of the ra values was found to be 0.30 with

a standard deviation 0.04.

The r values of different networks suggest that the ANs

are of the assortative type. The hydrophobic networks

(except one) are also of assortative type. Although most of

FIGURE 1 Average strength Æsæ(k) as a function of degree k of hydro-

phobic (BN), hydrophilic (IN), charged (CN), and all-amino-acids (AN)

networks.
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the INs and CNs are of assortative type, a few others have the

characteristics of disassortative mixing of the nodes, as is

evident from the r values (data are not shown for negative

r values). Thus, we may say that, in almost all of the BNs,

the hydrophobic residues (nodes) with high degree have ten-

dencies to be attached to the hydrophobic residues having

high k values. Most of the hydrophilic and charged residues

within their respective networks do follow the same behavior

as followed by the hydrophobic residues. In a very few net-

works having negative r values, the mixing pattern of amino

acid residues is different. Here the amino acids (nodes)

having high k values have a tendency to be attached to amino

acids with smaller degree. A protein, in general, has hydro-

phobic, hydrophilic, and charged residues. Thus, an AN is

basically a composite network of these three types (BN,

IN, and CN) of networks. When we consider ANs, we obtain

the r values, which represent a cumulative effect of either

all positive r values or a mixture of positive and negative

r values. Thus, we find that the ANs always have positive

r values.

Weighted and unweighted clustering coefficients
of networks

We have calculated the weighted and unweighted clustering

coefficients of each of the BNs, INs, and CNs. The average

clustering coefficients of BNs, INs, and CNs are assembled

separately to make the ensemble of each type. The average

of each of the ensembles has been calculated and is listed

in Table 1.

In the study presented here, the unweighted clustering

coefficients of BNs vary from 0.41 to 0.55, whereas those of

IN and CNs vary from 0.38 to 0.63 and from 0.38 to 0.67,

respectively. It is evident from Table 1 that ÆCb
avæ , ÆCi

avæ ,
ÆCc

avæ. We also find that the average weighted clustering

coefficients of BNs, INs, and CNs vary from 0.21 to 0.28,

from 0.19 to 0.33, and from 0.19 to 0.34, respectively. We

have also observed that ÆCw;b
av æ , ÆCw;i

av æ , ÆCw;c
av æ. The

average weighted clustering coefficient is always nearly half

that of unweighted networks. In summary, the two major

observations are 1), both the unweighted and weighted

clustering coefficient values of INs are higher than those

of BNs but are smaller than those of CNs, and 2), the aver-

age unweighted clustering coefficients are double those of

weighted clustering coefficients. The second observation

indicates that the topological clustering is generated by edges

with low weights. It further implies that the largest part of

interactions (i.e., interactions between two amino acids) is

occurring on edges (amino acids) not belonging to inter-

connected triplets. Therefore, the clustering has only a minor

effect in the organization of each of the three different (BN,

IN, and CN) types of networks. On the other hand, the

unweighted clustering coefficient is a measure of local

cohesiveness, and the weighted clustering coefficient takes

into account the strength of the local cohesiveness. Thus, the

FIGURE 2 Ratios p (¼ ÆCæ/ÆCræ) and q (¼
ÆLæ/ÆLræ) as a function of network size N. The

ratio p varies linearly with N, whereas the ratio

q varies logarithmically with N. The best-fit

curves are shown by lines for the two ratios. (A)
All-amino-acids networks (AN). (B) Hydro-

phobic networks (BN). (C) Hydrophilic net-

works (IN). (D) Charged networks (CN).
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first observation implies that IN have higher and lower local

cohesiveness than BN and CN, respectively.

Is there any hierarchical signature within
the networks?

We have also studied the relation of the clustering coeffi-

cients for both weighted and unweighted networks with their

degree k. We find that for most of the hydrophobic networks

having k . 8, both the unweighted (ÆCbæ(k)) and weighted

(ÆCb,wæ(k)) clustering coefficients change with their degree k.
The results are plotted in Fig. 3. It has been observed that the

nodes with smaller k values have higher clustering coeffi-

cients than the nodes with higher k values. It is known that

the hierarchical signature of a network lies in the scaling

coefficient of C(k)� k-b. The network is hierarchical if b has

a value of 1, whereas for a nonhierarchical network the value

of b is 0 (6,26). The low-degree nodes in a hierarchical

network generally belong to well-interconnected communi-

ties (high clustering coefficients) with hubs connecting many

nodes that are not directly connected (small clustering co-

efficient). Because in most of the hydrophobic networks,

C(k) significantly changes with k, we intend to study the

possibility of hierarchy in the hydrophobic network. Here,

both the ÆCbæ(k) and ÆCw,bæ(k) exhibit a power-law decay as a

function of k, as is evident from Fig. 3. It should be noted that

we are aware of the problem in drawing conclusions about

the power-law scaling and deriving exponents as well with

such a limited range of values. But this small range of k
values is actually a limitation of this real physical network.

At the same time we have observed that both the ÆCbæ(k)
and ÆCw,bæ(k) decrease significantly with k. So, it may be

worthwhile to get an idea about the scaling coefficient values

and, hence, also about the nature of networks. However, the

scaling coefficient (b) for the ÆCbæ(k) varies from 0.005 to

0.750 with an average of 0.254, whereas the corresponding

coefficient (bw) for ÆCw,bæ(k) varies from 0.025 to 0.755

with an average of 0.231. We observe a power-law decay for

both ÆCbæ(k) and ÆCw,bæ(k), but the average values (b and bw)

of the scaling coefficients lie very close to neither 0 nor

1 but take intermediate values. The values of the scaling

coefficients imply that the networks have a tendency to hier-

archical nature.

The unweighted and weighted clustering coefficients of

both the hydrophilic and charged residues do not show any

clear functional relation with their degree k, as is evident

from Fig. 3. We have already mentioned that the small range

of k values imposes a problem in drawing conclusions about

the power-law scaling and deriving its exponents. Despite

the limitations, we may say that the BNs bear the signature of

hierarchy, whereas the INs and CNs do not have any

hierarchical signature. We have further observed that ANs

exhibit a signature of hierarchy as is evident from Fig. 3 and

from the values of scaling coefficients listed in Table 1. The

same observation has also been mentioned by Aftabuddin

and Kundu (18). Thus, we may say that the hierarchical

FIGURE 3 Topological clustering coefficient C(k)
and weighted clustering coefficient Cw(k) as a function

of degree k for different types of networks: (A) all-

amino-acids networks (AN), (B) hydrophobic networks
(BN), (C) hydrophilic networks (IN), and (D) charged

networks (CN) for a representative protein (PDB

Id:8ACN). The best-fit curves are shown by lines.
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signature of ANs mainly originated from the hierarchical

behavior of hydrophobic residues network.

Degree and strength distribution

We have also studied the probability degree and strength

distributions of AN, BN, IN, and CN. We have observed that

the probability degree distribution of network connectivities

of all four types of networks (AN, BN, IN, and CN) has a

peak followed by a decay whose exact nature is difficult to

determine because of the small number of k values (data not
shown). On the other hand, the probability strength distri-

butions exhibit a large number of fluctuations (data not

shown), which makes difficult to find the exact nature of the

distributions.

CONCLUSION

In summary, all three types of networks (BN, IN, and CN) as

well as ANs have the small world property. Although BNs,

INs, and CNs are sparse in nature, ANs do not have any

subclusters or isolated nodes. The total number of subclus-

ters and isolated nodes in BNs of each of the proteins we

have studied is significantly smaller than that of INs and

CNs. The average degree of the BNs has a significantly

higher value than those of the INs and CNs. On the other

hand, the average strength of the INs has a smaller value than

those of the BNs and CNs. We have also observed that the

average strength of the charged networks is nearly equal to

that of BNs. Whereas the average strength of the nodes

(residues) for each of the three types of networks (BN, IN,

and CN) varies with its degree, k, the average strength of a

node in CNs increases more sharply than those of BNs and

INs. We have further observed that ANs and BNs are of the

assortative type. Although most of the INs and CNs are of

the assortative type, few others have the characteristics of

disassortative mixing of the nodes. We have also observed

that ANs and BNs bear the signature of hierarchy, whereas

the INs and CNs do not have any hierarchical signature.
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