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ABSTRACT 

We generalize a recent result of Thompson on inverses of block matrices over 
principal ideal domains to isomorphisms of direct sums of modules over an arbitrary 
ring. 

Recently, Thompson [4] showed that if 

is an invertible 2n  × 2 n  matrix over a principal ideal domain, expressed in 
n × n block form as shown, and if 

then ~a(A) = .~ ' (W),  ~ ' ( D )  = Sa(X), S~(B) = ~ ( Y ) ,  and 6"~(C) = 6z(Z),  
where 5 a denotes Smith canonical form. Here, we give a generalization to 
isomorphisms of direct sums of modules over arbitrary rings. Indeed, the 
result is even valid in arbitrary abelian categories, as the interested reader can 
easily verify by using the appropriate embedding theorem [3, p. 101]. 

Recall that  the Smith canonical form of a matrix over a principal ideal 
domain is the diagonal form under  matrix equivalence, which can be so 
arranged that each nonzero diagonal entry divides the next; see [2, p. 26]. 
Further, if matrices are viewed as homomorphisms of free modules in the 
usual way, then it is well known that two matrices have the same Smith form 
(up to units) if and only if they have isomorphic cokernels. For a history of 
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this result and its extensions, see [1]. Our generalization of Thompson's  result 
can now he stated as: 

THEOREM. Let  M, N, U, and V be left modules over a ring R. Let  

a : M ~g N ~ U ~ V be an isomorphism, given in matrix form as ( A B )  C , so 

that A : M ~ U, B : N ~ U, C : M ~ V, and D : N ~ V. Let  a i have matrix 
/ X Y ~ form ,~ Z W,]" Then A and W have isomorphic cokernels and isomorphw 

kernels. The analogous statements hold for  D and X,  for  B and Y, and for  Z 
and C. 

Proof. Since 

(Ac B ) a n d  (Xz Y )  

are mutually inverse, we obtain 

A X  + BZ = 1~/, (1) 

CY + D W  = i v, (2) 

A Y +  B W =  0, (3) 

cx  + O Z  = 0, (4) 

XA + YC = 1 M, (5) 

ZB + W D  = 1x, (6) 

XB + YD = 0, (7) 

ZA + W C  = o.  ( 8 )  

Define fl: N / W ( V )  ~ U / A ( M )  by f l (n  + W ( V ) )  = B ( n ) +  A ( M ) .  By (3), 
B W ( V )  = A Y ( V ) ,  whence fl is well defined. If f l (n  + W ( V )  = 0, then B ( n )  = 
A ( m )  for some m ~ M. By (6), n = Z B ( n ) + W D ( n ) =  Z A ( m ) + W D ( n ) .  But 
ZA(  m ) = - WC(  m ), by (8). Hence n ~ W (  V ), so n + W (  V ) = 0 in N /  W(  V ). 
Thus, fl is a monomorphism. That  fl is an epimorphism is equivalent to the 
equation U = B ( N ) +  A ( M ) ,  which follows immediately from (1). Thus, fl is 
an isomorphism from coker W to cokerA. 
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For m ~ kerW, A Y ( m )  = - B W ( m )  = 0, by (3). Hence, Y restricts to a 
homomorphism ~k:kerW-o kerA. If m ~ ker~k, then m ~ (kerW)N(kerY) .  
By (2), m = CY(m)+ D W ( m )  = 0, whence ~k is a monomorphism. For m 
kerA, we have m = X A ( m ) + Y C ( m ) = Y C ( m ) ,  by (5). Also, W C ( m ) =  
-ZA(m) by (8). Hence, C ( m ) ~  kerW, and m =  ~(C(m)).  Hence, ~ is an 
epimorphism. Thus, q~ gives an isomorphism from ker W to ker A. The other 
isomorphisms asserted in the theorem are established analogously. 
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