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1. INTRODUCTION

Transitions in the energy-state of biological sys-
tems are most often elicited by oxygen pulses, light
pulses or uncouplers. The study of the changes ac-
companying such transitions greatly contributed to
the understanding of the mechanism of energy-
transduction. Transitions induced by light or oxy-
gen pulses are reversible. In contrast, the reversal
of the de-energization evoked by uncouplers is, as
a rule, troublesome. We encountered this difficulty
while using the powerful protonophoric un-
couplers [2] FCCP or §-13 for de-energization in a
study of the respiration-driven ion fluxes in a
halotolerant bacterium, Ba). Anions of pro-
tonophoric uncouplers form stable, ternary com-
plexes with valinomycin-K+ [3—6]. Thus, we have
tried to utilize complex formation as a tool for the
reversal of the uncoupler-induced perturbation.
Here, we show that in bacterium Ba), the inter-
ference of FCCP or of S-13 with energy-linked
functions can be abolished with the aid of val-

Abbreviations: FCCP, carbonyl cyanide p-triflucrometh-
oxy-phenylhydrazone; S-13,2.5-dichloro-3-(rers-butyl)-
4'nitrosalicylanilide; 9-AA, 9-aminoacridine; Dis-C3-
(5), 3.3-dipropylthiodicarbocyanine iodide; Hepes, N-2-
hydroxyethylpiperazine- N'-2-ethanesulfonic acid; Q-
9AA. % change in the fluorescence of 9-aminoacridine;
@-Dis, % change in the fluorescence of Dis-C3-(5); ApH,
trans-membrane pH-gradient; A¥, membrane potential,
Afgoo nm- initial rate of change in the light scattering at
600 nm (arbitrary units)
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inomycin. The applicability of this method of ‘re-
coupling’ may be extended to systems, which are
relatively insensitive to valinomycin per se, as is
the case with the bacterium, Bay [7).

2. MATERIALS AND METHODS

Hepes, valinomycin and FCCP were products of
Sigma Chemical Co. (St Louis MO); Dis-C3+(5)
and S-13 were generous gifts from Professor L.
Ernster, University of Stockholm (Stockholm).

Bacterium, Ba; was grown and harvested as in
[1] for the ‘high salt-grown’ organism. ‘KCl-load-
ed” cells were prepared by washing the harvested
cells repeatediy with 0.8 M KCl at 0°C. To mea-
sure the rate of volume changes elicited by energy-
dependent extrusion of KCl from the cells, the
light scattering method in [1] was vsed. The cross-
membranal ApH and A¥ were assessed with the
aid of the fluorescent dyes 5-AA and Dis-C3-(5).
respectively [8,9],

Light scattering and fluorescence were measured
in a Perkin-Elmer fluorescence spectrophotometer,
model MPF-44B. Absorption spectra were taken
with a DW-2aUV—Vis spectrophotometer. Oxygen
was assayed polarographically, ATP as in [10] and
protein as in [11]. For other experimental details
see figure and table legends.

3. RESULTS AND DISCUSSION

According to [3] complex formation between
FCCP and valinomycin-K+ is reflected by a shift
in the absorption peak of the uncoupler. In the
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Fig.l. Spectral evidence for the interaction between
FCCP and valinomycin. The sample cell contained in a
3.0 ml total vol. 30 mM Hepes (pH 7.0, 0.67 xM FCCP
and 0.8 M KCl or NaCl as indicated. FCCP was omitted
from the reference cell. When indicated, 1.52 uM wval-
inomycin was also added both 1o the sample cell and the
reference cell. After 5 min incubation the difference
spectra were recorded. Curves: KCl + FCCP (1)
KCl + FCCP + valinomycin (2}, NaCl + FCCP (3);
NaCl + FCCP + valinomycin (4).

presence of 0.8 M KCl, which was the major salt
constituent of the standard assay medium, val-
inomycin caused a shift in the absorption peak of
FCCP from 381-415 nm (fig.1). No shift was ob-
served when NaCl replaced the potassium salt.
Under conditions similar to fig.l1, the protono-
phore S-13 also interacted with valinomycin-K+.
Here the shift in the absorption peak was from
382—428 nm {not shown).

The feasibility of ‘recoupling’ by valinomycin
was first tested on cnergy-dependent extrusion of
salt from cells of Bay, pre-loaded with KCl. Details
about this pump activity leading to contraction of
the cytoplasm were given in [1]. It can be most
conveniently followed by monitoring the changes
in light scattering. The pump became functional
when the cells were introduced in the assay medi-
um containing the respiratory substrate (fig.2).
FCCP nearly completely suppressed the volume
contraction, whereas valinomycin by itself had no
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effect on the kinetics of changes in light scattering.
However, when valinomycin was added subse-
quently lo the assay system containing the un-
coupler, a gradual reactivation of the pump ac-
tivity occurred. Valinomycin was also found to
abolish the effect of the uncoupler S-13 under con-
ditions which were analogous to that in fig.2 (not
shown).

To assess the connection between the restoration
of the pump activity and the formation of the un-
coupler—valinomycin-K* complex the titration in
fig.3 was done: [FCCP] was constant while [val-
inomycin] varied. The absorbancy at 415 nm (in-
dicating the formation of the complex) and the
light scattering (reflecting the pump activity)
changed in a near-parallel manner, thus suggesting
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Fig.2. Effect of FCCP and of valinomycin on salt extru-
sion from cells of Bzj, preloaded with 0.8 M KCL The
optical cell contained in 3.0 ml total vol. 30 mM Hepes
(pH 7.0), 0.8 M KCl and 50 mM ethanol at 37°C. When
indicated also 0.67 uM FCCP and/or L.52 pM vul-
inomycin were added. The reaction was started by
adding the bacterial cells (0.1 mg protein/ml). The
kinetics of the change in light scattering (Jeop nm) Was
monitored. Curves: no addition (1); valinomycin (2);
FCCP (3}, FCCP followed by valinomycin at the time
indicated by arrow (4).
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Table 1

Reversal of uncoupling by valinomycin

Addi-  Respiration ATP 0-9AA Q-Dis AF§00 nm
tions? (natom O/min) {nmol) (%) (%) (arb. units)

—val. +val, —val. +val, —val, +val. —val. +val —val. +val
None 1440 1300 40 19 71 75 410 410 265 215
FCCP 4940 2190 09 32 19 66 0.0 300 00 205
S-14 5620 1780 — - — - — - 00 184

@ In all the assays the basic medium contained 30 mM Hepes (pH 7.0), 0.8 M KC! and

50 mM ethanol

Cells of Ba, preloaded with 0.8 M KCl were added in the following amounts: 1 mg pro-
tein/ml for ATP, Q-9AA and Q-Dis assays; 0.5 mg protein/m] to measure respiration and
0.1 ml protein/ml to assess Algpo nm- When indicated also the following additions were
made: FCCP, 0.67 uM; S-13,4.43 uM; 9AA, 1.60 pM; Dis-C3-(5), 3.6 pM and
valinomycin {val}, 1.52 uM. All the results were calculated for | mg protein
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Fig.3. Restoration of pump activity as a function of the
valinomycin concentration. Pump activity was measured
as in fig.2. The oplica)l cell contained 30 mM Hepes (pH
7.0), 0.8 M KCL 50 mM ethanol, 0.57 uyM FCCP and
valinomycin at the concentrations indicated. The reac-
tion was started by adding cells of Bz; (0.1 mg protein/
ml} pre-loaded with 0.8 M KCl to the assay medium:
absorbancy at 415 nm: (---} AJ 00 nm-

a cause—effect relation between the above two
parameters (fig.3).

Additional functions connected with energy
transduction which were also tested as to their re-
sponse to valinomycin-K* are shown in table I.
An mspection of the data reveals that valinomycin
in presence of K+ abolished the release of the res-
piratory control induced by FCCP or §-13, re-
plenished the ATP pool depleted by FCCP, re-
stored ApH and AY¥ which were depressed by
FCCP.

Valinomycin-K*, by forming complexes with
protonophores, effectively reversed the uncoupling
effect of the laiter on several energy-linked func-
tions in the halotolerant bacterium, Ba;. After
being sequestered by valinomycin-K*, the anion
of the protonophore appears to be prevented from
exerting its action; i.e., to short-circuit the cross-
membrane proton current [12]. Gram-negative
bacterial cells are known to be relatively insensi-
tive toward valinomycin, unless pretreated with
EDTA [13]. It is, thus, likely that valinomycin-K+
could also be used for recoupling in several other
bacterial systems.

In several cases the effectiveness of a pro-
tonophore as an uncoupler was found to be poten-
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tiated, rather than decreased by the simultaneous
presence of a cationophore—cation complex [14].
The phencmenon of potentiation was explained by
the assumption that the abolition of A¥ by elec-
trophoretic counter-flow of the positively charged
cationophore—cation complex facilitated the pro-
tonophore-mediated passive backflow of protons.
It is therefore apparent that neutralization of the
net positive charge of the former complex by a di-
rect interaction with the protonophore—anion
would prevent the potentiation. Thus, it is reason-
able to assume, that it will depend on the proper-
ties of the coupling-membrane and/or the condi-
tions of the assay (i.¢., the mutual affinity between
the 2 types of agents, their stoichiometry, the con-
centration of the cation) whether the concerted ac-
tion of a protonophore and a positively charged
cationophore will result in an enhancement or a
diminution of the extent of uncoupling.
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