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1. In this paper we are concerned with the oscillation and asymptotic 
behavior of principal solutions of nonlinear differential equations of the form 

y(n) +f(x, y, y’,..., y’“-1’) = 0, o<x<co, fe C[R+xR”, R-J. (1.1) 

A principal solution y(x) = y(x, a) of (1.1) at the point OL 3 0 is defined by 
the conditions 

y(a) = y'(a) = ... = ywya) = I), y(n-l’(a) = 1. (1.2) 

We assume that principal solutions y(x, CY) of (1.1) are defined for all 01 3 0 
and exist for all t > 0, but uniqueness is not required. The differential 
equation (1.1) is said to be oscillatory if for every cy > 0 the principal solution 
y(x, a) has at least one zero in (OL, oo). Otherwise (1.1) is said to be non- 
oscillatory. 

Our results generalize well-known oscillation theorems of Leighton and 
Nehari [2, pp. 371-3751. Similar results were also obtained in Refs. [l] and 
[3], but only for special cases of Eq. (1.1). 

2. We first prove the following lemma. 

LEMMA 2.1. Ify(x) is a solution of (1.1) such that 

f(x, y(x), y’(x) ,..., y’“-l’(x)) 3 0, x 3 a! >, 0, (2-l) 

then 

lim y(+r)(x) = li+i(k - l)!(x - a)l-ky’n-“)(x), 5-m h = 1, 2 ,..., 71, (2.2) 

and both limits are Jinite. 
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Proof. Integrating (1.1) K times over [IX, x] we obtain 

y(n-k’(x) _ y Y(n-k+i’(a) (x _ q 
j=O j !  

+ & 1’ (x - t)“-lf(t, y(t),..., y’“-“(t)) dt = 0. (2.3) 
a 

Sincef(t, y(t),..., y(+l)(t)) > 0, (1.1) and (2.3) yield the inequality 

y(n-“)(x) _ k< r(“-y’(s) (x - oI)j 
j=o 

+, & (x - OL)k--l \ y-l’(a) - y’“-l’(x)1 > 0, 

and from this it follows that 

(k - l)!yo+k’(x)(x - CY)i--le + 0 (A) 3 y(fl-l’(x). (2.4) 

From (1.1) and (2.1) it follows that 

y'"'(x) < 0, x E [a, a); 

therefore the function y(+l)( x is nonincreasing in x E [a, co) and so the ) 
lim,, y+r)(x) exists and is a finite number. 

Now from (2.4) we obtain 

lirf+kf(k - l)!y+-k)(x)(x - ,)l-lc >, liiy@+l)(x). (2.5) 

Again from (2.3) and any point X+(LY, x) we get the inequality 

y(n-k'(x) _ p"-k+j'o~ (x _ ($ 
i=o j! 21 +(A)! ~ s (x - xJ+lf(t, y(t),..., y’“-“(t)) dt < 0. 

From this and (1.1) we obtain 

(k - l)! y’-(x)(x - ,)1-k - y(+l)(a) + 0 (A) 

x - x1 
+ 0 

k-1 
x-a 

[,(+1)(a) - y’“-1)(x1)] s 0, 
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and so 

liT+zup(k - l)! y(+k)(~)(~ - a)1-k < y”-l)(~J. (2.6) 

Since (2.6) holds for ail x~E((Y, x) and since limsl+oo y(*-l)(q) exists, we con- 
clude by letting x1 + co that 

lim+yp(k - l)! y(n-k)(x)(x - a)1-k < k+z y(+l)(x). (2.7) 

From (2.5) and (2.7) the desired result (2.2) follows. Both limits are finite 
since as we observed previously y@-r) (x) is a nonincreasing function of 

x E [O, co). 

THEOREM 2.2. Let the following conditions be satisjied: 

(9 fb, x1 , x2 ,..., x,) is nondecreasing in xi > 0, i = 1, 2 ,..., n, and 

f  (x, 0,o )..., 0) > 0 for x 2 0. 

I 1 f  (t, P-1, P-2 )...) t, 1) < co. 

Then (I .l) is nonoscillatory. Moreover, for 01 su$iciently large the principle 

solution y(x) = y(x, CX) of (l.l), together with all its derivatives up to order 
n - 1, are positive for x > OL and 

Fz Xl--ky(n--kyX) = &, , h = 1, 2 ,..., n. (2.8) 

Proof. Let E > 0 be given, E < 1. Choose % > 0 large enough to assure 
that 

s m f  (t, P-1, P-2 ,...) t, 1) < E. (2.9) 
a0 

This is possible because of (ii). 
We shall prove that the conclusion of Theorem 2.2 is true for any 01 > 01~ . 

For simplicity we set y(x) = y(x, a). From (2.3) and (1.2) we easily get 

(x - @-l = (k - l)!y’“-k’(x) + j’ (X - t)“-‘f(t, y(t),..., y’“-“(t)) dt, 
OL 

h = 1, 2 ,..., n. (2.10) 
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We now claim that Y(~)(X) > 0, x E (a, co), i = 0, I,..., n - 1. If the claim 
were false there should exist a point fi > CL such that for i = 0, l,..., n - 1, 
y(i)(x) > 0 in (cy, j3) while y(j)(/I) = 0 for some j. 

BY (9, 

f(t, r(t), Y’(t),-., r’“-“(t)) 3 0, x E b-6 PI, 

and by (2.10) we get 

(x - a$*--1 > (k - l)! y(fi-k)(x), ~<X<P, K = 1,2 ,..., tt. (2.11) 

Applying (2.10) for k = n - j at the point x = j3 and using (i), (2.11), and 
(2.9) we obtain the following contradiction: 

(/I - a)‘+i-1 = (k - I)!y’i’@) +- s.” (/3 - t)“-+lf(t, y(t),..., y-‘(t) dt 

< (,kI - a)“-- @t, P-l, t--z ,..., t, 1) dt 

< (/3 - ct)“-j-1 f f (t, t-l, P2 ,..., t, 1) dt < ~(/3 - +-j-l. 
(I 

Therefore the claim is correct. (2.11) holds for all x > CY and 

f(4 r(t),..., y’“-“(t)) 3 0, t 3 a. 

Now (2.10) for x > 01 gives 

(x - a)k-1 < (k - l)!y’“-“j(x) + (X - ,)fi-l j’f(t, y(t),..., y’“-l’(t)) dt 
D 

< (A - l)!y(“-k’(x) + (x - a)- j-If(t, P-l,..., t, 1) dt 

< (k - l)!y(“-k’(x) + (x - a)k-1 /,)t, P-l,..., t, 1) dt 

< (k - l)!y’“-k’(x) + ‘(X - I#+1, 

and so from this and (2.1 l), which is true for any/J, we get 

(1 - 6) < (k - l)!(x - cd)l--ky(@--k’(X) < 1, x > ff. 

Then (2.8) follows from (2.12) and the fact that e is arbitrary. 

(2.12) 
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Under certain conditions onf(t, x, , xa ,..., x~), Theorem 2.2 has a con- 
verse, i.e., conditions (i) and (2.8) imply (ii). This is the case, for example, 
if n = 4 andf(t, x1 ,..., xs) sz p(t) x1 , as was shown in Ref. [2]. 

A more general condition onf(t, x1 ,..., x,) to obtain the previous converse 
is to assume that for all A, , k = l,..., II - 1, there exists an M fixed such that 

I y(t, An-p-I,... , AIt, 1) dt 3 M 
I 

“f(t> tn-’ ,..., t, 1) dt (2.13) 
0 0 

In fact, one can prove something more, viz., 

THEOREM 2.3. Assume that condition (i) of Theorem 2.2 is true. Assume 
that condition (2.8) holds for some solution (not necessarily principal) of (1.1). 
Then 

where 

s 
mf(t, An-ltn-l ,..., AIt, 1) dt < CO, 
0 

(2.14) 

1 
Ak=K?s k = 1) 2 )..., n - 1. 

Proof. For l > 0, E sufficiently small, and from (2.8), it follows that for 
x 3 x0 , x0 sufficiently large, 

p-(X) > I (k f l)! - E 
I 

xk-1 > 0, x >, x0. (2.15) 

Integrating (1.1) over [x0 , x] we get 

Y (n-1)(xo) - y-)(x) = j:,f (t, y(t), y’(t),..., y’“-“‘(t)) dt. (2.16) 

Define 

We have 

2k=[&jj-c, I k = 1, 2 ,..., 72 - 1. 

A, = !;p&, k = 1, 2 ,..., 12 - 1, 

and Jk decreases in E, k = 1,2,..., ?I - 1. 
Using (2. IS) and (i) it follows from (2.16) that 

y'"-l'(xo) -y-1, (x) > j-X f(t, J,&+‘,..., AIt, 1) dt. (2.17) 
ZO 
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Taking limits in (2.17) as x + 00 and as l -+ 0, and using the monotone 
convergence theorem in the right side of (2.17), we get 

y’“-1)(x0) - 1 3 
I 

mf(t, An-lP-l )..., A$, 1) dt. (2.18) 
50 

The desired result follows from (2.18) by observing that the left side of (2.18) 
is a finite number. 

THEOREM 2.4. Let the following conditions be satisjied: 

(i) f(x, -5 , x2 ,..., x,) is nondecreasing in xi > 0, i = 1,2 ,..., n, and 
f(x, Xl , x2 9’s*, x,) > Ofw x 2 0, Xl > 0; 

(ii) For all 01 > 0 and Ai > 0, i = 0, 1, 2 ,..., n - 2, 

I “f(t, A,-,(t - my-z ,..., A,(t - (Y), A,, , 0) dt = co. (2.19) 
0 

Then for all j? > 0 the principal solution y(x) ZE y(x, /I) of (1.1) has at least one 
zero in (8, oo), i.e., (1.1) is oscillatory. 

Proof. If the theorem were false there should exist a /3 > 0 such that 
y(~, /I) > 0, x > 8. It follows from (i) that 

y’“‘(x) = -f (x, y(x),..., y’+“(x)) < 0, 

x > /3, and so y(‘+l’( x is strictly decreasing in (/3, co). Also condition (2.1) ) 
is true and by Lemma 2.1 for k = n it follows that y+l)(co) > 0. Therefore 
y+l)(x) > 0 for x > j3. So y(n-2) (x) is strictly increasing and since 
y(“-s)(p) = 0 it follows that y (n-2)(~) > 0, x > /3. With the same reasoning 
and an induction we prove that 

y’yx) > 0, x > B, k = 0, 1, 2 ,..., n - 1. 

Applying Taylor’s theorem to y’“)(x) around 01 > /3 we obtain 

(2.20) 

y(W(~) = y(")(a) + y(k+l)(a)(x - a) + ..* + ycnM2)(a) tz 1 i)12iJ 

+ Y’“-l’(&;c) ;; 1 I”):& 9 

where 01 ,( & < x, k = 0, 1, 2 ,..., n - 2. 
Defining 

A, = Y’“-2Y4 
--a--’ 

k = 0, 1, 2 ,..., n - 2, 
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it follows that 

y’“‘(x) > &-$-k(X - ‘$-2-k, 

and y(+l)(x) > 0 for x > 01. 

k = 0, 1, 2 ,...) 71 - 2, (2.21) 

Integrating (1.1) over [01, x] and using (i) and (2.21) it follows that 

1 >, J+-l)(ar) - y’“-“(x) = lZf(t, r(t), y!(t),..., jJ’“-“(t)) dt 
(I 

> 
I 

y(t, Anp2(t - a)+2 ,...) A,(t - a), A, ) 0) cit. 
a 

Since the left side is independent of x while the right side, by (2.19), goes 
to cg as x + co, the above relation is a contradiction and Theorem (2.4) is 
proved. 
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