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1. INTRODUCTION 

Representations of (commutative) m-barreled topological algebras as 
suitable algebras of complex-valued functions on their spectra have already 
been considered (cf., [4] and the related references). The representations in 
question are based on topological properties of the spectra, yielded by those 
of the algebras. On the other hand, analogous properties of the generalized 
spectra for suitable topological algebras also have been derived (cf. [9, Sect. 31). 
Moreover, certain results of [6] (cf. Section 3 below), referred to the barrel- 
edness of the locally convex space %(X,F) of continuous locally convex 
F-valued maps on a completely regular space X, equipped with the topology of 
compact convergence in X, which results constitute extended forms of the 
Nachbin-Shirota theorem (cf. [5, S]), in connection with the techniques of 
[4, Sect. 31, motivate the present work. The results obtainedqherein have a 
special bearing on some respective results of [4] and [9]. 

In the present paper we are interested in (functional) representations of 
(not necessarily commutative) m-barreled locally convex algebras as suitable 
algebras of (locally convex) algebra-valued maps on the respective generalized 
spectra. Thus, let E be an m-barreled (locally convex) algebra and let F be a 
locally m-convex semi-Monte1 one. Then, the equicontinuous subsets, the 
relatively (simply) compact subsets and the (simply) bounded subsets of the 
corresponding generalized spectrum A’(E, F) are the same (cf. Theorem 2.1 
below). In particular, A!(E,F) is a Nachbin-Shirota space (cf. Corollary 
3.5 below), so that if, in addition, F is a FrCchet (or a nuclear complete bar- 
reled) algebra, %(di!(E,F),F) is a barreled locally convex space (Theorem 
3.3). Finally, into the context of the preceding considerations with the 

additional assumption that E is a Ptik locally convex space, it is proved that 
the algebraic exactness of the sequence 

0 --z E 5 T@Y(E, F), F) + 0, 

where g is the respective generalized Gel’fand map, implies the topological 
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exactness, so that the topology of the algebra E is that of the closed equi- 
continuous convergence in .&(E,F) (g eneralized Michael topology; cf. 
Theorem 4.1 and its Corollaries 4.2 and 4.3 below). 

2. PRELIMINARIES: GENERALIZED SPECTRA OF LOCALLY CONVEX ALGEBRAS 

All vector spaces and (associative linear) algebras considered in the 
following are over the field C of complex numbers. The topological spaces 
involved are assumed to be Hausdorff unless otherwise indicated. 

By an m-barreled algebra we mean a (locally convex) algebra E such that 
every m-barrel (i.e., absorbing balanced convex closed and idempotent subset 
of E) is a O-neighborhood in E [3]. F or a detailed discussion of m-barreled 
topological algebras we also refer to [3] and [4]. On the other hand, by a 
semi-Mantel algebra we mean a (locally convex) algebra E such that the under- 
lying locally convex space E is a semi-Monte1 space [l]. Finally, a locally 
convex algebra E is said to be a Ptdk algebra if the locally convex space E is 
a PtPk space (cf. [ 1, p. 299, Definition 21). 

Now, let E andF be locally convex algebras. Then, by thegeneralized spec- 
trum of E (for F given) [4a] we mean the set J?(E, F) of nonzero continuous 
(algebra) homomorphisms of E into F, topologized as a subset of TS(E, F) 
{i.e., the space Y(E,F) of continuous linear maps between the topological 
vector spaces E and F, equipped with the topology of simple convergence in E). 
Thus, the spectrum ,.M(E, F) is, of course, a completely regular (Haus- 
dorff) topological space. bIoreover, if the algebras E and F have identity 
elements, the elements of the spectrum .&‘(E, F) are assumed to be identity 
preserwing. In this case, A’(E, F) is clearly a closed subset of Lk’$(E, F). On 
the other hand, the set ,&‘(E, F)+ : = &‘(E, F) u (0) C Y(E, F), topologized 
as a subset of x<(E, F), is called the extended generalized spectrum of E (for F 
given). It is clear that Af(E, F)+ is a closed subset of pS(E, F) whenever F has 
continuous multiplication. 

Now, let E be an m-barreled (locally convex) algebra, F a locally convex 
one, .&‘(E,F) the respective generalized spectrum of E (for F given) and 
let H be a (nonempty) subset of &!(B, F). First, if H is relatively (simply) 
compact, then it is clearly (simply) b ounded. Moreover, if F is a locally 
m-convex algebra and H (simply) bounded, then H is equicontinuous (cf. 
[9, p. 176, Proposition 3. I]). On the other hand, in case, F is a semi-Monte1 
algebra and H is equicontinuous, then H is also relatively (simply) compact 
(cf. [9, p. 175, Theorem 3.1]), so that we get the following result, which 
extends it [4, p. 470, Theorem 2.1, Corollary 2. I]. That is, we have 

THEOREM 2.1. Let E be an m-barreled (locally convex) algebra, F be a 
semi-Monte1 locally m-convex algebra, A(E, F) be the corresponding generalized 
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spectum of E (for F given), and let H be a (nonempty) subset of A(E, F). Then, 
the following assertions are equivalent: 

(1) H is equicontinuous. 

(2) H is relatively (simply) compact. 

(3) H is (simply) bounded. 

Now, 1etE and F be locally convex algebras and let k’(E, F)be the general- 
ized spectrum of E (for F given). Then, the generalized Gel’fand transform 
of an element x of E is the (continuous) map 

2: A’(E, F) ++F: h ++ f(h) := h(r). 

On the other hand, the generaked Gel’fand map is the (algebra) homomor- 
phism g: Et-+ V(A(E, F), F): x ~-+g(x) : = 4, where g(.A(E, F), F) is the 
algebra of continuous F-valued maps on A(E,F). The algebra E is called 
F-bounded, if for every x E E the set i(A!(E, F)) is a bounded subset of F. 
As is easily verified, E is F-bounded if, and only if, A’(E, F) is a (simply) 
bounded subset of PS(E,F). Moreover, one obviously has 

dl(E, F)+ C A(E, F) u {0}, 

where .&(E, F) is the closed hull of &(E, F) in YS(E, F). Thus, &‘(E, F) is 
clearly relatively (simply) compact if, and only if, .k’(E, F)+ is relatively 
(simply) compact, so that by the foregoing and Theorem 2.1 above we now 
have the following result, which has a special bearing on [4, p. 471, Corol- 
laries 2.2, 2.31. 

COROLLARY 2.2. Let E be an m-barreled (locally convex) algebra, F be a 
semi-Monte1 locally m-convex algebra, and let A(E, F) and .A’(E, F)+ be the 
generalized and extended generalized spectrum of E (for F given), respectively. 
Then, the following assertions are equivalent: 

(1) E is F-bounded. 

(2) A(E, F) is relatively (simply) compact. 

(3) A(E, F)+ is (simply) compact. 

3. ON NACHBIN-SHIROTA SPACES 

Let X be a completely regular (Hausdorff) topological space, F a locally 
convex space, whose topology is defined by a saturated family r of seminorms, 
and let a(X, F) be the locally convex space of continuous F-valued maps on 
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X, equipped with the topology of compact convergence in X [2]. Moreover, 
for fE V?(X,F), p E r, E > 0 and a (non empty) subset A of X we put: 
pA( f) : = sup{p( f(x)): x E A} and V(d, p, e) : = {h E 59(X, F): p,(h) < c>. It 
is clear that V(A,p, l ) is a O-neighborhood in ??(X,F) if and only if, d is 
relatively compact. On the other hand, if F = C, we will write U(X) for 
qs, C). 

In this section, we are mainly interested in spaces X and F such that 
U(X, F) be a barreled locally convex space. First, the well-known Nachbin- 
Shirota theorem asserts that g(X) is a barreled locally convex space if and 
only if, for every closed noncompact subset B of X there exists a continuous 
real-valued function f on X, which is unbounded on B (cf. [5, p. 471, Theo- 
rem 1] and [8, p. 294, Theorem 11). Thus, a completely regular (Hausdorff) 
topological space X is called a Nuchbin-Shirota space if for every closed 
noncompact subset B of it there exists a continuous real-valued function f on 
X, which is unbounded on B. 

PROPOSITION 3.1. Let X be a completely regular (Hausdorff) topological 
space. Then, the following assertions are equivalent: 

(1) X is a Nachbin-Shirota space. 

(2) For some (in fact, clearly for every) (Hausdorff) locally convex space F 
and for every closed noncompact subset B of X there exists an element h of 
%(X, F), which is unbounded on B. 

Pyoof. (1) implies (2). Let F b e a (Hausdorff) locally convex space and 
let B be a closed noncompact subset of X. hloreover, let y EF with y + 0 
and p E r with p(y) = 1. Then, for the map h : = f 13~7 E 97(X, F) one 
obviously has p(h(B)) = {I f(b) ( : b E B}, and hence, by hypothesis for f, h is 
unbounded on B. 

(2) implies (1). Let B be a closed noncompact subset of X. Then, by 
hypothesis, h(B) is an unbounded subset of F and hence there exists a 
seminorm p E r with p(h(B)) unbounded, so that the function f := p 0 h is 
unbounded on B and the proof is finished. 

On the other hand, by using the respective arguments of [5, p. 471, Theo- 
rem 21, we get the following. 

PROPOSITION 3.2. Let X be a completely regular (Hausdorff) topological 
space and let F be a locally convex space such that 97(X, F) be a barreled locally 
convex space. Then, X is a Nachbin-Shirota space. 

Proof. Let B be a closed noncompact subset of X, p E rand E > 0. Then, 
T’(B, p, l ) is obviously an absolutely convex and closed subset of V(X, F), 
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which, by the foregoing, fails to be a O-neighborhood in %(X,F). Thus, by 
hypothesis for %‘(X, F), V(B, p, E) fails to be absorbing, that is, there exists 
an element h of U(X, F), with h 4 XV(B, p, E) for every h > 0, and hence, h is 
unbounded on B, which, by Proposition 3.1 above, proves the assertion. 

Furthermore, it is proved in [6] that if X is a Nachbin-Shirota space and 
F a FrCchet (or, a complete nuclear barreled) locally convex space then 
U(X, F) is barreled, so that by Proposition 3.2 above, we are now in a position 
to state the following result, which will be used in the next section. That is, 
we have 

THEOREM 3.3 (Nachbin-Shirota). Let X be a completely regular (Haus- 
dor#) topological space and let F be a Frechet (or a complete nuclear barreled) 
locally convex space. Then, the following assertions are equivalent: 

(1) X is a Nachbin-Shirota space. 

(2) 97(X, F) is a barreled locally convex space. 

PROPOSITION 3.4. Let E and F be locally convex algebras and let A?(E, F) 
be the generalized spectrum of E (for F given) such that every (simply) bounded 
subset of A(E, F) be relatively (simply) compact. Then, the spectrum A!(E) F) 
is a Nachbin-Shirota space. 

Proof. Let H be a (simply) closed noncompact subset of .A(E, F). Then, 
by hypothesis, H is (simply) unbounded, and hence, there exists x E E such 
that the set {h(x): h E H} is an unbounded subset of F. Thus, the respective 
generalized Gel’fand transform 4 E V(A(E, F), F) is unbounded on H, so 
that the assertion is now obtained by Proposition 3.1 above, and the proof 
is finished. 

Finally, by Proposition 3.4 and Theorem 2.1 in the foregoing, we clearly 
get the next result, which is needed for what follows. 

COROLLARY 3.5. Let E be an m-barreled (locally convex) algebra and let F 
be a locally m-convex semi-Monte1 algebra. Then, the corresponding generalized 
spectrum A(E, F) of E is a Nachbin-Shirota space. 

4. FUNCTIONAL REPRESENTATIONS 

Let E and F be locally convex algebras, A?(E, F) the generalized spectrum 
of E (for F given) and let g: E H V(.A?(E, F),F) be the corresponding 
generalized Gel’fand map. Then, the algebra E is called (functionally) semi- 
simple (with respect to F) (or, briefly F-semisimple), if g is injective. On the 
other hand, E is called full (with respect to F) (or briefly F-full), if g is bijective. 
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Now, let E and F be locally convex algebras and let V?,(A’(E, F), F) be the 
locally convex space of continuous F-valued maps on A!(& F), equipped with 
the topology 7k of closed equicontinuous convergence in .A!(& F) [7J. Then 
the inverse image (initial) topology m(E, F) on E, defined by the corresponding 
generalized Gel’fand map g (i.e., m(E, F) = g-l(r&), is called the generalized 
Michael topology of E (with respect to F). If F is a locally m-convex algebra, 
then clearly m(E, F) is a locally m-convex topology. Now, a locally convex 
algebra E[T] is called a generalized Michael algebra (with respect to a given 
local& convex algebra F) (or, briefly F-generalized Michael akebra), if 
T = m(E, F). 

In this respect, we now have the following 

THEOREM 3.1. Let E be an m-barreled locally convex Ptdk algebra, let 
F be a locally m-convex semi-Monte1 algebra and let A’(E, F) be the corresponding 
generalized spectrum of E (for F given) such that E be F-full and the space 
%‘(,K(E, F), F) of continuous F-valued maps on A%‘(E, F), equipped with the 
topology of compact convergence in &(E, F) [2], b e b arreled. Then the respective 
generalized Gel’fand map g: E H V(A(E, F), F) is an homeomorphism. More- 
over, the topology of E coincides with m(E, F) ( i.e., E is an F-generalized Michael 
algebra). 

Proof. First, by hypothesis and [9, p. 177, Corollary 4. I], the map g is 
continuous. Moreover, the continuity of the inverse map g-l follows clearly 
bv hypothesis and [I, p. 296, Theorem 21. On the other hand, the final 
assertion is now obviously obtained by hypothesis, Theorem 2.1 in the 
foregoing and the definition of the topology m(E, F), and the proof is com- 
pleted. 

COROLLARY 4.2. Let E be an m-barreled locally convex Ptdk algebra and 
let F be a Frechet (locally m-convex) semi-Monte1 algebra such thnt E be F-full. 
Then, the corresponding generalized Gel’fand map g: Et+ %?(A(E, F), F) is an 
homeomorphism. Moreover, the topology of E coincides with m(E, F) (i.e., E is an 
F-generalized Michael (locally m-convex) algebra). 

Proof. First, by hypothesis and Corollary 3.5 above, the spectrum 
A’(E, F) is a Nachbin-Shirota space. Moreover, by hypothesis for E and 
Theorem 3.3 in the foregoing, g(A(E, F), F) is a barreled space, so that the 
assertion is reduced to that of Theorem 4.1 above and the proof is finished. 

On the other hand, by Theorem 4.1 above and the same arguments of the 
preceding corollary we finally get the following. 

COROLLARY 4.3. Let E be an m-barreled locally convex Ptdk algebra and 
let F be a complete nuclear barreled locally m-convex (hence, semi-Montel) algebra 
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such that E is F-full. Then, the respective generalized Gel’fand map g is a 
homeomorphism. Moreover, E is an F-generalized Michael (locally m-convex) 
algebra. 
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