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Abstract 

A double iteration process already used to find the nth root of a positive real number is analysed and showed to be 
equivalent to the Newton's method. These methods are of order two and three. Higher-order methods for finding the nth 
root are also mentioned. (~) 1998 Elsevier Science B.V. All rights reserved. 
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I. Introduction 

Finding the nth root of  a strictly positive real number is a basic important problem for numerical 
computation. Several algorithms exist to efficiently solve this problem. In this paper we present a 
general analysis of  two families of  algorithms. The first family is based on a double iteration process, 
while the second family is a consequence of  Newton's method. These methods use explicitly only 
the four elementary arithmetic operations: addition, subtraction, multiplication, and division. Special 
cases of these two families have already been presented in the literature. These two families are 
equivalent as indicated below. 

The double iteraction process we suggest is the following: let b0 and z0 be two given strictly 
positive real numbers such that b0z~ = r, and 

( (n-jr)bk + fl )" (1.1a) 
b k + l = b k  ( n + l - f l ) b k + f l - 1  ' 

* E-mail: francois.dubeau@dmi.usherb.ca 
~This work has been supported in part by a FCAR grant from the "Ministrre de l'13ducation du Qurbec" and by a 

grant from the Natural Sciences and Engineering Research Council of Canada. 

0377-0427/98/$19.00 (~) 1998 Elsevier Science B.V. All rights reserved 
PII S 0 3 7 7 - 0 4 2 7 ( 9 8 ) 0 0 0 3 3 - 8  



192 F. DubeaulJournal of Computational and Applied Mathematics 91 (1998) 191 198 

( (n + l - fl )bk + /3 -1"X 
zk+l = zk (n fl)bk +/3  ) (1.1b) 

k = 0, 1,2, ..., where fl E N is fixed. We remark that bkz k ~ = r, and it will be shown that {bk}k:0+°~ 
f z  /+oo FUn. converges to 1, and hence ~ kSk=0 converges to Gower [8] has analysed a double iteration 

process that corresponds to/3 = 0 for r ~ (0, 1). Also Knill [10] has related the case/3 = 0 and n = 2 
for r E  (1 ,+e~)  to Newton's method for square-root extraction. A general analysis of  this family 
will be done in Section 2. 

In Section 3 we analyse Newton's method applied to the equation F ( x ) = x ~ - " ( x  ~ - r ) = x  ~ (1 - r/x ~) 
fx  "l+OO to find r ~/" where /3 E ~ is fixed. This scheme generates a sequence ~ kfk=0, where 

x0 is given (sufficiently close to rl/"), and 

F ( x k )  
xk+l = xk F(l)(xk------~ ) -- xk 

(1.2a) 

[ ( n + l - / 3 ) r + ( / 3 ~ l ) x ~ ]  
[n~ - ~ r  ~ - ~  for k = 0 , 1 , 2  . . . . .  (1.2b) 

The two families of  methods are equivalent. To see this, let bk = r/x~ in (1.2b), then we obtain 

( (n + l - /3)bk + /3 - l ) 

xk+l = xk (n - / 3 ) b k  +/3  ' 

and 

_ r _ r ( n - - f l ) b k + / 3  = b k  
bk+l x~+l x z (n + 1 /3)bk +/3  - 1 (n 

(n -/3)bk +/3 "~" 
+ l  /3)bk+/3-1) ' 

which corresponds to (1.1). The two methods produce the same sequences, i.e. for given r and n, 
if z0 = x0 then zk = xk for all k. 

In Sections 2 and 3 we obtain second-order methods for fl # ½(n + 1 ) and third-order methods 
for/3 = ½(n + 1). Finally, in Section 4, we indicate how it is possible to obtain methods of  order p, 
for arbitrary p, for obtaining the square root [9, 13] and the nth root [5]. 

2. Double iteration process 

The double iteration process we consider here is based on the following fact: 

Lemma 2.1. L e t  r be a s tr ict ly  posi t ive  real number. I f  +o~ r z l + ~  {bk}k=0 and "t kSk=0 are two sequences o f  
s tr ict ly  posi t ive  real numbers  such that (a)  bkz~ = r f o r  k = O, 1 , 2 , . . . ,  and (b)  limk~+~ bk = 1, then 
limk~+o~ zk = r l/n. 

Proof. If  bk and zk are strictly positive real numbers and bkz~ = r then zk = (r/bk)l/n. If b~ ,1, 
then zk ~rl/n. [] k~+oz 

k---*+oo 

Scheme (1.1) we suggest here is a generalisation and/or an extension of  Gower's [8] and Knill's 
[10] schemes. The convergence analysis is based on the next three lemmas in which we use the 
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following functions: 

n 

x + [3 and ~k(x) = x ~o(x). 
~ ( x )  - x + [3 - n 

Lemma 2.2. Let  n be a strictly positive integer and [3 E ~. Then ~p(x) is a strictly decreasing 
function. Moreover,  l imk~+~ ~p(x) = 1 = l imk~+~ ~p(x), and limx~t,_,)+ tp(x) = + o o  = - limx~,_t~)- 
, p ( x ) .  

Lemma 2.3. Let  n be a strictly positive &teger and [3 E R. For 
(a) n = l  and [3 < 1 or n >~ 2 and [3 <~ l ( n +  1),~k(x) is a strictly decreasing funct ion on (n- f l ,+cxD)  
such that limx~n_~). ~9(x) = + ~ , l i m x ~ + ~  ~b(x) : 1, and 1 < ~b(x) < tp(x), 
(b)  n = 1 and [3 > 1 or n >1 2 and [3 >~ l (n  + 1), ~(x)  is a strictly decreasing funct ion on ( - c ¢ , - [ 3 ]  
such that l imx~_~  if(x) = 1, ~b(-fl)  = O, and 0 < tp(x) < ~b(x) < 1. 

Proof .  The result follows from the analysis o f  the sign o f  

nx n- 1 
fft ')(x) : [x[213 - (n + 1)] + [3([3 - n)] [] 

(x + 1)"+l(x + [3 - n) 2 

Lemma 2.4. Le t  n be a strictly positive integer and [3 E ~. 
f a  l + ~  and (a) Le t  n = 1 and [3 < 1 or n >>- 2 and [3 <<. l (n  + 1), and bo > 1. Le t  the sequences l kfk=o 

{bk}k=o be generated such that qg( ak ) = bk and bk + l = ~,( ak ) f o r  k = O, 1,2 . . . . .  Then {ak}~=0 is a 
strictly increasing sequence, ao > n - [3 > 0 and lim~__.+~ ak = +c~,  {bk}k=0+~ is a strictly decreasing 
sequence and l imk~+~ bk = 1. 
(b)  Let  n =  1 and [3 > 1 or n >~ 2 and [3 >~ t ( n +  1), and 0 < bo < 1. Le t  the sequences +~ {ak}k=o and 

+oo  {bk}k=0 be generated such that qg(ak) = bk and bk+, = ~(ak)  f o r  k = 0, 1 , 2 , . . . .  Then {ak}k+~ is a 
r b l+~  strictly increasing strictly decreasing sequence, ao < - [3 < - 1 and limk__.+~ ak = - g o ,  1 kJ'k=0 is a 

sequence and l imk~+~ bk = 1. 

P rooL (a) If  bk > 1, ~p(ak)= bk implies 

n 
ak = (n - [3) + > n - [3. 

bk_ 1 

f a  l + ~  fb  l + ~  Then 1 < bk+~ = ~,(ak) < ~P(ak) = bk. Hence l ~Yk:o is a strictly increasing sequence, and 1 kYk:0 
is a strictly decreasing sequence lower bounded by  1. The result follows from the properties o f  Ip(o) 
and ~O(o) o f  Lemma 2.3(a). (b) I f  0 < bk < 1, ~p(ak) = bk implies 

nbk 
ak = -[3 < - [3. 

1 - bk 

Then 1 > bk+l = ~9(ak) > qg(ak) = bk. Hence, {ak  +go +~ }k=0 is a strictly decreasing sequence, and {bk}k=0 
is a strictly increasing sequence upper bounded by 1. The result follows from the properties o f  ~k(.) 
and ~o(.) o f  Lemma 2.3(b). [] 
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Let us observe that 

bk+l = O(ak) = (p(ak) \ a k  + 1J 

and 

=bk ( (n  

/ (n 

We are now ready 

(n -/3)bk +/3 "~" 
-4-1 / 3 )bk+ /3 - -1 ]  ' 

+ 1- /3)bk + / 3 - - 1 )  ( a k + l ]  ( 1 )  
(n /3)bk + /3 =Zk \ - - a k  / =Zk 1 +  ~ . 

to prove the convergence of scheme (1.1). 

Theorem 2.5. Let  n be a strictly positive integer and [3 E R. 
(a) Let  n =  1 and/3  < 1 or n >>. 2 and [3 <<. ½(n+ 1), and let p > 0 be given such that b o = r / p  ~ > 1 
and Zo p. Le t  +~ +~ +~ {Zk}k=0 be {bk}k=0 be generated as in L e m m a  2.4 (a), and let = {ak}k=o and 

f z  1+~ strictly increasing sequence defined by zk+l = zk (1 + 1/ak) f o r  k = 0, 1 , 2 , . . . .  Then ~ kJ'k=0 is a 
and limk__,+~ zk = r 1In. 

(b) Let  n = l  and/3 > 1 or n >>- 2 and/3 >1 ½(n+l), and let p > 0 be given such that 0 < bo=r/p" < 1 
+~ r b l+~ rz ~+~ be defined and Zo = p. Le t  {ak}k=0 and ~ kJ'k=o be generated as in L e m m a  2.4 (b), and let ~t kSk=o 

{Zk}k=0 is a by zk+l = zk (1 + 1/ak) f o r  k = 0, 1,2,. . .  Then +~ strictly decreasing sequence and 
limk~+~ zk = r 1/n. 

Moreover,  the convergence is quadratic f o r / 3  # ½(n + 1 ) and cubic f o r / 3  = ½(n + 1 ) and n >>- 2. 

¢z ~+~ is a strictly increasing sequence of strictly positive real numbers Proof. From Lemma 2.4a, l ks~=0 
+ o o  because z0 > 0 and (1 + 1/ak) > 1. Also from Lemma 2.4b, {zk}k=0 is a strictly decreasing sequence 

of strictly positive real numbers because z0 > 0 and 0 < (1 + 1/ak) < 1. Moreover, the sequences 
q-cxD + o o  {bk}k=0 and {Zk}k=0 satisfy Lemma 2.1 because bozg = r follows from the definition of b0 and z0, 

and bkz~ = r for k = 0, 1 ,2, . . . ,  follows by induction since 

( l )  n ( a k  ~nn(ak-~- l )n  
bk+lz~+ 1 = ~(ak)z~ 1 + -~k = (p(ak) \ a k  + l J  zk \ a-----~-/ = bkz~. 

To obtain the rate of convergence, we observe that 

n - 1  

r - - z ~  = (r  '/" - - z k )  Z r(n-'-i)/nzik 
i=0 

and 
n 

lim - - r  - z k _ n r ( n - l ) / n .  
k---*+cx~ r l / n  - -  Zk  

Also, from bkz~ = r we have 

r -  z~,+l r(1 - 1/bk+t) b~' (bk+l -- 1) 
( r - -  z k")z rZ(1 -- 1/bk) m rm-lbk+l (bk -- 1) m 

But ( )n ± ( )  ( ) b k -  1 = b~ n b k -  1 i 
bk+,----bk 1 - - ( n _ f l + l ) b k + ( f l _ l  ) i=0 i (--1)' ( n - f l + l ) b , + ( f l - 1 )  ' 
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then 

b~+l - 1 =  I n (½(n + 1) - fl) + [n ( l ( n  + 1) - fl) + (fl - 1) 2] (bk -- 1)] (bk -- l )  2 

] 

+ b k ~ ( n ) ( i  ( - 1 ) i  b k - 1  ) i  
g=3 ( n - - f l + l ) b k + ( f l - 1 )  " 

It fol lows that 

l im bk+l -- 1 
k-~+~ (bk - 1)2 

n +  1 

2H 

r 1/" - zk+l n ÷ 1 - 2fl  
l im 

k--,+~ ( r l / ,  _ Zk) 2 2rl/n ' 

and the convergence is quadratic,  but for fl = l (n  + 1) we have 

bk+l - 1 (n -- 1)(n + 1) 
lim 

k ~ + ~  (bk - 1 )3 12n 2 

r 1/" - Zk+l (n  -- 1 ) (n  + 1 ) 
l im 

~ + ~  (r l / ,  - Zk  ) 3 12r 2/" , 

and the convergence is cubic. [] 

R e m a r k  2.6. The convergence is not uni form in r (see also [10] for fl = 0 and n = 2). Indeed, for 
fl ~< ½ ( n + l ) ,  let r -~ + c ¢ ,  then b o = r / p "  ~ + c ~ ,  and for any fixed k we have bk ~ + o o ,  ak ~ n - f l ,  

and zk ~ z0 ((n - fl + 1 ) / (n  - f l ) )k .  For fl ~> l (n  + 1 ), let r --~ 0 +, then bo = r i p  n --+ O, and for any 

fixed k we have bk -~ 0,a~ --~ - f l ,  and zk -+ Z o ( ( f l -  1)/fl) k. 

E x a m p l e  2 .7 .  For  fl = ½(n + 1 ), let p > 0, set b0 = r/p", z0 = p, we have methods  o f  order 3 given 
by 

( ll) (n 1 ) b k + ( n + l ) ' ] "  and z k + l = z k  - -  
b k + l = b ,  ( n + l ) b k + ( n -  l ) J  1 ) b k + ( n + l  

R e m a r k  2.8. The double iterative procedure introduced by Gower  [8] corresponds to fl = 0 since 
for bk = 1/(1 + ck) we have (1 + ck+l ) = (1 + ck)(1 - ok~n)" and zk+j = Z k  (1 -- ok~n). For n = 1, the 
process can be used to find r -~ for r E (0, 1) using only  additions, subtractions, and multiplications.  
I f  we start wi th  bozo = r - l ,  z0 = 1 and Co = r -  1, then 

C k + l = C  2 and Z k + l = Z k ( l - - C k ) .  

This is the process described in [8]. 
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3. N e w t o n ' s  method  

Let us recall the fo l lowing  result about N e w t o n ' s  method: 

Theorem 3.1 (Dennis and Schnabel [3], Ford amd Pennline [6], Gerlach [7], Traub [12]). Let  p be 
an integer >1 1, and let F (x )  be a regular funct ion  such that F ( c Q = 0 ,  F(l)(c~) # 0, F ( J ) ( ~ ) = 0  
f o r  j = 2  . . . .  , p, and F(P+I)(~) 7 ~ O. Then Newton ' s  method  applied to the equation F ( x ) = 0  generates 
a sequence {xk +~ }k=o, where 

F(xk ) 
xk+l =Xk (k = 0, 1,2 . . . .  ) 

F (1)(xk) 

converges to ~ f o r  Xo given sufficiently close to ~. Moreover,  the convergence is o f  order p + 1, 
and the asymptot ic  constant is 

- xk+l p F (p+I)(~) 
g p + l ( ~ ) =  lim - ( - 1 )  p -  

k--,+oo (0~ - -  Xk )  p+I ( p  + 1)! F(1)(~) 

In order to find the nth root o f  a positive real number  r, we consider Newton ' s  method  applied 
to the equation 

(r) 
F(x)  =x~-" (x"  - r )  =x/~ 1 - ~-~ , (3.1) 

where fl C N. Direct computat ion gives 

F(1)(x) =[fix n + (n -- fl)r]/x ~+'-/~, 

F(2)(x) =[fl(fl - 1)x ~ - (n + 1 - fl)(n - fi)r]/x È+2-f~, 

F(3)(x) =[fl(fi  - 1 )(fl - 2)x" + (n + 2 - fi)(n + 1 - fl)(n - fl)r]/x "+3-~. 

Hence F (1) (r '/") = nr (~-1)/" ¢ 0 and F (2) (r '/") = - n ( n  + 1 - fl)r (/~-2)/". Moreover  F (2) (r l/n) = 0 if  
and only if  fl = ½(n + 1), and then 

( ) ( n - 1 ) ( n +  1)r~._5)/2 ~ F (3) r 1/" = n 4 

We now have the following algorithm: 

Let x0 given (sufficiently close to r~/'), and 

F(1)(xk~F(x~) [(n+l-fl)r+(fi(_n__~_._ -z---1)x~ 1 f o r k  0,1 ,2 ,  x k + ,  = - x k  = " m ~ 

+oc it generates a sequence {Xk}k=0 which converges to r 1/'. The convergence is o f  order 2 for f l #  
½ ( n +  1) with /£2(r '/") = ( n + l - 2 f l ) / 2 r  '/n, and of  order 3 for fl-= ½ ( n +  1) with /£3(r '/") = 
((n - 1)(n + 1))/12r 2/'. Moreover,  from the variation of  the sign of  F(l)(x) and F(2)(x) on (0, + e c )  
with respect to the value of  fl, we have: 
(a) for n = l  and fl < 1 or n ~> 2 and fl ~ ½ ( n + l ) , F ( x )  is strictly increasing and concave on (0, rl/ '] ,  

and for any Xo E (O,r 1/") the sequence {xk +~ }k=0 increases and converges to r'/"; 
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(b) for n =  1 and f l >  1 or n>~2 and /~> ½(n+ 1),F(x) is strictly increasing and convex on 
rx a+~ decreases and converges to r TM [r~/n,+cc), and for any Xo E (rl/n,+ec) the sequence ~ kYk=0 

Example 3.2. Square root extraction: n = 2, 

(3 - fl )r + ( fl - 1)x~ 
xk+ ,  = x k  ' 

and for fi = 3 it is one of  the methods obtained by Heron of Alexandria (about 100 B.C.) [2] 

Example 3.3. fl = ½(n + 1 ), method of order 3 for nth root extraction 

(n+ 1)r + ( n -  1)xZ. 1 
Xk+l =Xk (-~ -- 1 ) r +  ( n 7  1)x~J " 

These schemes have a long history [1]. They have also been considered by Kogbetliantz [11] for n 
odd. For n = 2 and n = 3, these methods have already been obtained by Heron of  Alexandria [2, 4]. 

4. Higher order methods 

High-order methods for approximating square roots have been presented recently. In [9, 13], the 
f x  l+cx~ scheme generates the sequence ~ k fk=0, where 

x0 > 0 is given, and 

~ i  "v"n ( p xkP-ir'i/2 
Xk+l = for k = 0, 1,2, . . . ,  

which converges to r ~/2. The convergence is of  order p, and the asymptotic constant is 

r ~/2 - -  xk+~ 1 
Kp (rl/2) = lim 

k--~+oc ( r l / 2  -- Xk ) p ( _ 2 r l / 2 )  p - l "  

In [13] the scheme is related to continued fraction expansions of r ~/2. 
To get higher-order method for finding r 1/~, we can try to find a function 9(x) such that 

f ( x )  = 9(x)(x" - r) 

satisfies the assumptions of  Theorem 3.1 [6, 7]. Let us observe that 9(x )=  x I~-~ in (3.1). One such 
function 9(x) is 

g ( x ) = Z a i ( x ,  r)i_ 1 ~P ( 1 / n )  ( x ~ - r ) ` - I  
= _  g / 

i=1 i=1 
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It can be shown [5] that 

F ( x ) = g ( x ) ( x " - r ) = ~  1 n 
i=1 

verifies F (r '/") = O, F (1) (r'/") = r -1/", F (;) (r '/") = 0 for j = 2 . . . . .  p, and 

F(p+l)(r'/n)=-(1/pn)(p+l),nP+'r-CP+l)/". 

+ ~  The sequence {xk}k=0, where 

x0 given, sufficiently close to r 1/", and 

F(x , )  (xZ - r) ~ P '  ( 1 / n  ) ((x~ - 

X ~ + l = X k F ( 1 ) ( x k ) - - x ' - -  nx"k-' ~P=, i ( ) l / n i  ((xk" _ r)/r)  i-' for k = 0, 1,2, . . . ,  

converges to r ~/". Moreover, the convergence is of  order p + 1, and the asymptotic constant is 

Kp+l @ 1 / , ) =  lira r'/---n~xk+~ =_pnP+, (1/n)r_p/, .  
k-~+~ (rl/, _ xk )P+l p 
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