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Abstract

We study subnormal Toeplitz operators on the vector-valued Hardy space of the unit circle, along with
an appropriate reformulation of P.R. Halmos’s Problem 5: Which subnormal block Toeplitz operators are
either normal or analytic? We extend and prove Abrahamse’s theorem to the case of matrix-valued symbols;
that is, we show that every subnormal block Toeplitz operator with bounded type symbol (i.e., a quotient
of two bounded analytic functions), whose analytic and co-analytic parts have the “left coprime factoriza-
tion”, is normal or analytic. We also prove that the left coprime factorization condition is essential. Finally,
we examine a well-known conjecture, of whether every subnormal Toeplitz operator with finite rank self-
commutator is normal or analytic.
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1. Introduction

Toeplitz operators arise naturally in several fields of mathematics and in a variety of prob-
lems in physics (in particular, in the field of quantum mechanics). On the other hand, the theory
of subnormal operators is an extensive and highly developed area, which has made important
contributions to a number of problems in functional analysis, operator theory, and mathematical
physics. Thus, it becomes of central significance to describe in detail subnormality for Toeplitz
operators. This paper focuses on subnormality for block Toeplitz operators and more precisely,
the case of block Toeplitz operators with bounded type symbols. Our main result is an appro-
priate generalization of Abrahamse’s theorem to the case of matrix-valued symbols; that is, we
show that every subnormal block Toeplitz operator with bounded type symbol (i.e., a quotient
of two bounded analytic functions), whose analytic and co-analytic parts have the “left coprime
factorization”, is normal or analytic.

Naturally, this research is closely related to the study of subnormal operators with finite rank
self-commutator, a class that has been extensively researched by many authors. However, un-
til now a complete description of that class has proved elusive. Recently, D. Yakubovich [30]
has shown that if S is a pure subnormal operator with finite rank self-commutator and ad-
mits a normal extension with no nonzero eigenvectors, then S is unitarily equivalent to a block
Toeplitz operator with analytic rational normal matrix symbol. A corollary of our main result
illustrates, in a certain sense, the case of subnormal Toeplitz operators with finite rank self-
commutator.

To describe our results in more detail, we first need to review a few essential facts about
(block) Toeplitz operators, and for that we will use [10,11,14,28]. Let H be a complex Hilbert
space and let B(H) be the algebra of bounded linear operators acting on H. An operator
T ∈ B(H) is said to be hyponormal if its self-commutator [T ∗, T ] := T ∗T − T T ∗ is positive
(semi-definite), and subnormal if there exists a normal operator N on some Hilbert space K ⊇H
such that H is invariant under N and N |H = T . Let T ≡ ∂D be the unit circle in the complex
plane. Let L2 ≡ L2(T) be the set of all square-integrable measurable functions on T and let
H 2 ≡ H 2(T) be the corresponding Hardy space. Let H∞ ≡ H∞(T) := L∞(T)∩H 2(T), that is,
H∞ is the set of bounded analytic functions on D. Given φ ∈ L∞, the Toeplitz operator Tφ and
the Hankel operator Hφ are defined by

Tφg := P(φg) and Hφg := JP ⊥(φg)
(
g ∈ H 2),

where P and P ⊥ denote the orthogonal projections that map from L2 onto H 2 and (H 2)⊥,
respectively, and where J denotes the unitary operator on L2 defined by J (f )(z) = zf (z).

In the early 1960s, normal Toeplitz operators were characterized by a property of their sym-
bols by A. Brown and P.R. Halmos [3]. On the other hand, the exact nature of the relationship
between the symbol φ ∈ L∞ and the hyponormality of Tφ was understood much later, in 1988,
via Cowen’s theorem [6].

Cowen’s theorem. (See [6,27].) For each φ ∈ L∞, let

E(φ) ≡ {
k ∈ H∞: ‖k‖∞ � 1 and φ − kφ ∈ H∞}

.

Then Tφ is hyponormal if and only if E(φ) is nonempty.
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The elegant and useful theorem of C. Cowen has been used in the works [8,9,12,15–17,21–27,
31], which have been devoted to the study of hyponormality for Toeplitz operators on H 2. When
one studies hyponormality (also, normality and subnormality) of the Toeplitz operator Tφ one
may, without loss of generality, assume that φ(0) = 0; this is because hyponormality is invariant
under translation by scalars. We now recall that a function φ ∈ L∞ is said to be of bounded type
(or in the Nevanlinna class) if there are analytic functions ψ1,ψ2 ∈ H∞(D) such that

φ(z) = ψ1(z)

ψ2(z)
for almost all z ∈ T.

It is well known [1, Lemma 3] that if φ /∈ H∞ then

φ is of bounded type ⇔ kerHφ �= {0}. (1)

If φ ∈ L∞, we write

φ+ ≡ Pφ ∈ H 2 and φ− ≡ P ⊥φ ∈ zH 2.

Assume now that both φ and φ are of bounded type. Since TzHψ = HψTz for all ψ ∈ L∞,
it follows from Beurling’s theorem that kerHφ− = θ0H

2 and kerHφ+ = θ+H 2 for some inner

functions θ0, θ+. We thus have b := φ−θ0 ∈ H 2, and hence we can write

φ− = θ0b and similarly φ+ = θ+a for some a ∈ H 2.

In particular, if Tφ is hyponormal and φ /∈ H∞, and since[
T ∗

φ , Tφ

] = H ∗
φ
Hφ − H ∗

φHφ = H ∗
φ+

Hφ+ − H ∗
φ−

Hφ− ,

it follows that ‖Hφ+f ‖� ‖Hφ−f ‖ for all f ∈ H 2, and hence

θ+H 2 = kerHφ+ ⊆ kerHφ− = θ0H
2,

which implies that θ0 divides θ+, i.e., θ+ = θ0θ1 for some inner function θ1. We write, for an
inner function θ ,

Hθ := H 2  θH 2.

Note that if f = θa ∈ L2, then f ∈ H 2 if and only if a ∈ Hzθ ; in particular, if f (0) = 0 then
a ∈ Hθ . Thus, if φ = φ−+φ+ ∈ L∞ is such that φ and φ are of bounded type such that φ+(0) = 0
and Tφ is hyponormal, then we can write

φ+ = θ0θ1ā and φ− = θ0b̄, where a ∈ Hθ0θ1 and b ∈Hθ0 .

By Kronecker’s lemma [28, p. 183], if f ∈ H∞ then f is a rational function if and only if
rankHf < ∞, which implies that

f is rational ⇔ f = θb with a finite Blaschke product θ. (2)
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On the other hand, M.B. Abrahamse [1, Lemma 6] also showed that if Tφ is hyponormal, if
φ /∈ H∞, and if φ or φ is of bounded type then both φ and φ are of bounded type.

We now introduce the notion of block Toeplitz operators. For a Hilbert space X , let L2
X ≡

L2
X (T) be the Hilbert space of X -valued norm square-integrable measurable functions on T

and let H 2
X ≡ H 2

X (T) be the corresponding Hardy space. We observe that L2
Cn = L2 ⊗ Cn

and H 2
Cn = H 2 ⊗ Cn. If Φ is a matrix-valued function in L∞

Mn
≡ L∞

Mn
(T) (= L∞ ⊗ Mn) then

TΦ : H 2
Cn → H 2

Cn denotes the block Toeplitz operator with symbol Φ defined by

TΦF := Pn(ΦF) for F ∈ H 2
Cn ,

where Pn is the orthogonal projection of L2
Cn onto H 2

Cn . A block Hankel operator with symbol
Φ ∈ L∞

Mn
is the operator HΦ : H 2

Cn → H 2
Cn defined by

HΦF := JnP
⊥
n (ΦF) for F ∈ H 2

Cn ,

where Jn denotes the unitary operator from (H 2
Cn)

⊥ to H 2
Cn given by Jn(F )(z) := zInF (z) for

F ∈ H 2
Cn , and where In is the n × n identity matrix. If we set H 2

Cn := H 2 ⊕ · · · ⊕ H 2 then we
see that

TΦ =
⎡⎣Tφ11 . . . Tφ1n

...

Tφn1 . . . Tφnn

⎤⎦ and HΦ =
⎡⎣Hφ11 . . . Hφ1n

...

Hφn1 . . . Hφnn

⎤⎦ ,

where

Φ =
⎡⎣φ11 . . . φ1n

...

φn1 . . . φnn

⎤⎦ ∈ L∞
Mn

.

For Φ ∈ L∞
Mn

, write

Φ̃(z) := Φ∗(z).

A matrix-valued function Θ ∈ H∞
Mn×m

(= H∞ ⊗ Mn×m) is called inner if Θ(z)∗Θ(z) = Im for
almost all z ∈ T. The following basic relations can be easily derived:

T ∗
Φ = TΦ∗ , H ∗

Φ = HΦ̃

(
Φ ∈ L∞

Mn

);
TΦΨ − TΦTΨ = H ∗

Φ∗HΨ

(
Φ,Ψ ∈ L∞

Mn

); (3)

HΦTΨ = HΦΨ , HΨ Φ = T ∗̃
Ψ

HΦ

(
Φ ∈ L∞

Mn
, Ψ ∈ H∞

Mn

); (4)

H ∗
ΦHΦ − H ∗

ΘΦHΘΦ = H ∗
ΦHΘ∗H ∗

Θ∗HΦ

(
Θ ∈ H∞

Mn
is inner, Φ ∈ L∞

Mn

)
.
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For a matrix-valued function Φ = [φij ] ∈ L∞
Mn

, we say that Φ is of bounded type if each entry
φij is of bounded type and that Φ is rational if each entry φij is a rational function. The shift
operator S on H 2

Cn is defined by

S :=
n∑

j=1

⊕Tz.

The following fundamental result known as the Beurling–Lax–Halmos theorem is useful in the
sequel.

Beurling–Lax–Halmos theorem. A nonzero subspace M of H 2
Cn is invariant under the shift

operator S on H 2
Cn if and only if M = ΘH 2

Cm , where Θ is an inner matrix function in H∞
Mn×m

(m � n).

In view of (4), the kernel of a block Hankel operator HΦ is an invariant subspace of the shift
operator on H 2

Cn . Thus if kerHΦ �= {0} then by the Beurling–Lax–Halmos theorem,

kerHΦ = ΘH 2
Cm

for some inner matrix function Θ . But we don’t guarantee that Θ is a square matrix. In fact,
as we will refer in the sequel, Θ is square if and only if Φ is of bounded type. Recently, Gu,
Hendricks and Rutherford [18] considered the hyponormality of block Toeplitz operators and
characterized the hyponormality of block Toeplitz operators in terms of their symbols. In partic-
ular they showed that if TΦ is a hyponormal block Toeplitz operator on H 2

Cn , then Φ is normal,
i.e., Φ∗Φ = ΦΦ∗. Their characterization for hyponormality of block Toeplitz operators resem-
bles the Cowen’s theorem except for an additional condition – the normality condition of the
symbol.

Hyponormality of block Toeplitz operators. (See Gu, Hendricks and Rutherford [18].) For
each Φ ∈ L∞

Mn
, let

E(Φ) := {
K ∈ H∞

Mn
: ‖K‖∞ � 1 and Φ − KΦ∗ ∈ H∞

Mn

}
.

Then TΦ is hyponormal if and only if Φ is normal and E(Φ) is nonempty.

For a matrix-valued function Φ ∈ H 2
Mn×r

, we say that 	 ∈ H 2
Mn×m

is a left inner divisor of

Φ if 	 is an inner matrix function such that Φ = 	A for some A ∈ H 2
Mm×r

(m � n). We also

say that two matrix functions Φ ∈ H 2
Mn×r

and Ψ ∈ H 2
Mn×m

are left coprime if the only common

left inner divisor of both Φ and Ψ is a unitary constant and that Φ ∈ H 2
Mn×r

and Ψ ∈ H 2
Mm×r

are

right coprime if Φ̃ and Ψ̃ are left coprime. Two matrix functions Φ and Ψ in H 2
Mn

are said to be

coprime if they are both left and right coprime. We remark that if Φ ∈ H 2
Mn

is such that detΦ is

not identically zero then any left inner divisor 	 of Φ is square, i.e., 	 ∈ H 2
Mn

. If Φ ∈ H 2
Mn

is

such that detΦ is not identically zero then we say that 	 ∈ H 2
Mn

is a right inner divisor of Φ if

	̃ is a left inner divisor of Φ̃ .
The following lemma will be useful in the sequel.
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Lemma 1.1. (See [18].) For Φ ∈ L∞
Mn

, the following statements are equivalent:

(i) Φ is of bounded type;
(ii) kerHΦ = ΘH 2

Cn for some square inner matrix function Θ ;
(iii) Φ = AΘ∗, where A ∈ H∞

Mn
and A and Θ are right coprime.

For Φ ∈ L∞
Mn

we write

Φ+ := PnΦ ∈ H 2
Mn

and Φ− := (
P ⊥

n Φ
)∗ ∈ H 2

Mn
.

Thus we can write Φ = Φ∗− + Φ+. For an inner matrix function Θ ∈ H∞
Mn

, write

HΘ := (
ΘH 2

Cn

)⊥ ≡ H 2
Cn  ΘH 2

Cn .

Suppose Φ = [φij ] ∈ L∞
Mn

is such that Φ∗ is of bounded type. Then we may write φij = θij bij ,
where θij is an inner function and θij and bij are coprime. Thus if θ is the least common multiple
of θij ’s (i.e., the θij divide θ and if they divide an inner function θ ′ then θ in turn divides θ ′),
then we can write

Φ = [φij ] = [θij bij ] = [θaij ] = ΘA∗ (
Θ = θIn, A ∈ H 2

Mn

)
. (5)

We note that the representation (5) is “minimal”, in the sense that if ωIn (ω is inner) is a common
inner divisor of Θ and A, then ω is constant. Let Φ ≡ Φ∗− + Φ+ ∈ L∞

Mn
be such that Φ and Φ∗

are of bounded type. Then in view of (5) we can write

Φ+ = Θ1A
∗ and Φ− = Θ2B

∗,

where Θi = θiIn with an inner function θi for i = 1,2 and A,B ∈ H 2
Mn

. In particular, if Φ ∈ L∞
Mn

is rational then the θi are chosen as finite Blaschke products as we observed in (2).

We would remark that, in (5), by contrast with scalar-valued functions, Θ and A need not be
(right) coprime: indeed, if Φ := [ z z

z z

]
then we can write

Φ = ΘA∗ =
[

z 0
0 z

][
1 1
1 1

]
,

but Θ := [
z 0
0 z

]
and A := [ 1 1

1 1

]
are not right coprime because 1√

2

[
z −z
1 1

]
is a common right inner

factor, i.e.,

Θ = 1√
2

[
1 z

−1 z

]
· 1√

2

[
z −z

1 1

]
and A = √

2

[
0 1
0 1

]
· 1√

2

[
z −z

1 1

]
. (6)

In this paper we consider the subnormality of block Toeplitz operators and in particular, the
block version of Halmos’s Problem 5: Which subnormal block Toeplitz operators are either nor-
mal or analytic? In 1976, M.B. Abrahamse showed that if φ = g + f ∈ L∞ (f,g ∈ H 2) is such
that φ or φ is of bounded type, if Tφ is hyponormal, and if ker[T ∗, Tφ] is invariant under Tφ then
φ
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Tφ is normal or analytic. The purpose of this paper is to establish an extension of Abrahamse’s
theorem for block Toeplitz operators. In Section 2 we make a brief sketch on Halmos’s Problem 5
and Abrahamse’s theorem. Section 3 is devoted to the proof of the main result. In Section 4 we
consider the scalar Toeplitz operators with finite rank self-commutators.

2. Halmos’s Problem 5 and Abrahamse’s theorem

In 1970, P.R. Halmos posed the following problem, listed as Problem 5 in his lectures “Ten
problems in Hilbert space” [19,20]:

Is every subnormal Toeplitz operator either normal or analytic?

A Toeplitz operator Tφ is called analytic if φ ∈ H∞. Any analytic Toeplitz operator is easily seen
to be subnormal: indeed, Tφh = P(φh) = φh = Mφh for h ∈ H 2, where Mφ is the normal op-
erator of multiplication by φ on L2. The question is natural because the two classes, the normal
and analytic Toeplitz operators, are fairly well understood and are subnormal. Halmos’s Prob-
lem 5 has been partially answered in the affirmative by many authors (cf. [1,2,8,9,27], and etc.).
In 1984, Halmos’s Problem 5 was answered in the negative by C. Cowen and J. Long [7]: they
found an analytic function ψ for which Tψ+αψ (0 < α < 1) is subnormal – in fact, this Toeplitz
operator is unitarily equivalent to a subnormal weighted shift Wβ with weight sequence β ≡ {βn},
where βn = (1 − α2n+2)

1
2 for n = 0,1,2, . . . . Unfortunately, Cowen and Long’s construction

does not provide an intrinsic connection between subnormality and the theory of Toeplitz op-
erators. Until now researchers have been unable to characterize subnormal Toeplitz operators in
terms of their symbols. On the other hand, surprisingly, as C. Cowen notes in [4,5], some analytic
Toeplitz operators are unitarily equivalent to non-analytic Toeplitz operators; i.e., the analytic-
ity of Toeplitz operators is not invariant under unitary equivalence. In this sense, we might ask
whether Cowen and Long’s non-analytic subnormal Toeplitz operator is unitarily equivalent to
an analytic Toeplitz operator. To this end, we have:

Observation. Cowen and Long’s non-analytic subnormal Toeplitz operator Tφ is not unitarily
equivalent to any analytic Toeplitz operator.

Proof. Assume to the contrary that Tφ is unitarily equivalent to an analytic Toeplitz operator Tf .
Then by the above remark, Tf is unitarily equivalent to the subnormal weighted shift Wβ with

weight sequence β ≡ {βn}, where βn = (1 − α2n+2)
1
2 (0 < α < 1) for n = 0,1,2, . . . ; i.e., there

exists a unitary operator V such that

V ∗Tf V = Wβ.

Thus if {en} is the canonical orthonormal basis for 2 then

V ∗Tf V ej = Wβej = βj ej+1 for j = 0,1,2, . . . .

We thus have (
V ∗T|f |2V

)
ej = W ∗Wβej = β2ej ,
β j
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and hence,

T|f |2−β2
j
(V ej ) = 0 for j = 0,1,2, . . . .

Fix j � 0 and observe that V ej ∈ ker(T|f |2−β2
j
). By Coburn’s theorem, if |f |2 − β2

j is nonzero

then either T|f |2−β2
j

or T ∗
|f |2−β2

j

is one-one. It follows that |f |2 = β2
j for j = 0,1,2, . . . . This

readily implies that β0 = β1 = β2 = · · · , a contradiction. �
Consequently, even if we interpret “is” in Halmos Problem 5 as “is up to unitary equivalence”,

the answer to Halmos Problem 5 is still negative.
We would like to reformulate Halmos’s Problem 5 as follows:

Halmos’s Problem 5 reformulated. Which Toeplitz operators are subnormal?

The most interesting partial answer to Halmos’s Problem 5 was given by M.B. Abrahamse [1].
M.B. Abrahamse gave a general sufficient condition for the answer to Halmos’s Problem 5 to be
affirmative.

Abrahamse’s theorem can be then stated as:

Abrahamse’s theorem. (See [1, Theorem].) Let φ = g + f ∈ L∞ (f, g ∈ H 2) be such that φ

or φ is of bounded type. If Tφ is hyponormal and ker[T ∗
φ , Tφ] is invariant under Tφ then Tφ is

normal or analytic.

Consequently, if φ = g + f ∈ L∞ (f,g ∈ H 2) is such that φ or φ is of bounded type, then
every subnormal Toeplitz operator must be normal or analytic.

We say that a block Toeplitz operator TΦ is analytic if Φ ∈ H∞
Mn

. Evidently, any analytic block
Toeplitz operator with a normal symbol is subnormal because the multiplication operator MΦ is
a normal extension of TΦ . As a first inquiry in the above reformulation of Halmos’s Problem 5
the following question can be raised:

Is Abrahamse’s theorem valid for block Toeplitz operators?

In this paper we answer this question in the affirmative (Theorem 3.5).

3. Abrahamse’s theorem for matrix-valued symbols

Recall the representation (5), and for Ψ ∈ L∞
Mn

such that Ψ ∗ is of bounded type, write Ψ =
Θ2B

∗ = B∗Θ2. Let Ω be the greatest common left inner divisor of B and Θ2. Then B = ΩB

and Θ2 = ΩΩ2 for some B ∈ H 2
Mn

and some inner matrix Ω2. Therefore we can write

Ψ = B∗
 Ω2, where B and Ω2 are left coprime;

in this case, B∗Ω2 is called a left coprime factorization of Ψ . Similarly,
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Ψ = 	2B
∗
r , where Br and 	2 are right coprime;

in this case, 	2B
∗
r is called a right coprime factorization of Ψ .

To prove our main result (Theorem 3.5), we need several auxiliary lemmas.
We begin with:

Lemma 3.1. Suppose Φ = Φ∗− + Φ+ ∈ L∞
Mn

is such that Φ and Φ∗ are of bounded type of the
form

Φ+ = A∗Θ1 and Φ− = B∗Θ2,

where Θi := θiIn with an inner function θi (i = 1,2). If TΦ is hyponormal, then Θ2 is a right
inner divisor of Θ1.

Proof. Suppose TΦ is hyponormal. Then there exists a matrix function K ∈ H∞
Mn

such that Φ∗− −
KΦ∗+ ∈ H 2

Mn
. Thus BΘ∗

2 − KAΘ∗
1 = F for some F ∈ H 2

Mn
, which implies that BΘ∗

2 Θ1 ∈ H 2
Mn

.
Now we write Φ− = [fij ]n×n. Since Φ is of bounded type we can write fij = θij cij , where θij

is an inner function, cij is in H 2, and θij and cij are coprime. Write B = [bij ]n×n. We thus have

fij = θij cij = θ2bji for each i, j = 1, . . . , n,

which implies that bji = θij θ2cij . But since BΘ∗
2 Θ1 = [θ1θ2bij ] ∈ H 2

Mn
, we have θ1θjicji ∈ H 2.

Since θji and cji are coprime for each i, j = 1, . . . , n, it follows that θjiθ1 ∈ H 2, which implies
that θ2θ1 ∈ H 2 and therefore, Θ2 divides Θ1, i.e., Θ1 = Θ0Θ2 for some inner matrix func-
tion Θ0. �

In the sequel, when we consider the symbol Φ = Φ∗− + Φ+ ∈ L∞
Mn

, which is such that Φ and
Φ∗ are of bounded type and for which TΦ is hyponormal, we will, in view of Lemma 3.1, assume
that

Φ+ = A∗Ω1Ω2 and Φ− = B∗
 Ω2 (left coprime factorization),

where Ω1Ω2 = Θ = θIn. We also note that Ω2Ω1 = Θ : indeed, if Ω1Ω2 = Θ = θIn, then
(θInΩ1)Ω2 = In, so that Ω1(θInΩ2) = In, which implies that (θInΩ2)Ω1 = In, and hence
Ω2Ω1 = θIn = Θ .

Lemma 3.2. Suppose Φ = Φ∗− + Φ+ ∈ L∞
Mn

is such that Φ and Φ∗ are of bounded type of the
form

Φ+ = 	1A
∗
r (right coprime factorization)

and

Φ− = 	2B
∗
r (right coprime factorization).

If TΦ is hyponormal, then 	2 is a left inner divisor of 	1, i.e., 	1 = 	2	0 for some 	0.
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Proof. Suppose TΦ is hyponormal. Then there exists K ∈ H∞
Mn

such that Φ − KΦ∗ ∈ H∞
Mn

.
Thus HΦ = HKΦ∗ = T ∗̃

K
HΦ∗ , which implies that kerHΦ∗+ ⊆ kerHΦ∗− , so that by Lemma 1.1,

	1H
2
Cn ⊆ 	2H

2
Cn . It follows (cf. [13, Corollary IX.2.2]) that 	2 is a left inner divisor of 	1. �

On the other hand, the condition “(left/right) coprime factorization” is not so easy to check in
general. For example, consider a simple case: Φ− := [ z z

z z

]
. One is tempted to write

Φ− :=
[

z 0
0 z

][
1 1
1 1

]∗
.

But
[

z 0
0 z

]
and

[ 1 1
1 1

]
are not right coprime as we have seen in the Introduction. On the other hand,

observe that [
1 1
1 1

]
≡ 	B∗,

where

	 := 1√
2

[
1 z

−1 z

]
is inner and B := 1√

2

[
0 2z

0 2z

]
.

Again, 	 and B are not right coprime because kerH[ 1 1
1 1

] = H 2
C2 . Thus we might choose

Φ− = (zI2	) · B∗ or Φ− = 	 · (zI2B)∗.

A straightforward calculation shows that kerHΦ∗− = 	H 2
C2 . Hence the latter of the above factor-

izations is the desired factorization: i.e., 	 and zI2B are right coprime.
However, if Θ is given in a form Θ = θIn with a finite Blaschke product θ , then we can obtain

a more tractable criterion on the coprime-ness of Θ and B ∈ H 2
Mn

. To see this, recall that an n×n

matrix-valued function D is called a finite Blaschke–Potapov product if D is of the form

D(z) = ν

M∏
m=1

(
bm(z)Pm + (I − Pm)

)
,

where ν is an n × n unitary constant matrix, bm is a Blaschke factor, which is of the form

bm(z) := z − αm

1 − αmz
(αm ∈D),

and Pm is an orthogonal projection in Cn. In particular, a scalar-valued function D reduces to a
finite Blaschke product D(z) = ν

∏M
m=1 bm(z), where ν = eiω. It was known [29] that an n × n

matrix-valued function D is rational and inner if and only if it can be represented as a finite
Blaschke–Potapov product.

We write Z(θ) for the set of zeros of an inner function θ . We then have:

Lemma 3.3. Let B ∈ H 2
Mn

and Θ := θIn with a finite Blaschke product θ . Then the following
statements are equivalent:
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(a) B(α) is invertible for each α ∈Z(θ);
(b) B and Θ are right coprime;
(c) B and Θ are left coprime.

Proof. We first write

θ(z) = eiξ

N∏
i=1

(
z − αi

1 − αiz

)mi

(
N∑

i=1

mi =: d
)

.

(a) ⇔ (b): Suppose B(α) is invertible for each α ∈ Z(θ). Assume to the contrary that B and
Θ are not right coprime. Thus there exists a finite Blaschke–Potapov product D of the form

D(z) = ν

M∏
m=1

(
bm(z)Pm + (I − Pm)

)
satisfying that

B = B1D and Θ = Θ0D for some inner function Θ0.

Thus if α ∈ Z(bm0) for some 1 � m0 � M , then Θ(α) = Θ0(α)D(α) is not invertible. But since
Θ = θIn, it follows that Θ(α) = 0 and hence α ∈Z(θ). Moreover,

detB(α) = detB1(α)detD(α) = det(ν)detB1(α)

M∏
m=1

det
(
bm(α)Pm + (I − Pm)

) = 0,

giving a contradiction. Therefore B and Θ are right coprime.
For the converse we assume that B(αi0) is not invertible for some i0. Then the following

matrix is not invertible:

B :=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

B0 0 0 0 · · · 0
B1 B0 0 0 · · · 0
B2 B1 B0 0 · · · 0
...

. . .
. . .

. . .
. . .

...

Bmi0−2 Bmi0 −3
. . .

. . . B0 0
Bmi0−1 Bmi0 −2 . . . B2 B1 B0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(

Bj := B(j)(αi0)

j !
)

.

Thus there exists a nonzero n × mi0 matrix G = (G0G1 · · ·Gmi0−1 )t such that BG = 0. We now
want to show that there exists h= ( h1h2 · · ·hn )t ∈ H 2

Cn satisfying the following property:

h(j)(αi)

j ! =
{Gj (i = i0),

0 (i �= i0).
(7)

This is exactly the classical Hermite–Fejér interpolation problem (cf. [13]), so that we use an
argument of a solution for the interpolation of this type. Thus we can construct a function (in
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fact, a polynomial) h(z) ≡ P(z) satisfying (7) (see [13, p. 299]). Then P(z) belongs to kerHBΘ∗ .
Since

G = [G0G1 · · ·Gmi0−1 ]t �= 0,

it follows that P(z) /∈ ΘH 2
Cn . Therefore we have kerHBΘ∗ �= ΘH 2

Cn , which implies that B and
Θ are not right coprime.

(b) ⇔ (c): Suppose B and Θ are right coprime. If B and Θ are not left coprime, there exists
a nonconstant inner matrix 	 ∈ H 2

Mn
such that B = 	B1 and Θ = 	Ω. We thus have that for

each i = 1,2, . . . ,N⎡⎢⎢⎢⎢⎢⎢⎢⎣

	i,0 0 0 0 · · · 0
	i,1 	i,0 0 0 · · · 0
	i,2 	i,1 	i,0 0 · · · 0

...
. . .

. . .
. . .

. . .
...

	i,mi−2 	i,mi−3
. . .

. . . 	i,0 0
	i,mi−1 	i,mi−2 . . . 	i,2 	i,1 	i,0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

Ωi,0
Ωi,1
Ωi,2

...

Ωi,mi−2
Ωi,mi−1

⎤⎥⎥⎥⎥⎥⎥⎦ = 0,

where

	i,j := 	(j)(αi)

j ! and Ωi,j := Ω(j)(αi)

j ! .

But since B(α) is invertible for each α ∈ Z(θ), we have that 	i,0 is invertible for each i =
1,2, . . . ,N . Thus

Ωi,j = 0 (i = 1,2, . . . ,N, j = 0,1,2, . . . ,mi − 1),

which implies that Ω = ΘΩ1 for some Ω1 ∈ H 2
Mn

. Thus Θ = 	Ω = 	ΘΩ1, so that I = 	Ω1
and hence 	∗ = Ω1, which implies that 	 is a constant matrix, a contradiction. Thus B and Θ

are left coprime. The converse follows from the same argument. This completes the proof. �
Lemma 3.4. Let θ0 be a nonconstant inner function. Then Hθ0 contains an outer function that is
invertible in H∞.

Proof. If θ0 has at least one Blaschke factor, say z−α
1−αz

(|α| < 1), then 1
1−αz

is an outer function

and 1
1−αz

∈ Hθ0 because 1
1−αz

is the reproducing kernel for α, so that for any f ∈ H 2,

〈
θ0f,

1

1 − αz

〉
= θ0(α)f (α) = 0.

Now suppose θ0 is a nonconstant singular inner function of the form

θ0(z) := exp

(
−

π∫
eiθ + z

eiθ − z
dμ(θ)

)
,

−π



R.E. Curto et al. / Journal of Functional Analysis 263 (2012) 2333–2354 2345
where μ is a finite positive Borel measure on T which is singular with respect to Lebesgue
measure. We put

ω(z) := exp

(
−

π∫
−π

eiθ + z

eiθ − z
d

μ

2
(θ)

)
.

Then ω2 = θ0. If α := ω(0) then evidently, 0 < |α| < 1 since ω is not constant. Note that
θ0(ω − 1

α
) = ω − 1

α
θ0 ∈ (H 2)⊥, since (ω − 1

α
θ0)(0) = α − 1

α
α2 = 0. We thus have ω − 1

α
∈Hθ0 .

Also a straightforward calculation shows that 1
ω− 1

α

is bounded and analytic in D, which says

that ω − 1
α

is invertible in H∞. Hence ω − 1
α

is an outer function in Hθ0 . This completes the
proof. �

Before proving the main result, we recall the inner–outer factorization of vector-valued func-
tions. If D and E are Hilbert spaces and if F is a function with values in B(E,D) such that
F(·)e ∈ H 2

D(T) for each e ∈ E, then F is called a strong H 2-function. The strong H 2-function
F is called an inner function if F(·) is an isometric operator from D into E. Write PE for the
set of all polynomials with values in E, i.e., p(ζ ) = ∑n

k=0 p̂(k)ζ k , p̂(k) ∈ E. Then the function
Fp = ∑n

k=0 Fp̂(k)zk belongs to H 2
D(T). The strong H 2-function F is called outer if

clF ·PE = H 2
D(T).

Note that if dimD = dimE = n < ∞, then evidently, every F ∈ H 2
Mn

is a strong H 2-function.
We then have an analogue of the scalar inner–outer factorization theorem.

Inner–outer factorization. (Cf. [28].) Every strong H 2-function F with values in B(E,D) can
be expressed in the form

F = F iF e,

where Fe is an outer function with values in B(E,D′) and F i is an inner function with values
in B(D′,D) for some Hilbert space D′.

We are now ready to prove the main result of this paper.

Theorem 3.5 (Abrahamse’s theorem for matrix-valued symbols). Suppose Φ := Φ∗− +Φ+ ∈ L∞
Mn

is such that Φ and Φ∗ are of bounded type. In view of Lemma 3.1, we may write

Φ+ = A∗Θ0Θ2 and Φ− = B∗Θ2,

where Θi = θiIn with an inner function θi (i = 0,2) and A,B ∈ H 2
Mn

. Assume that A,B and Θ2
are left coprime. If

(i) TΦ is hyponormal; and
(ii) ker[T ∗, TΦ ] is invariant under TΦ ;
Φ
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then TΦ is normal or analytic. Hence, in particular, if TΦ is subnormal then it is normal or
analytic.

Remark 3.6. We note that if n = 1 (i.e., TΦ is a scalar Toeplitz operator) then Φ+ = aθ0θ2 and
Φ− = bθ2 with a, b ∈ H 2. Thus, we can always arrange that a, b and θ are coprime. Conse-
quently, if n = 1 then our matrix version reduces to the original Abrahamse’s theorem.

Proof of Theorem 3.5. If Θ2 is constant then Φ− = 0, so that TΦ is analytic. Suppose that Θ2
is nonconstant.

We split the proof into three steps.

STEP 1: We first claim that

Θ0H
2
Cn ⊆ ker

[
T ∗

Φ,TΦ

]
. (8)

To see this, we observe that[
T ∗

Φ,TΦ

] = H ∗
Φ∗+HΦ∗+ − H ∗

Φ∗−HΦ∗− = H ∗
AΘ∗

2 Θ∗
0
HAΘ∗

2 Θ∗
0

− H ∗
Θ∗

2 BHΘ∗
2 B, (9)

which implies that

Θ0Θ2H
2
Cn ⊆ ker

[
T ∗

Φ,TΦ

]
. (10)

On the other hand, since Θ0Θ2 is diagonal, we have that for all g ∈PCn ,

TΦ(Θ0Θ2g) = Pn

(
Θ∗

2 BΘ0Θ2g + Φ+Θ0Θ2g
)

= Θ0Bg + Θ0Θ2Φ+g

= PHΘ0Θ2
(Θ0Bg) + PΘ0Θ2H

2
Cn

(Θ0Bg) + Θ0Θ2Φ+g.

Since HΘ0Θ2 = HΘ0 ⊕ Θ0HΘ2 , it follows that

PHΘ0Θ2
(Θ0Bg) = PΘ0HΘ2

(Θ0Bg).

We thus have

TΦ(Θ0Θ2g) = PΘ0HΘ2
(Θ0Bg) + PΘ0Θ2H

2
Cn

(Θ0Bg) + Θ0Θ2Φ+g. (11)

We claim that

HΘ2 = cl
{
PHΘ2

(Bg): g ∈PCn

}
. (12)

In view of the above mentioned inner–outer factorization, let B = BiBe be the inner–outer fac-
torization of B (as a strong H 2-function), where Bi ∈ H∞

Mn×r
and Be ∈ H 2

Mr×n
. Since B and Θ2

are left coprime, Bi and Θ2 are left coprime. Thus it follows from the Beurling–Lax–Halmos
theorem that
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Θ2H
2
Cn ∨ clBPCn = Θ2H

2
Cn ∨ Bi

(
clBePCn

) = Θ2H
2
Cn ∨ BiH 2

Cr = H 2
Cn ,

giving (12). Thus we have

Θ0HΘ2 = clΘ0
{
PHΘ2

(Bg): g ∈PCn

} = cl
{
PΘ0HΘ2

(Θ0Bg): g ∈ PCn

}
. (13)

If ker[T ∗
Φ,TΦ ] is invariant under TΦ then since ker[T ∗

Φ,TΦ ] is a closed subspace it follows from
(10)–(13) that

Θ0HΘ2 ⊆ ker
[
T ∗

Φ,TΦ

]
.

We thus have

Θ0H
2
Cn = Θ0HΘ2 ⊕ Θ0Θ2H

2
Cn ⊆ ker

[
T ∗

Φ,TΦ

]
,

which proves (8).

STEP 2: We next claim that

E(Φ) contains an inner function K . (14)

To see this, we first observe that if K ∈ E(Φ) then by (4),[
T ∗

Φ,TΦ

] = H ∗
Φ∗+HΦ∗+ − H ∗

KΦ∗+HKΦ∗+ = H ∗
Φ∗+

(
I − TK̃T ∗̃

K

)
HΦ∗+ , (15)

so that

ker
[
T ∗

Φ,TΦ

] = ker
(
I − TK̃T ∗̃

K

)
HΦ∗+ .

Thus by (8),

{0} = (
I − TK̃T ∗̃

K

)
HAΘ∗

2 Θ∗
0

(
Θ0H

2
Cn

) = (
I − TK̃T ∗̃

K

)
HAΘ∗

2

(
H 2

Cn

)
,

which implies

cl ranHAΘ∗
2

⊆ ker
(
I − TK̃T ∗̃

K

)
. (16)

Since by assumption, A and Θ2 are left coprime, and hence Ã and Θ̃2 are right coprime, it
follows from Lemma 1.1 that

cl ranHAΘ∗
2

= (kerHÃΘ̃∗
2
)⊥ = (

Θ̃2H
2
Cn

)⊥ =HΘ̃2
, (17)

which together with (16) implies

H˜ ⊆ ker
(
I − T˜T ∗)

. (18)
Θ2 K K̃
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We thus have

F = TK̃T ∗̃
K

F for each F ∈HΘ̃2
. (19)

But since ‖K̃‖∞ = ‖K‖∞ � 1, we have

∥∥Pn

(
K̃∗F

)∥∥
2 �

∥∥K̃∗F
∥∥

2 � ‖F‖2 = ∥∥TK̃T ∗̃
K

F
∥∥

2 = ∥∥K̃Pn

(
K̃∗F

)∥∥
2 �

∥∥Pn

(
K̃∗F

)∥∥
2,

which gives

∥∥Pn

(
K̃∗F

)∥∥
2 = ∥∥K̃∗F

∥∥
2,

which implies K̃∗F ∈ H 2
Cn . Therefore by (19), we have

F = K̃K̃∗F for each F ∈HΘ̃2
.

In view of Lemma 3.4, we can choose an outer function f ∈Hθ̃2
, which is invertible in H∞. For

each j = 1,2, . . . , n, we define

Fj := (0, . . . ,0, f,0, . . . ,0)t (where f is the j -th component).

Then Fj ∈ HΘ̃2
for each j = 1,2, . . . , n, so that (I − K̃K̃∗)Fj = 0 for each j = 1,2, . . . , n.

If we write I − K̃K̃∗ ≡ [qij ]1�i,j�n ∈ L∞
Mn

, then qijf = 0 for each i, j = 1,2, . . . , n, so that

qij = 0 for each i, j = 1,2, . . . , n because f is invertible. Therefore we have K∗K = Ĩ = I ,
which implies that K is an inner function. This proves (14).

STEP 3: Now since K is inner it follows from (3) that

I − TK̃T ∗̃
K

= TK̃K̃∗ − TK̃T ∗̃
K

= H ∗̃
K∗HK̃∗ .

Thus by (18), we have

HΘ̃2
⊆ kerH ∗̃

K∗HK̃∗ = kerHK̃∗ . (20)

Write K := [kij ]1�i,j�n ∈ H∞
Mn

. Since, by Lemma 3.4, Hθ̃2
contains an outer function h that is

invertible in H∞, it follows from (20) that

kij (z)h ∈ H 2 for each i, j = 1,2, . . . , n,

so that ki,j (z) ∈ 1
h
H 2 ⊆ H 2 for each i, j = 1,2, . . . , n. Therefore each kij is constant and hence,

K is constant. Therefore by (15), [T ∗
Φ,TΦ ] = 0, i.e., TΦ is normal. This completes the proof. �
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Remark 3.7. Theorem 3.5 may fail if the condition “B and Θ2 are left coprime” is dropped even
though A and Θ2 are left coprime. To see this, let θ be a nonconstant finite Blaschke product.
Consider the matrix-valued function

Φ =
[

2θ + θ θ

θ 2θ + θ

]
.

Write

Θ :=
[

θ 0
0 θ

]
.

Then

Φ+ = 2Θ and Φ− =
[

θ θ

θ θ

]
=

[
1 1
1 1

]∗
Θ.

A direct calculation shows that Φ is normal. Put K := 1
2

[ 1 1
1 1

]
. Remember that for a matrix-

valued function A, we define ‖A‖∞ := supt∈T ‖A(t)‖ (where ‖ · ‖ means the operator norm).
Then ‖K‖∞ = 1 and Φ − KΦ∗ ∈ H∞

M2
, so that TΦ is hyponormal. Observe that

[TΦ∗ , TΦ ] = H ∗
Φ∗+HΦ∗+ − H ∗

Φ∗−HΦ∗−

= 4

[
H ∗

θ
Hθ 0

0 H ∗
θ
Hθ

]
− 2

[
H ∗

θ
Hθ H ∗

θ
Hθ

H ∗
θ
Hθ H ∗

θ
Hθ

]
= 2

[
H ∗

θ
Hθ −H ∗

θ
Hθ

−H ∗
θ
Hθ H ∗

θ
Hθ

]
= 2

[
PHθ

−PHθ−PHθ
PHθ

]
,

which gives

ker[TΦ∗ , TΦ ] = ker

[
PHθ

−PHθ−PHθ
PHθ

]
=

{[
f

g

]
: PHθ

f = PHθ
g

}
= ΘH 2

C2 ⊕ {f ⊕ f : f ∈ Hθ }.
We now claim that ker[T ∗

Φ,TΦ ] is invariant under TΦ . To show this we suppose

F =
[

f

g

]
∈ ker

[
T ∗

Φ,TΦ

]
.

Then

TΦF =
[

2Tθ + Tθ Tθ

Tθ 2Tθ + Tθ

][
f

g

]
=

[
2Tθf + Tθ (f + g)

2Tθg + Tθ (f + g)

]
.

Observe that
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PHθ

(
2Tθf + Tθ (f + g)

) = PHθ
Tθ (f + g) = PHθ

(
2Tθg + Tθ (f + g)

)
,

which implies that ker[T ∗
Φ,TΦ ] is invariant under TΦ . But since

{f ⊕ f : f ∈Hθ }�HΘ, and hence, ker
[
T ∗

Φ,TΦ

] �= H 2
C2,

we can see that TΦ is not normal. Note that by Lemma 3.3,
[ 1 1

1 1

]
and Θ are not left coprime.

If, in the left coprime factorization Φ− = B∗Θ2 (Θ2 = θ2In) of Theorem 3.5, θ2 has a
Blaschke factor, then the assumption of the “left coprime factorization” for the analytic part
Φ+ of Φ can be dropped in Theorem 3.5.

Corollary 3.8. Suppose Φ = Φ∗− + Φ+ ∈ L∞
Mn

is such that Φ and Φ∗ are of bounded type. In
view of (5), we may write

Φ− = B∗Θ,

where Θ := θIn with an inner function θ . Assume that B and Θ are left coprime. Assume also
that θ contains a Blaschke factor. If

(i) TΦ is hyponormal; and
(ii) ker[T ∗

Φ,TΦ ] is invariant under TΦ ;

then TΦ is normal or analytic. Hence, in particular, if TΦ is subnormal then it is normal or
analytic.

Proof. For notational convenience, we let Θ2 := Θ and θ2 := θ . Now suppose θ2 has a Blaschke
factor bα and write Bα := bαIn. By assumption, B and Bα are left coprime, so that by Lemma 3.3,
B and Bα are right coprime. Thus, in view of Lemmas 3.1 and 3.2, we can write

Φ+ = A∗Θ0Θ2 = Bα	1A
∗
r and Φ− = B∗Θ2,

where Θi = θiIn with an inner function θi (i = 0,2), Ar and Bα	1 are right coprime, and B

and Θ2 are left coprime. In particular, we note that A and Bα are right coprime, so that again by
Lemma 3.3, A and Bα are left coprime. On the other hand, an analysis for the proof of STEP 1
of Theorem 3.5 shows that

Θ0H
2
Cn ⊆ ker

[
T ∗

Φ,TΦ

]
. (21)

(Note that we didn’t employ the assumption “A and Θ2 are left coprime” to get (21) in the proof
of STEP 1 of Theorem 3.5.) Thus if K ∈ E(Φ) then by the same argument as (16), we have

cl ranHAΘ∗
2

⊆ ker
(
I − TK̃T ∗̃

K

)
. (22)

Since A and Bα are left coprime it follows that Ã and B̃α are right coprime. Thus we can write

ÃΘ̃∗ = Ã1Ω̃
∗B̃∗ (right coprime factorization)
2 α
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for some inner function Ω and A1 ∈ H 2
Mn

. It thus follows from Lemma 1.1 that

cl ranHAΘ∗
2

= (kerHÃΘ̃∗
2
)⊥ = (

B̃αΩ̃H 2
Cn

)⊥ ⊇ (
B̃αH 2

Cn

)⊥ =HB̃α
.

Thus by (22),

HB̃α
⊆ ker

(
I − TK̃T ∗̃

K

)
.

Then the exactly same argument as the argument from (18) to the end of the proof of Theorem 3.5
with Bα in place of Θ2 shows that TΦ is normal. (We again note that we didn’t employ the
assumption “A and Θ2 are left coprime” there.) This completes the proof. �

We thus have:

Corollary 3.9. Suppose Φ = Φ∗− + Φ+ ∈ L∞
Mn

is a matrix-valued rational function. In view of
(5) and (2), we may write

Φ− = B∗Θ,

where Θ := θIn with a finite Blaschke product θ . Assume that B(α) is invertible for each
α ∈ Z(θ). If TΦ is subnormal then TΦ is normal or analytic.

Proof. This follows at once from Corollary 3.8 together with Lemma 3.3. �
4. Scalar Toeplitz operators with finite rank self-commutators

If Φ is normal and analytic then [T ∗
Φ,TΦ ] = H ∗

Φ∗HΦ∗ , so that by the Kronecker’s lemma,
TΦ has a finite rank self-commutator if and only if Φ is rational. Therefore Corollary 3.9 il-
lustrates the case of subnormal Toeplitz operators with finite rank self-commutators. But it
is still open whether subnormal (even scalar-valued) Toeplitz operators with finite rank self-
commutators are either normal or analytic. We would like to state:

Conjecture 4.1. If Tφ is a subnormal Toeplitz operator with finite rank self-commutator, then Tφ

is normal or analytic.

We need not expect that if Tφ is a hyponormal Toeplitz operator with finite rank self-
commutator then φ is of bounded type. Indeed, if ψ ∈ H∞ is such that ψ̄ is not of bounded
type and φ = ψ + zψ (and hence φ is not of bounded type) then a straightforward calculation
shows that Tφ is hyponormal and rank[T ∗

φ , Tφ] = 1.
We would like to take this opportunity to give a positive evidence for Conjecture 4.1. First

of all, we recall a theorem of Nakazi and Takahashi [27, Theorem 10] which states that if Tφ is
hyponormal then [T ∗

φ , Tφ] is of finite rank if and only if there exists a finite Blaschke product
b in E(φ) such that the degree of b equals the rank of [T ∗

φ , Tφ]. In what follows we let bM :=
{bf : f ∈ M}.
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Theorem 4.2. Suppose Tφ is a hyponormal Toeplitz operator with finite rank self-commutator.
If ker[T ∗

φ , Tφ] and b ker[T ∗
φ , Tφ] (some b ∈ E(φ)) are invariant under Tφ , then Tφ is normal or

analytic.

Proof. Write K := ker[T ∗
φ , Tφ] and R := ran[T ∗

φ , Tφ]. If φ or φ is of bounded type then by

Abrahamse’s theorem, Tφ is either normal or analytic. Suppose both φ and φ are not of bounded
type. We first claim that

clHφ

(
ker

[
T ∗

φ , Tφ

]) = H 2. (23)

To see this we observe that by the Nakazi–Takahashi theorem, there exists a finite Blaschke
product b ∈ E(φ) such that deg(b) = dimR. Since

T ∗
φ Tφ − TφT ∗

φ = H ∗
φ
Hφ − H ∗

φHφ = H ∗
φ
Hφ − H ∗

bφ
Hbφ = H ∗

φ
HbH

∗
b
Hφ,

we have

ker
[
T ∗

φ , Tφ

] = kerH ∗
b
Hφ = ker(TφTb − TbTφ),

which shows that H
b̃
Hφ(K) = 0, and hence Hφ(K) ⊆ b̃H 2, so that clHφK ⊆ b̃H 2. But since

dimR < ∞ and by (1), Hφ is one-one and has dense range, we have

H 2 = clHφ(K + R) = cl(HφK + HφR) = clHφK + HφR.

We therefore have clHφK = b̃H 2 since dimHφR = deg(b). Hence

clHφK = clHbφK = clT ∗
b̃
HφK = T

b̃
b̃H 2 = H 2,

which proves (23). On the other hand, we note that E(φ) is a singleton set: otherwise, φ is of
bounded type. Thus E(φ) consists of only a finite Blaschke product b. We next argue that if
Tφ(bK) ⊆ bH 2 then

Tφ(bk) = bTφk for each k ∈ K. (24)

To see this, let k ∈ K and write k1 := Tφk. Thus φk = k1 + k2 for some k2 ∈ H 2
0 = zH 2. Then

Tφ(bk) = P(bφk) = P(bk2 + bk1) = P(bk2) + bk1 = P(bk2) + bTφk.

Since, by assumption, Tφ(bK) ⊆ bH 2, it follows that P(bk2) ∈ bH 2. But since P(bk2) ∈
(bH 2)⊥, we have P(bk2) = 0, which proves (24). Since TφTb − TbTφ = H

b̃
Hφ it follows from

(23) and (24) that

H H 2 = H (clHφK) = clH HφK = cl(TφTb − TbTφ)K = 0,

b̃ b̃ b̃
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which implies that b̃H 2 ⊆ H 2, so that b = eiθ for some θ ∈ [0,2π). Therefore φ is of the form
φ = f + eiθf for some f ∈ H∞ and θ ∈ [0,2π) which implies that Tφ is normal. �

We thus have:

Corollary 4.3. Suppose Tφ is a subnormal Toeplitz operator with finite rank self-commutator. If
b ker[T ∗

φ , Tφ] is invariant under Tφ (some b ∈ E(φ)), then Tφ is normal or analytic.

Proof. Since ker[T ∗, T ] is invariant under T for every subnormal operator T , the result follows
at once from Theorem 4.2. �

We were not unable to decide whether the condition “b ker[T ∗
φ , Tφ] (some b ∈ E(φ)) is invari-

ant under Tφ” can be dropped from Corollary 4.3: in other words, if Tφ is a subnormal operator
with finite rank self-commutator and b ∈ E(φ), is b ker[T ∗

φ , Tφ] invariant under Tφ? If the answer
to this question is affirmative we can conclude that Conjecture 4.1 is true.
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