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Abstract

The structure of loop corrections is examined in a scalar field theory on a three-dimensional space whose spatial coordinates are noncommutative
and satisfy SU(2) Lie algebra. In particular, the 2- and 4-point functions in φ4 scalar theory are calculated at the 1-loop order. The theory is
UV-finite as the momentum space is compact. It is shown that the non-planar corrections are proportional to a one-dimensional δ-function, rather
than a three-dimensional one, so that in transition rates only the planar corrections contribute.
© 2008 Elsevier B.V.

1. Introduction

In recent years there has been considerable interest in quantum field theories on noncommutative spaces. This was to a large
extent motivated by the observation that this kind of field theories arise in the zero-slope limit of the open string theory in the
presence of a constant B-field background [1–4]. In this case the coordinates satisfy the canonical relation

(1)[x̂μ, x̂ν] = iθμν1,

in which θ is an antisymmetric constant tensor and 1 represents the unit operator. The theoretical and phenomenological implications
of such noncommutative coordinates have been extensively studied, see [5].

One direction to extend studies on noncommutative spaces is to consider spaces where the commutators of the coordinates
are not constants. Examples of this kind are the noncommutative cylinder and the q-deformed plane [6], the so-called κ-Poincaré
algebra [7–10], and linear noncommutativity of the Lie algebra type [11]. In the latter it is supposed that the dimensionless spatial
positions operators satisfy the commutation relations of a Lie algebra [11]:

(2)[x̂a, x̂b] = f c
abx̂c,

where f c
ab’s are structure constants of a Lie algebra. One example of this kind is the algebra SO(3), or SU(2). A special case of this

is the so-called fuzzy sphere [12,13], where an irreducible representation of the position operators is used which makes the Casimir
of the algebra, (x̂1)

2 + (x̂2)
2 + (x̂3)

2, a multiple of the identity operator (a constant, hence the name sphere). One can consider
the square root of this Casimir as the radius of the fuzzy sphere. This is, however, a noncommutative version of a two-dimensional
space (sphere).

In [14,15] a model was introduced in which the representation was not restricted to an irreducible one, instead the whole
group was employed. In particular the regular representation of the group, which contains all representations, was considered.
As a consequence in such models one is dealing with the whole space, rather than a sub-space, like the case of fuzzy sphere
as a 2-dimensional surface. In [14] the basic ingredients for calculus on a linear fuzzy space, as well as the basic notions for
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a field theory on such a space, were introduced. In [15] the basic elements for calculating the matrix elements corresponding to
transition between initial and final states were discussed. There the contributions of lowest order (tree level) perturbative expansion
of amplitudes were presented for a self-interacting scalar field theory. The models based on the regular representations of SU(2)
was treated in more detail, giving the explicit form of the tools and notions introduced in their general forms [14,15].

As mentioned in [14,15], one of the features of models based on linear fuzziness of Lie algebra type is that these theories are free
from any ultraviolet divergences if the corresponding Lie group is compact. In fact one can consider the momenta as the coordinates
of the group, so that the space of the corresponding momenta is compact iff the group is compact. One important implication of the
elimination of the ultraviolet divergences would be that there will be no place for the so-called UV/IR mixing effect [16], which is
known to be a common feature of the models based on canonical noncommutativity, the algebra (1).

The purpose of the present work is to examine the structure of the field theory amplitudes at loop order. Here we consider a scalar
field theory with φ4 interaction. In particular we consider one-loop corrections to 2- and 4-point functions in this theory. The field
theory on a (2 + 1)-space–time whose coordinates satisfy the Lie algebra of SO(2,1) was studied in [17]. Due to non-compactness
of the group in this case, the UV-divergences are present at loop level [17].

The scheme of the rest of this Letter is the following. In Section 2, a brief review is given on basic elements of a field theory
on a noncommutative space of SU(2) algebra type. In Sections 3 and 4 the calculation of 2- and 4-point functions are presented,
respectively. Section 5 is devoted to concluding remarks; in particular, it is discussed how only the planar sector of the loop
corrections contribute to the amplitudes.

2. Field theory on space with SU(2) fuzziness

In [14,15] a model was investigated in a (3 + 1)-dimensional space–time the dimensionless spatial position operators of which
are generators of a regular representation of the SU(2) algebra, that is

(3)[x̂a, x̂b] = εc
abx̂c.

As it was discussed in [14], one can use the group algebra as the analogue of functions defined on ordinary space, with group
elements U = exp(�kax̂a) as the analogues of exp(ik · x), which are a basis for the functions defined on the space. In both cases k
is an ordinary vector with k = (k1, k2, k3). That is the components of k are commuting numbers. In the case of noncommutative
space, � is a length parameter, and the vector k is restricted to a ball of radius (2π/�), with all points of the boundary identified to
a single point. The manifold of k is in fact a 3-sphere. k can be thought of as the momentum of a particle. The left-right-invariant
Haar measure is

(4)dU = sin2(�k/2)

(�k/2)2

d3k

(2π)3
,

where k := |k|. The integration region for the coordinates is k � 2π/�. We mention that near the origin (k � �−1) the measure is
simply d3k/(2π)3, as it should be. The action of a scalar model with quartic interaction in Fourier space of spatial directions is
given by

S =
∫

dt

{
1

2

∫
dU1 dU2

[
φ̇(U1)φ̇(U2) + φ(U1)O(U2)φ(U2)

]
δ(U1U2)

(5)− g

4!
∫ [

4∏
j=1

dUj

]
φ(U1)φ(U2)φ(U3)φ(U4)δ(U1U2U3U4)

}
,

in which φ̇ is the time derivative of φ. In the above,

(6)O(U) = cχλ

(
U + U−1 − 21

) − m2,

where c and m are constants, and χλ is the character in the representation λ. It is shown that by a proper choice of constant c, near
the origin O(U) ≈ −k2 − m2, as it is the case in the ordinary space. The δ-distribution appearing above is simply defined through

(7)
∫

dU δ(U)f (U) := f (1),

where 1 is the identity element of the group. It is easy to see that this delta distribution is invariant under similarity transformations,
as well as inversion of the argument:

(8)δ
(
V UV −1) = δ(U), δ

(
U−1) = δ(U).
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The first relation shows that if the argument of the delta is a product of group elements, then any cyclic permutation of these
elements leaves the delta unchanged. It is also seen that near the origin (k � �−1),

(9)δ(U1 · · ·Ul) ≈ (2π)3δ3(k1 + · · · + kl ),

which ensures an approximate momentum conservation. The exact conservation law, however, is that at each vertex the product of
incoming group elements should be unity. For the case of a 3-leg vertex, one can write this condition as

(10)exp
(
�ka

1 x̂a

)
exp

(
�ka

2 x̂a

)
exp

(
�ka

3 x̂a

) = 1.

It is convenient to define

(11)exp
(
�ka

1 x̂a

)
exp

(
�ka

2 x̂a

) =: exp
[
�γ a(k1,k2)x̂a

]
,

where the function γ can be shown to enjoy the properties

(12)γ
[
k1,γ (k2,k3)

] = γ
[
γ (k1,k2),k3

]
,

(13)γ (−k1,−k2) = −γ (k2,k1),

(14)γ (k,−k) = 0.

So that (10) can be expressed by one of the three equivalent forms

(15)k3 = −γ (k1,k2), k2 = −γ (k3,k1), k1 = −γ (k2,k3).

The explicit form of γ (k1,k2) is obtained from

cos
�γ

2
= cos

�k1

2
cos

�k2

2
− k̂1 · k̂2 sin

�k1

2
sin

�k2

2
,

(16)γ̂ sin
�γ

2
= k̂1 × k̂2 sin

�k1

2
sin

�k2

2
+ k̂1 sin

�k1

2
cos

�k2

2
+ k̂2 sin

�k2

2
cos

�k1

2
.

It is easy to see that in the limit � → 0, γ tends to k1 + k2, as expected.
For field theoretical purposes it is convenient to have the action (5) in the whole (space and time) Fourier space:

S = 1

2

∫
dω1 dU1

2π

dω2 dU2

2π

[
2πδ(ω1 + ω2)δ(U1U2)

][−ω1ω2φ̌(U1,ω1)φ̌(U2,ω2) + φ̌(U1,ω1)O(U2)φ̌(U2,ω2)
]

(17)− g

4!
∫ [

4∏
j=1

dωj dUj

2π
φ̌(Uj ,ωj )

][
2πδ(ω1 + · · · + ω4)δ(U1 · · ·U4)

]
,

in which φ̌(U,ω) is the Fourier component. The first two terms represent a free action, with the propagator

(18)�̌(ω,U) := ih̄

ω2 + O(U)
.

Putting the denominator of this propagator equal to zero gives the relation between ω and U for free particles (the mass-shell
condition). The third term contains interactions. Any Feynman graph would consist of propagators, and 4-line vertices to which one
assigns the fundamental vertex

(19)V[1234] := g

ih̄4!2πδ(ω1 + · · · + ω4)
∑
�

δ
(
U�(1) · · ·U�(4)

)
,

where the summation runs over all permutations. In practice, due to cyclic symmetry of δ’s arguments mentioned earlier, permuta-
tions which are different up to a cyclic change just come in sum with a proper weight, so we have

V[1234] = g

ih̄6
2πδ(ω1 + · · · + ω4)

[
δ(U1U2U3U4) + δ(U1U2U4U3)

(20)+ δ(U1U3U2U4) + δ(U1U3U4U2) + δ(U1U4U2U3) + δ(U1U4U3U2)
]
.

Also, for any internal line there is an integration over U and ω, with the measure dω dU/(2π). As the group is assumed to be
compact, the integration over the group is integration over a compact volume.

It is worth to mention a crucial difference between the way that δ-functions appear in our model and in models defined on
ordinary spaces. Here, as mentioned above, each possible ordering of legs of a vertex comes with a different δ, except the cases that
two orderings are different up to a cyclic permutation. This is in contrast to models on ordinary space, in which all possible orderings
have the common factor of one single δ(

∑
ki ), representing the momentum conservation in that vertex. Similar to above observation

about the appearance of δ-functions has been made in theories defined on κ-deformed spaces, pointed in the Introduction. In these
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theories, the ordinary summation of momenta in each vertex is replaced with a new rule of summation, occasionally called as
doted-sum (+̇) [9]. This new sum, in contrast to the ordinary sum, is non-Abelian, and as a consequence, the δ’s coming with each
possible ordering of legs are different [9,10].

Once given by the Feynman rules one can calculate the loop corrections. In following we choose λ = 1
2 in (6), so that the

propagator has the explicit form

(21)�̌(ω,k) = ih̄

ω2 − 16

�2
sin2 �k

4
− m2

.

3. 1-loop correction of the 2-point function

The 2-point function has two external legs, one incoming (ω1,k1), the other outgoing (−ω2,−k2). The 1-loop correction is
simply the fundamental vertex-function (20), contracted on legs 3 and 4, with proper symmetry factors:

Γ
(2)

1-loop = 1

2

∫
dU3 dU4 δ(U3U4)

∫
dω3

2π

dω4

2π
2πδ(ω3 + ω4)V[1234]

(22)= g

ih̄12
2πδ(ω1 − ω2)

∫
dU

∫
dω

2π

ih̄

ω2 + O(U)

[
4δ

(
U1U

−1
2

) + 2δ
(
U1UU−1

2 U−1)],
where the integrations on ω4 and U4 have been performed, and ω3 and U3 have been denoted by ω and U , respectively. Also use has
been made of the facts that dU and O(U) are invariant under the inversion of U . In the above expression, one recognizes two parts:
the so-called planar part, in which the delta contains no contribution from the loop momentum U ; and the so-called non-planar
part, in which the delta does contain loop momentum. Using the usual prescription ω2 → (ω2 + iε), the integration over omega is
performed. For the planar part, one obtains

Γ
(2)planar

1-loop = − ig

6
2πδ(ω1 − ω2)δ

(
U1U

−1
2

)∫
dU√−O(U)

(23)= − i8πg

3�2
2πδ(ω1 − ω2)δ

(
U1U

−1
2

) 2π/�∫
0

dk

(2π)3

sin2(�k/2)√
16 sin2(�k/4) + m2

.

The remaining integral can be expressed in terms of a hypergeometric function of 2F1(a, b, c; z) type. It is seen that the above
expression is finite, as it was to be. The delta distribution of group elements can also be written in the form

(24)δ
(
U1U

−1
2

) = (2π)3(�k2/2)2

sin2(�k2/2)
δ3(k1 − k2).

It is seen that planar contribution conserves momentum.
For the non-planar contribution, one has

(25)Γ
(2)non-planar

1-loop = − ig

12
2πδ(ω1 − ω2)

∫
dU

δ(U1UU−1
2 U−1)√−O(U)

.

It is convenient to define k′
2 through

(26)U(k′
2) := U(k)U2U

−1(k), k′
2 = k2 cos(�k) + k̂(k̂ · k2)

[
1 − cos(�k)

] + k2 × k̂ sin(�k).

In fact k′
2 is nothing but k2 rotated by the angle �k around k̂. So,

(27)k′
2 = k2,

and

(28)δ
(
U1UU−1

2 U−1) = δ
(
U1U

′−1
2

) = (2π)3(�k2/2)2

sin2(�k2/2)
δ3(k1 − k′

2).

It would be helpful to express this delta in terms of spherical coordinates:

(29)δ3(k1 − k′
2) = 1

k2
1

δ(k1 − k2)δ(cos θ1 − cos θ ′
2)δ(φ1 − φ′

2).
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Without loss of generality, one can put the 3rd direction on k2. So,

(30)k2 = k2ẑ, cos θ ′
2 = cos(�k) + cos2 θ

[
1 − cos(�k)

]
, φ′

2 = φ − tan−1
{

sin(�k)

cos θ [cos(�k) − 1]
}
,

where (k, θ,φ) are the spherical coordinates of k. Since O(U) is independent of θ and φ, one can use

I1 :=
1∫

−1

d(cos θ) δ
{
cos θ1 − cos(�k) − cos2 θ

[
1 − cos(�k)

]}
,

=
{ {[1 − cos(�k)][cos θ1 − cos(�k)]}−1/2, θ1 � �k � 2π − θ1,

0, otherwise,

(31)I2 :=
∫

dφ δ(φ1 − φ′
2) = 1.

One then arrives at

Γ
(2)non-planar

1-loop = − ig

12
2πδ(ω1 − ω2)δ(k1 − k2)

(2π)3�2/4

sin2(�k2/2)

(2π−θ1)/�∫
θ1/�

dk

(2π)3

sin2(�, k/2)√
16 sin2(�k/4) + m2

(32)× 1√[1 − cos(�k)][cos θ1 − cos(�k)] .

Putting cos−1(k̂1 · k̂2) instead of θ1, an expression is obtained that has no particular choice of coordinates. The above expression is
finite, hence no appearance of UV-divergences in either planar or non-planar diagrams. However, in the above expression one has
a one-dimensional delta δ(k1 − k2), instead of the three-dimensional delta δ3(k1 − k2) appearing in the planar part. So the non-
planar part does not leave the momentum vector but only its length conserved. So it is possible that the direction of the momentum
of a self-interacting particle changes. This is no surprise, as in this theory momentum conservation is just an approximate law.
Similar observations on the change of momentum through non-planar loop corrections to 2-point functions have been reported in
κ-Poincaré theories [9,10].

4. 1-loop correction of the 4-point function

The 4-point function has four external legs: two incomings (ω1,k1) and (ω2,k2), and two outgoings (−ω3,−k3) and
(−ω4,−k4). The contributions come from three channels, the so-called s-, t-, and u-channels. Here only the s-channel is inves-
tigated, as the two others can be obtained similarly. One has

(33)Γ
(4)[s]

1-loop = 1

2

∫
dU dU ′

∫
dω

2π

dω′

2π

ih̄

ω2 + O(U)

ih̄

ω′2 + O(U ′)
V[12U−1U ′−1]V[UU ′,−3,−4].

Using (20), and performing the ω′-integration, one would get

Γ
(4)[s]

1-loop = 1

2

(
g

6ih̄

)2

2πδ(ω1 + ω2 − ω3 − ω4)

∫
dU dU ′

∫
dω

2π

ih̄

ω2 + O(U)

ih̄

(ωs − ω)2 + O(U ′)
× [

δ
(
U1U2U

−1U ′−1) + δ
(
U1U2U

′−1U−1) + δ
(
U1U

−1U2U
′−1)

+ δ
(
U1U

′−1U2U
−1) + δ

(
U2U1U

−1U ′−1) + δ
(
U2U1U

′−1U−1)]
× [

δ
(
U−1

3 U−1
4 UU ′) + δ

(
U−1

3 U−1
4 U ′U

) + δ
(
U−1

3 UU−1
4 U ′)

(34)+ δ
(
U−1

3 U ′U−1
4 U

) + δ
(
U−1

4 U−1
3 UU ′) + δ

(
U−1

4 U−1
3 U ′U

)]
,

in which

(35)ωs := ω1 + ω2.

It would be convenient to define the followings

(36)U ′
a := UUaU

−1, U ′′
a := U−1UaU.

Performing the U ′-integration, and the change ω → ω − ωs, one arrives at
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Γ
(4)[s]

1-loop = 1

2

(
g

6

)2

2πδ(ω1 + ω2 − ω3 − ω4)

∫
dU

∫
dω

2π

1

(ω − ωs)2 + O(U)

{
1

ω2 + O(U1U2U−1)

[
2δ

(
U1U2U

−1
3 U−1

4

)
+ 2δ

(
U1U2U

−1
4 U−1

3

) + δ
(
U1U2U

′′−1
3 U−1

4

) + δ
(
U1U2U

′′−1
4 U−1

3

) + δ
(
U1U2U

−1
3 U ′−1

4

)
+ δ

(
U1U2U

−1
4 U ′−1

3

) + δ
(
U1U

−1
3 U−1

4 U ′
2

) + δ
(
U ′′

1 U−1
3 U−1

4 U2
) + δ

(
U1U

−1
4 U−1

3 U ′
2

) + δ
(
U ′′

1 U−1
4 U−1

3 U2
)

+ δ
(
U ′

1U
′
2U

−1
4 U−1

3

) + δ
(
U ′′

1 U ′′
2 U−1

3 U−1
4

) + δ
(
U ′′

1 U ′′
2 U−1

4 U−1
3

) + δ
(
U1U

−1
3 U ′−1

4 U ′
2

) + δ
(
U1U

−1
4 U ′−1

3 U ′
2

)
+ δ

(
U ′

1U
′
2U

−1
3 U−1

4

)] + 1

ω2 + O(U2U1U−1)

[
2δ

(
U2U1U

−1
3 U−1

4

) + 2δ
(
U2U1U

−1
4 U−1

3

) + δ
(
U ′

1U2U
−1
3 U−1

4

)
+ δ

(
U1U

′′
2 U−1

3 U−1
4

) + δ
(
U ′

1U2U
−1
4 U−1

3

) + δ
(
U1U

′′
2 U−1

4 U−1
3

) + δ
(
U2U1U

′′−1
3 U−1

4

) + δ
(
U2U1U

′′−1
4 U−1

3

)
+ δ

(
U2U1U

−1
3 U ′−1

4

) + δ
(
U2U1U

−1
4 U ′−1

3

) + δ
(
U ′′

2 U ′′
1 U−1

4 U−1
3

) + δ
(
U ′−1

4 U ′
1U2U

−1
3

) + δ
(
U ′−1

3 U1U2U
−1
4

)
(37)+ δ

(
U ′

2U
′
1U

−1
3 U−1

4

) + δ
(
U ′

2U
′
1U

−1
4 U−1

3

) + δ
(
U ′′

2 U ′′
1 U−1

3 U−1
4

)]}
,

where use has been made of

(38)O(ABC) = O(CAB).

In the above expression, the delta’s come in two way: those without the loop variable, which correspond to the planar part; and those
containing the loop variable (those which contain ′ or ′′), which correspond to the non-planar part. In the planar part, the delta’s are
simply brought out of the integral. So,

Γ
(4)[s]planar

1-loop = g2

72π
δ(ωs − ω3 − ω4)

{[
δ
(
U1U2U

−1
3 U−1

4

) + δ
(
U1U2U

−1
4 U−1

3

)]
×

∫
dU

∫
dω

[(ω − ωs)2 + O(U)][ω2 + O(U1U2U−1)] + [
δ
(
U2U1U

−1
3 U−1

4

) + δ
(
U2U1U

−1
4 U−1

3

)]
(39)×

∫
dU

∫
dω

[(ω − ωs)2 + O(U)][ω2 + O(U2U1U−1)]
}
.

Again the contribution of the planar part is proportional to three-dimensional delta’s.
One can proceed to bring the above expressions in more simple forms, though in this case the integrand does not just depend on

the length of momentum. As an easy example, one can consider the case where the reactions takes place in the so-called center of
mass frame:

(40)U2 = U−1
1 .

One then arrives at

(41)Γ
(4)[s]planar

1-loop = g2

18π
δ(ωs − ω3 − ω4)δ(U3U4)

∫
dU

∫
dω

[(ω − ωs)2 + O(U)][ω2 + O(U)] .
For the non-planar contribution, as it was the case with the two-point function, one cannot factor out a three-dimensional delta,

as the loop variable is inside the argument of the delta’s. It is again obvious that both the planar and non-planar contributions are
finite.

5. Concluding remarks

The structure of loop corrections of a self-interacting field theory on a three-dimensional space whose spatial coordinates are
noncommutative and satisfy SU(2) Lie algebra was examined. The examples of 1-loop 2- and 4-point functions were treated in
more detail as examples of loop corrections in such models. As the momentum space of such models are compact, the theory is free
from UV divergences.

In the case of the 2-point function, while the planar part leaves the momentum conserved, the non-planar only leaves the length
of the momentum conserved. In the case of the 4-point function, the momentum is conserved neither by the planar part nor by the
non-planar part. Similar observations have already been done in the case of the κ-Poincaré case [9].

One notable feature of the model is about the ways that the δ-functions appear in planar and non-planar sectors of the the-
ory. The planar contribution comes with a three-dimensional δ, representing certain combinations of the external momentums of
the diagrams. In the non-planar case, less-dimensional delta’s remain. As a consequence, the n-point function can always come
schematically as below

(42)Γ (n) = 2πδ

(∑
ω

)[∑
Γ

(n)planar
λ δ3(vλ) +

∑
Γ (n)non-planar

μ δαμ(vμ)

]
,

i,f λ μ
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where λ and μ denote different orderings of external legs. The vectors vλ and vμ are certain combinations of external momenta.
Finally, the numbers αμ are less than 3, meaning that the delta arising from the non-planar part is less than three-dimensional.

Observables (like cross sections and decay rates) are proportional to the square of Γ (n), in which there are terms proportional
to [δα(v)][δα′

(v′)], where α or α′ is equal to 3 for contributions from the planar sector, and less than 3 for contributions from the
non-planar sector. It is seen that in such products, there arise terms proportional to δβ(0), such that β = 3 iff v = v′ and α = α′ = 3,
and β < 3 otherwise. So δ3(0) arises only in the product of similar terms in the planar sector. As it was discussed in [15], to obtain
transition rates these terms should be multiplied by other factors including powers of the volume of the space, which tends to
δ3(0) in the infinite volume limit. These factors cancel one δ3(0) from the square, so that terms containing one δ3(0) give finite
contributions. Other terms vanish, and as terms containing one δ3(0) arise only from the planar parts, the non-planar corrections do
not contribute in the probability of any transition rate. The only exception is for the 2-point function, where the planar part has no
contribution to the self-scattering (spontaneous momentum change) and the scattering is totally due to the non-planar part.
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