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In the presence of a sharp corner in the boundary of the entanglement region, the entanglement entropy 
(EE) and Rényi entropies for 3d CFTs have a logarithmic term whose coefficient, the corner function, 
is scheme-independent. In the limit where the corner becomes smooth, the corner function vanishes 
quadratically with coefficient σ for the EE and σn for the Rényi entropies. For a free real scalar and 
a free Dirac fermion, we evaluate analytically the integral expressions of Casini, Huerta, and Leitao to 
derive exact results for σ and σn for all n = 2, 3, . . . . The results for σ agree with a recent universality 
conjecture of Bueno, Myers, and Witczak-Krempa that σ/CT = π2/24 in all 3d CFTs, where CT is the 
central charge. For the Rényi entropies, the ratios σn/CT do not indicate similar universality. However, 
in the limit n → ∞, the asymptotic values satisfy a simple relationship and equal 1/(4π2) times the 
asymptotic values of the free energy of free scalars/fermions on the n-covered 3-sphere.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction and results

For a 3d conformal field theory (CFT) in the ground state, the 
entanglement entropy S for a region whose boundary has a sharp 
corner with angle θ can be written as

S = B
L

ε
− a(θ) ln

(
L

ε

)
+ O (1). (1)

Here L is a length scale associated with the size of the entan-
gling region, ε is a short distance cutoff, and B is a non-universal 
constant. The corner contribution to the entanglement entropy is 
the scheme-independent positive function a(θ) of the opening an-
gle θ [1–3]. Since the entanglement entropy of the region equals 
that of the complement region, the corner contribution satisfies 
a(2π − θ) = a(θ). If the curve bounding the entangling region is 
smooth, the logarithmic term is absent, hence a(θ) must vanish in 
the limit θ → π and it does so quadratically as

a(θ) = σ (θ − π)2 + . . . for θ → π. (2)

The value of the corner coefficient σ depends on the theory.
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For the theory of a free real scalar or a Dirac fermion, Casini, 
Huerta, and Leitao [4,5,2] derived expressions that give a(θ) im-
plicitly in terms of some rather involved integrals. In the limit 
θ → π one can extract double-integral expressions for the cor-
ner coefficient σ in (2). These integrals have been evaluated 
numerically [5,6] and the results indicate that the exact values 
are [6]

σ (B) = 1
256 and σ (F ) = 1

128 (3)

for the free boson and free fermion, respectively.
Bueno, Myers, and Witczak-Krempa [6] conjectured that the ra-

tio of the coefficient σ in (2) to the central charge CT is universal 
in 3d CFTs and that it takes the value

conjecture [6]:
σ

CT
= π2

24
. (4)

The conjecture (4) has passed non-trivial holographic tests for 
gravity models with a family of higher derivative corrections [6,7]. 
The central charge CT is defined as the coefficient of the vac-
uum 2-point function of the stress tensor (see eq. (3) in [6]). 
For free bosons and fermions, Osborn and Petkou [8] found that 
C (B)

T = 3/(32π2) and C (F )
T = 3/(16π2) in 3d. So with the val-

ues (3), the ratio σ/CT is indeed π2/24 for both free bosons and 
fermions.
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Table 1
The first nine values of σn .

n σ
(B)
n σ

(F )
n

2 1
48π2 ≈ 0.00211086 1

64π ≈ 0.00497359

3 1
108

√
3π

≈ 0.00170163 5
216

√
3π

≈ 0.00425408

4 8+3π
1152π2 ≈ 0.00153255 1+6

√
2

768π ≈ 0.00393133

5
√

25−2
√

5
1000π ≈ 0.00144219

√
425+58

√
5

2000π ≈ 0.00374840

6 81+34
√

3π
19440π2 ≈ 0.00138643 261+20

√
3

25920π ≈ 0.00363061

7
2 cot( π

14 )+5 cot( 3π
14 )+5 tan( π

7 )

4116π ≈ 0.00134874
13 cot( π

14 )+22 cot( 3π
14 )+15 tan( π

7 )

8232π ≈ 0.00354841

8 32+9π(1+2
√

2)

10752π2 ≈ 0.00132161 1+6
√

2+4
√

274+17
√

2
7168π ≈ 0.00348777

9
27

√
3+10 cot( π

18 )+28 tan( π
9 )+35 tan( 2π

9 )

34992π ≈ 0.00130116
135

√
3+68 cot( π

18 )+77 tan( π
9 )+130 tan( 2π

9 )

69984π ≈ 0.00344118

10 125+6π
√

565+142
√

5
54000π2 ≈ 0.00128522 5+300

√
5+4

√
425+58

√
5

72000π ≈ 0.00340427

Fig. 1. Left: Plot showing that σn decreases monotonically from the entanglement entropy value included for n = 1 to the asymptotic value σ∞ for free scalars (circles) and 
free Dirac fermions (squares). The asymptotic values σ (B)∞ = 3ζ(3)

32π4 ≈ 0.0011569 (black) and σ (F )∞ = ζ(3)

4π4 ≈ 0.00308507 (gray) are indicated as horizontal lines. Right: The plot 
illustrates our numerical fit σn = σ∞

(
1 + b1

n + b2
n2 + b3

n3 + . . .
)

, for which we find b1 = b2 = b3 = 1 for the free scalar, and b1 = 1 and b2 = b3 = 1 − π2

12ζ(3)
≈ 0.31578 for the 

free fermion; the solid curves are b2
n2 + b3

n3 for those respective values of b2 and b3.
In this paper, we evaluate analytically the integral expressions 
[6] of Casini, Huerta, and Leitao [4,5,2] for σ (B) and σ (F ) and prove 
that their exact values are indeed those in (3). This verifies the uni-
versality conjecture (4) for the case of free bosons and fermions. 
One way of viewing the conjecture is simply as the statement 
that the corner coefficient σ in (2) does not contain independent 
information about the CFT, but is fixed in terms of the central 
charge CT .

Turning to the Rényi entropies Sn , one can define a similar cor-
ner contribution an(θ) which in the smooth limit θ → π goes to 
zero as an(θ) = σn (θ − π)2 + . . . for n = 2, 3, 4, . . . . (The n → 1
limit of the Rényi entropy is the entanglement entropy.) It is not 
known if σn/CT has any universal properties.

We calculate σn analytically for the free boson and free fermion 
using integral expressions for σn derived in [4,5,2].1 For the free 
scalar we find

σ
(B)
n =

n−1∑
k=1

k(n − k)(n − 2k) tan
(

kπ
n

)
24π n3(n − 1)

. (5)

Note that when n is even, the contribution from k = n/2 must be 
evaluated carefully using limk→n/2(n − 2k) tan

( kπ
n

)= 2n/π .

1 We are grateful to Horacio Casini for sharing with us the integral expression 
for σ

(F )
n .
The result for the free fermion is

σ
(F )
n =

(n−1)/2∑
k=−(n−1)/2

k(n2 − 4k2) tan
(

kπ
n

)
24π n3(n − 1)

, (6)

where sum is to be taken in integer steps from −n−1
2 to n−1

2 .
For low values of n, the finite sums of the trigonometric func-

tions in (5) and (6) simplify quite nicely. The results for first nine 
values of σn are shown in Table 1. In the case of the scalar, the ex-
act n = 2, 3 results were guessed by the authors of [6] based on 
their high precision numerical evaluation of the integrals.

Since the ratios of the central charges of free fermions and 
bosons differ only by a factor of 2, universality of the ratio 
σn/CT would require that σ (B)

n /σ
(F )
n obeys some simple, possibly 

n-dependent, relation. Based on our results above, there is no hint 
of such a simple relationship. Of course to fully exclude this, one 
would need values of σn for other 3d CFTs.

As a function of n, the Rényi corner coefficient σn decreases 
monotonically, as shown on the left in Fig. 1. When n is large, 
σn asymptotes to a constant value, which we calculate analytically:

σ
(B)∞ = 3ζ(3)

32π4 and σ
(F )∞ = ζ(3)

4π4 . (7)

The appearance of the Riemann zeta-function is intriguing since 
ζ(3) ≈ 1.20206 also shows up in the free energies and Rényi en-
tropies for free scalars/fermions on a 3-sphere, as shown by Kle-
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banov, Pufu, Sachdev, and Safdi [9]. Specifically, the free energy of 
a free real scalar or free fermion on an n-covered 3-sphere behaves 
as2 Fn → nF∞ for n → ∞ with

F (B)∞ = 3ζ(3)

8π2
and F (F )∞ = ζ(3)

π2
. (8)

Thus, for both free scalars and fermions we have

σ
(B/F )∞ = 1

4π2
F (B/F )∞ . (9)

For finite n, there is no apparent relation between Fn and σn , 
however there are some similarities in the subleading large-n be-
haviors, as we discuss in Section 4. The plot on the right in Fig. 1
shows the large-n behaviors of the Rényi corner coefficients σn . 
A priori it is not clear if there is any relation at large n between 
σn and Fn , but it would be curious to test (9) in other examples.

The remainder of the paper details the derivations of the results 
summarized above. In Section 2, we derive the results (3) for the 
entanglement entropy corner coefficient σ . We then evaluate the 
Rényi entropy corner coefficients σn in Section 3. In Section 4, we 
discuss the asymptotic behavior at large n.

2. Evaluation of the EE integrals

In this section we describe the procedure for analytically eval-
uating the integrals for the coefficients σ (B) and σ (F ) of the en-
tanglement entropy. Our starting point is the integrals [4,5,2] pre-
sented in equations (B1)–(B3) of [6]. After a change of integration 
variable from m to μ = √

4m2 − 1, the integrals take the form

σ (B) = −1

2

∞∫
0

dμ

∞∫
0

db μ2 Ha (1 − a)
π

cosh2 (πb
) ,

σ (F ) = −
∞∫

0

dμ

∞∫
0

db

[
μ2 Ha (1 − a) − μF

4π

]
π

sinh2 (πb
) , (10)

where a = 1/2 + ib for the scalar and a = ib for the fermion. The 
functions H and F are defined as

H = − T

2

(
c

h
X1 + 1

c
X2

)
+ 1

16πa (a − 1)
, F = − F1

F2
, (11)

with3

F1 = 4πchHa (1 − a)
[
(2a − 1)2 + μ2

]
− 1

4
ch2

(
μ2 + 1

)
,

F2 = ch
[
(2a − 1)2 + μ2

]2
2 (2a − 1)μ

. (12)

The functions h, c, X1, X2, and T are defined as follows:

h = 2
(
μ2 + (2a − 1)2

)
sin2 (πa)(

μ2 + 1
)
(cos (2πa) + cosh (πμ))

,

c =
22aπa (1 − a) sec

(
πa + iπμ

2

)
�
(

3
2 − a + iμ

2

)
√

μ2 + 1 (� (2 − a))2 �
(
− 1

2 + a + iμ
2

) (13)

and

2 The authors of [9] work with a complex scalar, so the free energy there is twice 
that of a real scalar.

3 We simplified the expression for F1 in [6] by writing it in terms of H .
X1 = − � (−a)

22a+1μ � (a + 1)

×
π sinh

(πμ
2

)+ i cosh
(πμ

2

)(
ψ
(

1
2 + a + iμ

2

)
− ψ

(
1
2 + a − iμ

2

))
�
(

1
2 − a + iμ

2

)
�
(

1
2 − a − iμ

2

)(
cos (2πa) + cosh (πμ)

) ,

X2 = (X1 with a replaced by (1 − a)
)
,

T = 1

2

√
h
[
(h + 1)

(
μ2 + 1

)− 4a (1 − a)
]
. (14)

Here ψ denotes the digamma function, ψ(z) = d
dz ln �(z).

Our first line of attack involves calculating the quantities c X1/h
and X2/c that appear in H in (11). Beyond the immediate cancel-
lations that occur in these ratios, one can perform further simpli-
fications using identities involving gamma functions. Namely, one 
can use the recurrence relation

� (1 + z) = z� (z) (15)

and the reflection relation

� (1 − z)� (z) = π

sin (π z)
. (16)

Surprisingly, all the gamma functions cancel after a series of such 
substitutions, giving

c

h
X1 =

√
μ2 + 1 csc (πa)

16πμ(a − 1)a

[
π sinh

(πμ

2

)

+ i cosh
(πμ

2

)(
ψ

(
1

2
+ a + iμ

2

)
− ψ

(
1

2
+ a − iμ

2

))]
,

1

c
X2 =

√
μ2 + 1 csc (πa)

16πμ(a − 1)a

[
π sinh

(πμ

2

)

+ i cosh
(πμ

2

)(
ψ

(
3

2
− a + iμ

2

)
− ψ

(
3

2
− a − iμ

2

))]
.

(17)

It is suggestive that the pre-factors and the form of these two re-
sults are the same. We then proceed by adding them together as 
in (11). The linear combination of digamma functions that appears 
in the result can be simplified using properties easily derived from 
(15) and (16). In the form that is useful for our purpose, these 
identities are

ψ

(
3

2
− a ± iμ

2

)
= ψ

(
1

2
− a ± iμ

2

)
+ 1

1
2 − a ± iμ

2

and

ψ

(
1

2
+ a ± iμ

2

)
− ψ

(
1

2
− a ∓ iμ

2

)
= π tan

(
πa ± i

πμ

2

)
.

Then the combination of X1 and X2 that appears in H simplifies 
to

c

h
X1 + 1

c
X2 =

√
μ2 + 1

4πa(1 − a)

(
π sin(πa) sinh

(πμ
2

)
μ [cos(2πa) + cosh(πμ)]

− csc(πa) cosh
(πμ

2

)
(1 − 2a)2 + μ2

)
. (18)

The last ingredient we need to construct H in (11) is T . Using (14), 
it is
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T =
√√√√(

(1 − 2a)2 + μ2
)2

sin2(πa) cosh2 (πμ
2

)
(μ2 + 1)

(
cos(2πa) + cosh(πμ)

)2
. (19)

Further simplifications of H depend on the nature of variable a, as 
we will see when we specialize to the cases of the free scalar and 
the free fermion.

Free scalar. To proceed with the evaluation of the integral σ (B) , we 
set a = 1/2 + ib as prescribed for the free scalar. It is furthermore 
convenient to change integration variable b → b/2. Using that both 
μ and b are positive, the integrand of σ (B) simplifies dramatically 
and becomes

σ (B) = 1

64

∞∫
0

dμ

∞∫
0

db

(
πμ

(
μ2 − b2

)
sinh(πμ)

[cosh(πb) − cosh(πμ)]2

+ 2μ2

cosh(πb) − cosh(πμ)

)
. (20)

Next, we integrate by parts. Writing

σ (B) = 1

64

∞∫
0

dμ

∞∫
0

db

[
∂

∂μ

(
μ
(
μ2 − b2

)
cosh (πb) − cosh (πμ)

)

+ b2 − μ2

cosh (πb) − cosh (πμ)

]
, (21)

we see that the boundary term vanishes and we get

σ (B) = 1

256

+∞∫
−∞

dμ

+∞∫
−∞

db
b2 − μ2

cosh (πb) − cosh (πμ)
. (22)

We have extended the limits of integration to facilitate the change 
of integration variables

μ = x − y and b = x + y. (23)

This separates the two integrations and reduces the expression to

σ (B) =
⎛
⎝1

8

+∞∫
−∞

dx
x

sinh (πx)

⎞
⎠

2

= 1

256
. (24)

This completes the derivation of the result (3) for the free scalar.

Free fermion. With F1 given in terms of H as in (12), we have 
already done most of the leg-work needed to compute σ (F ) . For 
the free fermion, we have to take a = ib and it is again convenient 
to change integration variable b → b/2. After putting everything 
together, we have

σ (F ) = − 1

32

∞∫
0

dμ

∞∫
0

db

(
πμ

(
μ2 − b2 − 1

)
sinh(πμ)

[cosh(πb) + cosh(πμ)]2

− 2μ2

cosh(πb) + cosh(πμ)

)
. (25)

We can express the integrand as a total derivative plus remaining 
terms as

σ (F ) = 1

32

∞∫
0

dμ

∞∫
0

db

[
∂

∂μ

(
μ
(
μ2 − b2 − 1

)
cosh(πb) + cosh(πμ)

)

+ 1 − μ2 + b2

cosh(πb) + cosh(πμ)

]
. (26)
As before, the boundary term vanishes and we are left with the 
expression (after extending the limits of integration)

σ (F ) = 1

128

+∞∫
−∞

dμdb
1 − μ2 + b2

cosh(πb) + cosh(πμ)

= 1

128

+∞∫
−∞

dx dy
1 + 4xy

cosh(πx) cosh(π y)
. (27)

In the last step, we changed integration variables using (23). Since 
x/ cosh(πx) is odd, that part of the integral vanishes and the result 
is therefore simply

σ (F ) = 1

128

⎛
⎝ +∞∫

−∞
dx

1

cosh(πx)

⎞
⎠

2

= 1

128
. (28)

Thus we have derived the result (3) for the free fermion.

3. Rényi entropies

We now proceed to calculate the corner coefficients σn for the 
Rényi entropies.

Free scalar. For the scalar field, the Rényi corner coefficient is given 
by the integral (B7) in [6]. We change the integration variable m
to μ = √

4m2 − 1 to write it as

σ
(B)
n = −

n−1∑
k=1

k (n − k)

2n2 (n − 1)

∞∫
0

dμ μ2 Hk/n, (29)

where Hk/n is H in (11) with a replaced by k/n. With the simpli-
fied expression for H from Section 2, we get

σ
(B)
n =

n−1∑
k=1

sin2
(

πk
n

)
32πn2(n − 1)

∞∫
0

dμ

⎛
⎝− 2μ2n2

cos
(

2πk
n

)
+ cosh(πμ)

+ μ
[
(n − 2k)2 + μ2n2

]
π sinh(πμ)[

cos
(

2πk
n

)
+ cosh(πμ)

]2

⎞
⎟⎠ .

(30)

As before, we write the integrand as a total derivative plus the 
remaining terms:

σ
(B)
n = −

n−1∑
k=1

sin2
(

πk
n

)
32πn2(n − 1)

∞∫
0

dμ

⎡
⎣− (n − 2k)2 + μ2n2

cos
(

2πk
n

)
+ cosh(πμ)

+ ∂

∂μ

⎛
⎝ μ

[
(n − 2k)2 + μ2n2

]
cos

(
2πk

n

)
+ cosh(πμ)

⎞
⎠
⎤
⎦ .

(31)

The boundary term vanishes and the expression simplifies to

σ
(B)
n =

n−1∑
k=1

sin2
(

πk
n

)
32πn2(n − 1)

∞∫
0

dμ
(n − 2k)2 + μ2n2

cos
(

2πk
n

)
+ cosh(πμ)

. (32)

The contribution of k = n/2 is easy to calculate and is equal to
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1

64π (n − 1)

∞∫
0

dμ
μ2

sinh2 (πμ
2

) = 1

48π2 (n − 1)
. (33)

For k �= n/2, there are contributions from two integrals:

I(1)

n;k =
∞∫

0

dμ

cos
(

2πk
n

)
+ cosh(πμ)

=
2 tan−1

(
tan

(
πk
n

))
π sin

( 2kπ
n

)

= 2

sin
( 2kπ

n

) ×
{

k
n , k < n/2
k
n − 1, k > n/2

(34)

and

I(2)

n;k =
∞∫

0

μ2 dμ

cos
(

2πk
n

)
+ cosh(πμ)

=
2i
[

Li3

(
−e

2ikπ
n

)
− Li3

(
−e− 2ikπ

n

)]
π3 sin

(
2kπ

n

)

= −
i log

(
e

2ikπ
n

)[
π2 + log2

(
e

2ikπ
n

)]
3π3 sin

(
2kπ

n

)

= 2

sin
( 2kπ

n

) ×
{

k(n2−4k2)

3n3 , k < n/2

− (n−k)(n−2k)(3n−2k)

3n3 , k > n/2.
(35)

Above, we manipulated the tri-logarithm Li3 using the polylog 
identity

Li3(z) − Li3
(
z−1)= −1

6
log3 (−z) − π2

6
log (−z) , (36)

which holds for z /∈ ]0, 1[.
Combining the results (34) and (35), we find that the result is 

the same for 1 < k < n/2 and n/2 < k < n, namely

∞∫
0

dμ
(n − 2k)2 + μ2n2

cos
(

2πk
n

)
+ cosh(πμ)

= (n − 2k)2 I(1)

n;k + n2 I(2)

n;k

= 8k(n − k)(n − 2k)

3n sin
( 2kπ

n

) . (37)

Thus, having evaluated the integral in (32), we can write σ (B)
n as 

the finite sum

σ
(B)
n = 1

24π n3 (n − 1)

n−1∑
k=1

k (n − k) (n − 2k) tan

(
πk

n

)
. (38)

Note that taking the limit k → n/2 as described below (5), the 
summand evaluates precisely to the special case (33). The expres-
sion (38) is the result for the Rényi corner coefficient presented 
in (5), so this completes our evaluation for the free scalar.

Free fermion. For the fermion field, the Rényi corner coefficient is 
given by the integral

σ
(F )
n = − 2

n − 1

1
2 (n−1)∑

k>0

∞∫
0

dμ

[
a (1 − a)μ2 H − μF

4π

]
a=k/n

, (39)

where the sum is over k from 1/2 (n even) or 1 (n odd) in in-
teger steps to 1

2 (n − 1). Substituting the expressions for H and F
obtained earlier gives
σ
(F )
n =

1
2 (n−1)∑

k>0

sin2
(

πk
n

)
8π(n − 1)

∞∫
0

dμ

⎛
⎝ 2μ2

cos
(

2πk
n

)
+ cosh(πμ)

−
μ
(

4k2

n2 + μ2 − 1
)
π sinh(πμ)[

cos
(

2πk
n

)
+ cosh(πμ)

]2

⎞
⎟⎠ . (40)

We then use integration by parts to simplify the integral

σ
(F )
n =

1
2 (n−1)∑

k>0

sin2
(

πk
n

)
8π(n − 1)

∞∫
0

dμ

⎡
⎣ ∂

∂μ

⎛
⎝ μ

(
4k2

n2 + μ2 − 1
)

cos
(

2πk
n

)
+ cosh(πμ)

⎞
⎠

−
4k2

n2 + μ2 − 1

cos
(

2πk
n

)
+ cosh(πμ)

⎤
⎦.

(41)

The boundary term integrates to zero and the expression simplifies 
to

σ
(F )
n =

1
2 (n−1)∑

k>0

sin2
(

πk
n

)
8π(n − 1)

∞∫
0

dμ
1 − μ2 − 4k2

n2

cos
(

2πk
n

)
+ cosh(πμ)

. (42)

The result of the integral again involves a difference of two tri-
logarithms and it can be simplified using equation (36). The result 
is even in k → −k, so we can write the final answer as

σ
(F )
n = 1

24π n3 (n − 1)

1
2 (n−1)∑

k=− 1
2 (n−1)

k
(

n2 − 4k2
)

tan

(
πk

n

)
. (43)

This is the formula we presented in (6). Values for low n were 
tabulated in Section 1 for both σ (B)

n and σ (F )
n .

4. Asymptotic behavior of the Rényi’s

Let us now study the large n behavior of the Rényi entropy 
corner coefficients σn . In particular, we evaluate analytically the 
value for the coefficients σn in the limit where n → ∞. This is 
done by introducing a new variable x = k/n and multiplying by 
n
x = 1. Then in the n → ∞ limit, the sum becomes an integral 
and we have

σ (B)∞ = 1

24π

1∫
0

dx x (x − 1) (2x − 1) tan (πx) = 3ζ(3)

32π4
,

σ (F )∞ = 1

24π

1/2∫
−1/2

dx x
(

1 − 4x2
)

tan (πx) = ζ(3)

4π4
. (44)

These values turn out to be proportional to the asymptotic values 
of the Fn → nF∞ calculated on the n-covered 3-sphere [9]; as 
noted in Equation (9) we have σ (B/F )∞ = 1

4π2 F
(B/F )∞ .

On the right in Fig. 1, we illustrated the asymptotic behavior of 
the corner coefficient which we find to be

σn = σ∞
(

1 + b1

n
+ b2

n2
+ b3

n3
+ . . .

)
. (45)

Numerical fits show that b1, b2, and b3 are 1 for the free boson 
while b1 is 1 and b2 = b3 ≈ 0.31578 in (45) for the free fermion. 
In fact, fitting up to O (1/n16), we find numerical evidence that 
b2k = b2k+1 for both the scalar and fermion. This indicates that 
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a factor of (n + 1)/n can be factored out of the function in (45), so 
that

σn = σ∞
n + 1

n

(
1 + b2

n2
+ b4

n4
+ b6

n6
+ . . .

)
. (46)

It is also interesting to study the ratios of the Rényi corner co-
efficients at large n: based on numerical fits in the range n = 100
to 2000 we find

σ
(B)
n

σ
(F )
n

= 3

8

[
1 + π2

12ζ(3)

1

n2
− 0.93871149

1

n4
+ O

(
1

n5

)]
. (47)

The value of the 1/n2-coefficient is inferred from the numerics. 
Specifically, we fit to the function

3

8

(
1 + d1

n
+ d2

n2
+ d3

n3
+ . . .

)
, (48)

and find that d1 < 10−26, 
∣∣d2 − π2

12ζ(3)

∣∣ < 10−23, d3 < 10−19, d4 =
−0.93871149 . . . , d5 < 10−13 etc. The vanishing of the odd powers 
in (48) is consistent with (46). Note also that we can now identify 
the number b2 = b3 ≈ 0.31578 from the fit (45) of the free fermion 
Rényi entropy corner coefficient at large n as 1 − π2

12ζ(3)
; this is the 

value given in the caption of Fig. 1.
Taking the Hurwitz zeta-function expressions for F (B/F )

n from 
[9] and using (48) to perform a similar fit at large n in the range 
30 to 300, we find

F (B)
n

F (F )
n

= 3

8

[
1 − π2

12ζ(3)

1

n2
+ 0.937106586

1

n4
+ O

(
1

n5

)]
. (49)

Again, the value of the 1/n2-coefficient is inferred from the nu-

merics which give d1 < 10−20, 
∣∣d2 + π2

12ζ(3)

∣∣ < 10−17, d3 < 10−14, 

d4 = 0.937106586 . . . , d5 < 10−12 etc. The behaviors of F (B/F )
n

individually is, however, very different that of the Rényi corner 
coefficients. We find that F (B)

n ∼ nF (B)∞
(
1 + O ( 1

n4 )
)

while F (F )
n ∼

nF (F )∞
(
1 + π2

12ζ(3)
1

n2 + O ( 1
n4 )
)
.

It is not clear whether the similarities observed at large n be-
tween σn and Fn have any significance or if it is a coincidence. 
Perhaps future investigations will clarify this.
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