On Generalized Inverses of a Block in a Partitioned Matrix

P. Bhimasankaram* Statistics and Applied Probability Program University of California Santa Barbara, California 93106

Submitted by David H. Carlson

ABSTRACT

Given symmetric generalized inverses of $\begin{pmatrix} A & x \\ x' & c \end{pmatrix}$, where x is a vector with n components, we obtain formulae for the corresponding generalized inverses (symmetric) of A. An application of such formulae in linear models is suggested.

1. INTRODUCTION

In an earlier paper (Mitra and Bhimasankaram [4]) we obtained various types of generalized inverses of A from the corresponding generalized inverses of (A:a). Rohde [6], Bhimasankaram [1], Carlson et al. [2, 3], and others obtained g-inverses of

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix}$$

from those of A. In this paper, we obtain formulae for computing symmetric (nnd) g-inverses of a symmetric (correspondingly nnd) matrix A from those of

$$\begin{pmatrix} \mathbf{A} & \mathbf{x} \\ \mathbf{x}' & \mathbf{c} \end{pmatrix},$$

131

0024-3795/88/\$3.50

^{*}On leave from the Indian Statistical Institute, Calcutta, India.

[©] Elsevier Science Publishing Co., Inc., 1988 655 Avenue of the Americas, New York, NY 10010

where x is a vector and c a scalar. We also obtain formulae to compute a g-inverse of A from that of

$$\begin{pmatrix} A & u \\ v' & c \end{pmatrix},$$

where A need not be symmetric. Finally, we give an application of the above results to the updating of BLUES in a general linear model.

In this paper we consider only real matrices. The extension to complex matrices is trivial. In Sections 2 to 6, by M and G we mean the following:

$$M = \begin{pmatrix} A & x \\ x' & c \end{pmatrix} \text{ and } G = \begin{pmatrix} B & y \\ y' & d \end{pmatrix}$$
(1.1)

where A and B are symmetric. We follow the same notation as in Rao and Mitra [5]. We use ||u|| to denote the Euclidean norm of u, namely, $(u'u)^{1/2}$. $\mathbf{M}(A)$ denotes the column space of A.

2. WHEN DOES $x \in M(A)$?

Let M and G be as specified in (1.1). In this section we obtain necessary and sufficient conditions under which $x \in M(A)$ in terms of G and M. We prove

THEOREM 1. Let M and G be as specified in (1.1), and let $G = M^-$. Then $x \notin \mathbf{M}(A)$ if and only if Ay = 0, y'x = 1, and d = 0. If M is nnd, then $x \in \mathbf{M}(A)$.

Proof. $G = M^- \Rightarrow$

$$ABA + xy'A + Ayx' + dxx' = A, \qquad (2.1)$$

$$ABx + y'x \cdot x + c(Ay + dx) = x, \qquad (2.2)$$

$$\mathbf{x}'B\mathbf{x} + c\mathbf{y}'\mathbf{x} + c(\mathbf{y}'\mathbf{x} + cd) = c.$$
(2.3)

"If" part: If Ay = 0, y'x = 1, and d = 0, then ABA = A and ABx = 0 in view of (2.1) and (2.2). Let, if possible, $x \in M(A)$. Now if $x \in M(A)$, then x = ABx = 0. This is a contradiction to y'x = 1. Hence $x \notin M(A)$.

"Only if" part:

$$x(Ay + dx)' = A(I - BA - yx')$$

from (2.1). Hence, $x \notin M(A) \Rightarrow Ay + dx = 0 \Rightarrow dx = -Ay \Rightarrow d = 0$ and Ay = 0 [since $x \notin M(A)$]. Now from (2.2) it follows that ABx = (1 - y'x)x and hence y'x = 1.

It is well known that if M is nnd, then $x \in M(A)$. This completes the proof of Theorem 1.

3. g-INVERSES OF A WHEN $x \notin M(A)$

Consider M and G as in (1.1), and let $G = M^-$. In this section we obtain formulae for computing various types of g-inverses of A from the corresponding types of g-inverses of M.

THEOREM 2. Let $G = M^-$ and let $x \notin M(A)$. Then (i) $B = A^-$, (ii) $B = A_r^-$ if and only if Bx = 0 and $G = M_r$, (iii) $B = A_{lm}^-$ if y = rx for some r and $G = M_{lm}^-$, and (iv) $B = A^+$ if c = 0, $y = (x'x)^{-1}x$, and $G = M^+$.

Proof. (i) follows trivially from (2.1) since Ay = 0 and d = 0. (ii): "If" part:

$$G = M_r^- \Rightarrow BAB + Bxy' + yx'B + cyy' = B.$$
(3.1)

 $x \in M(A) \Rightarrow c = -x'Bx$. Now c = 0, since Bx = 0. Hence from (3.1) it follows that B = BAB.

"Only if" part:

$$B = A_r^- \Rightarrow yx'B + Bxy' + cyy' = 0,$$

$$\Rightarrow yx'Bx + Bx + cyy'x = 0,$$

$$\Rightarrow Bx = 0, \text{ since } x'Bx = -c.$$

Now, given that $G = M^-$, it is easy to establish that $B = A_r^-$ and $Bx = 0 \Rightarrow G = M_r^-$.

(iii): Since A and B are symmetric matrices, $B = A_l^-$ if and only if $B = A_m^-$. Now,

$$G = M_l^- \Rightarrow \begin{pmatrix} AB + xy' & Ay + dx \\ x'B + cy' & x'y + cd \end{pmatrix}$$
 is symmetric.

So, if y = rx then xy' is symmetric and hence AB is symmetric.

The proof of (iv) is trivial and is omitted.

Theorem 2 describes the conditions when B serves as A^- , A_r^- , A_{lm}^- , and A^+ and when G serves as M^- , M_r^- , M_{lm}^- , and M^+ respectively. Now we obtain formulae for various types of g-inverses of A when $x \notin M(A)$.

THEOREM 3. Let $G = M^-$ and let $x \notin M(A)$. Then

(i)
$$\left(I - \frac{yy'}{y'y}\right)B\left(I - \frac{yy'}{y'y}\right) = A_r^- \quad if \quad G = M_r^-,$$

(ii)
$$B\left(I-\frac{yy'}{y'y}\right) = A_l^- \quad if \quad G = M_{lm}^-,$$

(iii)
$$\left(I - \frac{yy'}{y'y}\right)B\left(I - \frac{yy'}{y'y}\right) = A^+ \quad if \quad G = M^+.$$

Proof. The proof of (i) is easy. (ii):

$$G = M_{lm}^{-} \Rightarrow \begin{pmatrix} AB + xy' & Ay + dx \\ x'B + cy' & x'y + cd \end{pmatrix} \text{ is symmetric.}$$

Now, $x \notin \mathbf{M}(A) \Rightarrow Ay = 0$, $d = 0 \Rightarrow Bx = -cy$. By Theorem 2, $B = A^-$. Now,

$$AAB\left(I - \frac{yy'}{y'y}\right) = A(AB + xy')\left(I - \frac{yy'}{y'y}\right)$$
$$= A(BA + yx')\left(I - \frac{yy'}{y'y}\right)$$
$$= ABA = A.$$

Hence B(I - yy'/y'y) is A_l^- .

The proof of (iii) is easy and we omit it.

GENERALIZED INVERSES

REMARK. If M is nnd, then clearly $x \in M(A)$ and the results of this section are not needed in this case.

4. g-INVERSES OF A WHEN $y'x + cd \neq 1$

Notice that when $y'x + cd \neq 1$, $x \in \mathbf{M}(A)$. Write $\theta = 1 - y'x - cd \neq 0$ and

$$T = B + \frac{1}{\theta} (B\mathbf{x} + c\mathbf{y})\mathbf{y}' + \frac{1}{\theta} \mathbf{y} (\mathbf{x}'B + c\mathbf{y}') + \frac{d}{\theta^2} (B\mathbf{x} + c\mathbf{y}) (B\mathbf{x} + c\mathbf{y})'. \quad (4.1)$$

We prove:

THEOREM 4. Let $G = M^-$, and let $y'x + cd \neq 1$. Let T be as in (4.1). Then

(i) $T = A^{-}$, (ii) $T = A_{r}^{-}$ if $G = M_{r}^{-}$, (iii) $T = A_{lm}^{-}$ if $G = M_{lm}^{-}$, and (iv) $T = A^{+}$ if $G = M^{+}$.

Proof. (i): From (2.2) it follows that

$$A(Bx + cy) = x(1 - y'x - cd).$$

So $x = (1/\theta)A(Bx + cy)$. Now the result follows easily from (2.1). (ii):

$$AT = A\left(B + \frac{1}{\theta}(Bx + cy)y' + \frac{1}{\theta}y(x'B + cy') + \frac{d}{\theta^2}(Bx + cy)(Bx + cy)'\right)$$
$$= AB + xy' + \frac{1}{\theta}Ay(x'B + cy') + \frac{d}{\theta}x(Bx + cy)'$$
$$= AB + xy' + \frac{1}{\theta}(Ay + dx)(Bx + cy)'.$$

Now

$$(Bx + cy)'AT = (Bx + cy)'(AB + xy') + \frac{1}{\theta}(Bx + cy)'(Ay + dx)(Bx + cy)'$$
$$= (\theta x'B + \theta cy') + \frac{1}{\theta}(\theta x'y + \theta cd)(Bx + cy)'$$
from (2.1) and (2.3)
$$= \theta(Bx + cy)' + (1 - \theta)(Bx + cy)' = (Bx + cy)'.$$

Now,

$$TAT = BAT + \frac{1}{\theta} (Bx + cy)'AT + \frac{1}{\theta} y (Bx + cy)'AT + \frac{d}{d^2} (Bx + cy)(Bx + cy)'AT.$$

We proved above that (Bx + cy)'AT = (Bx + cy)'. Hence

$$\frac{1}{\theta}y(Bx+cy)'AT=\frac{1}{\theta}y(Bx+cy)'$$

and

$$\frac{d}{\theta^2}(Bx+cy)(Bx+cy)'AT=\frac{d}{\theta^2}(Bx+cy)(Bx+cy)'.$$

Now,

$$BAT = BAB + Bxy' + y(Bx + cy)' = B,$$

since

$$y = \frac{1}{\theta}B(Ay + dx),$$
 as $G = M_r^-.$

136

Also,

$$\frac{1}{\theta}(Bx + cy)y'AT = \frac{1}{\theta}(Bx + cy)[y' - d(Bx + cy)']$$
$$+ \frac{1}{\theta^2}(Bx + cy)\theta d(Bx + cy)'$$
$$= \frac{1}{\theta}(Bx + cy)y'.$$

Hence TAT = T. (iii):

$$G = M_l^- \Rightarrow \begin{pmatrix} AB + xy' & Ay + dx \\ Bx + cy & x'y + cd \end{pmatrix} \text{ is symmetric.}$$

Further note that by construction T is symmetric. Hence T is A_m^- iff T is A_l^- . Now

$$AT = AB + xy' + \frac{1}{\theta} (Ay + dx) (Bx + cy)'.$$

Since $G = M_l^-$, AB + xy' is symmetric and (Ay + dx)' = (Bx + cy). Hence AT is symmetric.

(iv) follows trivially from (i)-(iii).

REMARK. Let M and G be nnd. Then T in (4.1) can be rewritten as

$$T = \left(I \quad \frac{1}{\theta} \left(Bx + cy\right)\right) \begin{pmatrix} B & y \\ y' & d \end{pmatrix} \begin{pmatrix} I \\ \frac{1}{\theta} \left(Bx + cy\right)' \end{pmatrix}.$$

So T is nnd. Hence the results of Theorem 4 give us various types of nnd g-inverses of A in this case.

5. g-INVERSES OF A WHEN x'y + cd = 1 AND $d \neq 0$

Let G be M^- , and let x'y + cd = 1 and $d \neq 0$. Then we have

$$AB\mathbf{x} = -c \cdot A\mathbf{y} \tag{5.1}$$

and

$$\mathbf{x}'B\mathbf{x} = -c \cdot \mathbf{y}'\mathbf{x}. \tag{5.2}$$

We consider two cases, namely, Ay + dx = 0 and $Ay + dx \neq 0$. We prove

THEOREM 5. Let $G = M^-$, x'y + cd = 1, $d \neq 0$, and Ay + dx = 0. Then

(i)
$$B - \frac{1}{d}yy' = A^{-1}$$

(ii)
$$B - \frac{1}{d}yy' = A_r \quad if \quad G = M_r^-,$$

(iii)
$$B - \frac{1}{d}yy' = A_{lm} \quad if \quad G = M_{lm},$$

(iv)
$$B-\frac{1}{d}yy'=A^+$$
 if $G=M^+$.

Proof. (i): Ay + dx = 0 and $d \neq 0 \Rightarrow x = -(1/d)Ay$. Further, ABA + Ayx' = A in view of (2.1), and Ay + dx = 0. It now clearly follows that $B - (1/d)yy' = A^{-}$.

$$\left(B - \frac{1}{d}yy'\right)A\left(B - \frac{1}{d}yy'\right) = \left(B - \frac{1}{d}yy'\right)(AB + xy')$$
$$= \left(B - yx'B - cyy'\right) - \frac{1}{d}y(-dx'B + y'xy')$$
$$= B - \frac{1}{d}y\left[\left(cd + x'y\right)y'\right] = B - \frac{1}{d}yy'.$$

(iii): Notice that B - (1/d)yy' is symmetric. Now A[B - (1/d)yy'] = AB + xy' is symmetric, since $G = M_{lm}$. Hence $B - (1/d)yy' = A_{lm}$.

The proof of (iv) follows from (i)-(iii).

138

GENERALIZED INVERSES

REMARK. Consider the same setup as in Theorem 5, and let G be nnd. Then, clearly the Schur complement of d in G, namely, B - (1/d)yy', is also nnd. Hence Theorem 5 gives various types of nnd g-inverses of A in this case.

THEOREM 6. Let $G = M^-$, x'y + cd = 1, $d \neq 0$, and $||Ay + dx||^2 = t \neq 0$. Write $\xi = (1/t)(I - BA - yx')(Ay + dx)$ and $R = B + \xi y' + y\xi' + d\xi\xi'$. Then,

(i) $R = A^{-}$, (ii) $RAR = A_{r}^{-}$, (iii) $R = A_{ml}^{-}$ if $G = M_{ml}^{-}$, and (iv) $RAR = A^{+}$ if $G = M^{+}$.

Proof. (i) is computational, and (ii) follows trivially.

(iii): Notice that R is symmetric. So it suffices to show that AR is symmetric to prove that R is A_{ml}^- .

If $G = M_{ml}^{-}$, then

$$\xi = \frac{1}{t} (I - BA - yx')(Ay + dx)$$
$$= \frac{1}{t} (I - AB - xy')(Ay + dx)$$
$$= \frac{1}{t} [(Ayx' + dxx')y + dc(Ay + dx)]$$
$$= \frac{1}{t} [(x'y + cd)(Ay + dx)]$$
$$= \frac{1}{t} (Ay + dx).$$

Further, by construction $A\xi = x$. Now

$$AR = AB + xy' + Ay\xi' + dx\xi'$$
$$= AB + xy' + \frac{1}{t}(Ay + dx)(Ay + dx).$$

Now AB + xy' is symmetric and hence AR is symmetric.

(iv): Notice that $RAR = A_r^-$ and ARAR = AR is symmetric. The result now follows trivially.

REMARK. Consider the same setup as in Theorem 6, and let G be nnd. Then

$$R = (I \quad \xi) \begin{pmatrix} B & y \\ y' & d \end{pmatrix} \begin{pmatrix} I \\ \xi' \end{pmatrix}$$

is also nnd. Hence Theorem 6 gives various types of nnd g-inverses in this case.

6. g-INVERSES OF A WHEN x'y = 1, d = 0, AND $Ay \neq 0$

Clearly, with this case all possible cases are exhausted. g-inverses of A in this case are obtained in a similar manner to those in Theorem 6. We only state the relevant theorem below. The proof is similar to that of Theorem 6.

THEOREM 7. Let $G = M^-$, x'y = 1, d = 0, and $Ay \neq 0$. Write $||Ay||^2 = t \neq 0$. Write $\xi = (1/t)(I - BA - yx')Ay$ and $R = B + \xi y' + y\xi'$. Then

(i) $R = A^{-}$, (ii) $RAR = A_{r}^{-}$, (iii) $R = A_{lm}^{-}$ if $G = M_{lm}^{-}$, and (iv) $RAR = A^{+}$ if $G = M^{+}$.

REMARK. If G is nnd, then $d = 0 \Rightarrow y = 0$. Hence the situation in Theorem 7 never arises when G is nnd.

7. g-INVERSE OF A FROM THAT OF $\begin{pmatrix} A & u \\ v' & c \end{pmatrix}$, WHERE A MAY NOT BE SYMMETRIC

In this section we consider the nonsymmetric case and give formulae to compute a g-inverse of A from that of $\begin{pmatrix} A & u \\ v' & c \end{pmatrix}$. We state

THEOREM 8. Let

$$\begin{pmatrix} B & \alpha \\ \beta' & d \end{pmatrix} = \begin{pmatrix} A & u \\ v' & c \end{pmatrix}^{-}.$$

Then:

(i) We have

$$B + \frac{1}{t_1} (I - BA - \alpha v') (A'\beta + dv)\beta'$$
$$+ \frac{1}{t_2} \alpha (\alpha' A' + du') (I - AB - u\beta') = A^{-1}$$

if $A\alpha + du \neq 0$ and $A'\beta + dv \neq 0$, where

$$t_1 = ||A'\beta + dv||^2$$
 and $t_2 = ||A\alpha + du||^2$.

(ii) Let $A'\beta + dv = 0$. Then $B = A^-$ if $A\alpha = 0$. (iii) Let $A'\beta + dv = 0$ and $A\alpha \neq 0$. Then

$$B + \frac{1}{t_3} \alpha \alpha' A' (I - AB) = A^-, \quad \text{where} \quad t_3 = ||A\alpha||^2.$$

(iv) Let $A'\beta + dv \neq 0$ and $A\alpha + du = 0$. Then $B = A^-$ if $A'\beta = 0$. (v) Let $A'\beta + dv \neq 0$, $A\alpha + du = 0$, $A'\beta \neq 0$. Then

$$B + \frac{1}{t_4} (I - BA) A' \beta \beta' = A^-, \quad \text{where} \quad t_4 = \|A'\beta\|^2.$$

The proof is computational and is omitted.

8. TABLE OF RESULTS

Case	Theorem(s) to be consulted
$x \notin \mathbf{M}(A)$	2, 3
$y'x + cd \neq 1$	4
$y'x + cd = 1, d \neq 0$	5, 6
$x'y=1, d=0, Ay\neq 0$	7
A nonsymmetric	8

9. AN APPLICATION

Here we briefly mention an application of the results of this paper. The detailed analysis is considered elsewhere. Consider the model

$$Y = x\beta + \epsilon, \qquad E(\epsilon) = 0, \qquad D(\epsilon) = \sigma^2 V,$$

where V is a known pd matrix. X may be deficient in rank. The following computations are made to get a least squares estimator of β :

$$X'V^{-1}Y$$
, $X'V^{-1}X$, $(X'V^{-1}X)^{-1}$, and $\hat{\beta} = (X'V^{-1}X)^{-1}X'V^{-1}Y$.

In the process of model building, it is now found that the last component of β is not a suitable parameter and has to be deleted from the analysis. Partition $X = (X_1 : x)$ where x is the last column of X. We have computed

$$(X'V^{-1}X)^{-} = \left[\begin{pmatrix} X'_{1} \\ x' \end{pmatrix} V^{-1}(X_{1}:x) \right]^{-1}$$
$$= \begin{pmatrix} X'_{1}V^{-1}X_{1} & X'_{1}V^{-1}X \\ x'V^{-1}X_{1} & x'V^{-1}X \end{pmatrix}.$$

When we delete the last component of β , we need

$$(X_1'V^{-1}X_1)^{-1}$$
 and $X_1'V^{-1}Y$.

Using formulae of this paper, one can easily compute $(X'_1V^{-1}X_1)^-$ from $(XV^{-1}X)^-$ and $X'_1V^{-1}Y$ is obtained from $X'V^{-1}Y$ by deleting the last component.

10. CONCLUDING REMARKS

Let

$$M = \begin{pmatrix} A & x \\ x' & c \end{pmatrix}$$

be a symmetric matrix, and suppose G is a g-inverse of A but G is not

GENERALIZED INVERSES

symmetric. Then, clearly, $\frac{1}{2}(G + G')$ is a symmetric g-inverse of A. Again, if M is nnd, and G is any g-inverse of M, then GMG' is a nnd g-inverse of M. Hence if some g-inverse of a symmetric (or nnd) matrix M is available, one can use the results in this paper to obtain a symmetric (or nnd) g-inverse of A.

REFERENCES

- 1 P. Bhimasankaram, On generalized inverses of partitioned matrices, Sankhyā Ser. A 33:311-314 (1971).
- 2 D. Carlson, E. Haynsworth, and T. Markham, A generalization of the Schur complement by means of the Moore-Penrose inverse, SIAM J. Appl. Math. 26:169:179 (1974).
- 3 F. Burns, D. Carlson, E. Haynsworth, and T. Markham, Generalized inverse formulas using the Schur complement, SIAM J. Appl. Math. 26:254-259 (1974).
- 4 S. K. Mitra and P. Bhimasankaram, Generalized inverses of partitioned matrices and recalculation of last squares estimators for data or model changes, Sankhyā Ser. A 33:396-610 (1971).
- 5 C. R. Rao and S. K. Mitra, Generalized Inverse of Matrices and Its Applications, Wiley, New York, 1971.
- 6 C. A. Rohde, Generalized inverses of partitioned matrices, SIAM J. Appl. Math. 18:1033-1035 (1965).

Received May 1987; final manuscript accepted 12 November 1987