On Generalized Inverses of a Block In a Partitioned Matrix

P. Bhimasankaram*
Statistics and Applied Probability Program
University of California
Santa Barbara, Califomia 93106

Submitted by David H. Carlson

ABSTRACT

Given symmetric generalized inverses of $\left(\begin{array}{ll}A & x \\ x^{\prime} & c\end{array}\right)$, where x is a vector with n components, we obtain formulae for the corresponding generalized inverses (symmetric) of A. An application of such formulae in linear models is suggested.

1. INTRODUCTION

In an earlier paper (Mitra and Bhimasankaram [4]) we obtained various types of generalized inverses of A from the corresponding generalized inverses of (A:a). Rohde [6], Bhimasankaram [1], Carlson et al. [2, 3], and others obtained g-inverses of

$$
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)
$$

from those of A. In this paper, we obtain formulae for computing symmetric (nnd) g-inverses of a symmetric (correspondingly nnd) matrix A from those of

$$
\left(\begin{array}{ll}
A & x \\
x^{\prime} & c
\end{array}\right)
$$

[^0]where x is a vector and c a scalar. We also obtain formulae to compute a g -inverse of A from that of
\[

\left($$
\begin{array}{ll}
A & u \\
v^{\prime} & c
\end{array}
$$\right)
\]

where A need not be symmetric. Finally, we give an application of the above results to the updating of blues in a general linear model.

In this paper we consider only real matrices. The extension to complex matrices is trivial. In Sections 2 to 6 , by M and G we mean the following:

$$
M=\left(\begin{array}{cc}
A & x \tag{1.1}\\
x^{\prime} & c
\end{array}\right) \quad \text { and } \quad G=\left(\begin{array}{ll}
B & y \\
y^{\prime} & d
\end{array}\right)
$$

where A and B are symmetric. We follow the same notation as in Rao and Mitra [5]. We use $\|u\|$ to denote the Euclidean norm of u, namely, $\left(u^{\prime} u\right)^{1 / 2}$. $\mathbf{M}(A)$ denotes the column space of A.

2. WHEN DOES $x \in M(A)$?

Let M and G be as specified in (1.1). In this section we obtain necessary and sufficient conditions under which $\boldsymbol{x} \in \mathbf{M}(A)$ in terms of G and M. We prove

Theorem 1. Let M and G be as specified in (1.1), and let $G=M^{-}$. Then $x \notin \mathbf{M}(A)$ if and only if $A y=0, y^{\prime} x=1$, and $d=0$. If M is $n n d$, then $x \in \mathbf{M}(A)$.

Proof. $G=M^{-} \Rightarrow$

$$
\left[\begin{array}{rl}
A B A+x y^{\prime} A+A y x^{\prime}+d x x^{\prime} & =A \tag{2.1}\\
A B x+y^{\prime} x \cdot x+c(A y+d x) & =x \\
x^{\prime} B x+c y^{\prime} x+c\left(y^{\prime} x+c d\right) & =c
\end{array}\right.
$$

"If" part: If $A y=0, y^{\prime} x=1$, and $d=0$, then $A B A=A$ and $A B x=0$ in view of (2.1) and (2.2). Let, if possible, $x \in \mathbf{M}(A)$. Now if $x \in M(A)$, then $x=A B x=0$. This is a contradiction to $y^{\prime} x=1$. Hence $x \notin \mathbf{M}(A)$.
"Only if" part:

$$
x(A y+d x)^{\prime}=A\left(I-B A-y x^{\prime}\right)
$$

from (2.1). Hence, $x \notin \mathbf{M}(A) \Rightarrow A y+d x=0 \Rightarrow d x=-A y \Rightarrow d=0$ and $A y$ $=0$ [since $x \notin \mathbf{M}(A)$]. Now from (2.2) it follows that $A B x=\left(1-y^{\prime} x\right) x$ and hence $y^{\prime} x=1$.

It is well known that if M is nnd, then $x \in \mathbf{M}(A)$. This completes the proof of Theorem 1.

3. g-INVERSES OF A WHEN $x \notin \mathbf{M}(A)$

Consider M and G as in (1.1), and let $G=M^{-}$. In this section we obtain formulae for computing various types of g-inverses of A from the corresponding types of g-inverses of M.

Theorem 2. Let $G=M^{-}$and let $x \notin \mathbf{M}(A)$. Then
(i) $B=A^{-}$,
(ii) $B=A_{r}^{-}$if and only if $B x=0$ and $G=M_{r}$,
(iii) $B=A_{l m}^{-}$if $y=r x$ for some r and $G=M_{l_{m}^{-}}^{-}$, and
(iv) $B=A^{+}$if $c=0, y=\left(x^{\prime} x\right)^{-1} x$, and $G=M^{+}$.

Proof. (i) follows trivially from (2.1) since $A y=0$ and $d=0$.
(ii): "If" part:

$$
\begin{equation*}
G=M_{r}^{-} \Rightarrow B A B+B x y^{\prime}+y x^{\prime} B+c y y^{\prime}=B \tag{3.1}
\end{equation*}
$$

$x \in M(A) \Rightarrow c=-x^{\prime} B x$. Now $c=0$, since $B x=0$. Hence from (3.1) it follows that $B=B A B$.
"Only if" part:

$$
\begin{aligned}
B=A_{r}^{-} & \Rightarrow y x^{\prime} B+B x y^{\prime}+c y y^{\prime}=0, \\
& \Rightarrow y x^{\prime} B x+B x+c y y^{\prime} x=0, \\
& \Rightarrow B x=0, \quad \text { since } x^{\prime} B x=-c .
\end{aligned}
$$

Now, given that $G=M^{-}$, it is easy to establish that $B=A_{r}^{-}$and $B x=0 \Rightarrow$ $G=M_{r}^{-}$.
(iii): Since A and B are symmetric matrices, $B=A_{l}^{-}$if and only if $B=A_{m}^{-}$. Now,

$$
G=M_{l}^{-} \Rightarrow\left(\begin{array}{ll}
A B+x y^{\prime} & A y+d x \\
x^{\prime} B+c y^{\prime} & x^{\prime} y+c d
\end{array}\right) \text { is symmetric. }
$$

So, if $y=r x$ then $x y^{\prime}$ is symmetric and hence $A B$ is symmetric.
The proof of (iv) is trivial and is omitted.
Theorem 2 describes the conditions when B serves as $A^{-}, A_{r}^{-}, A_{l_{m}}^{-}$, and A^{+}and when G serves as $M^{-}, M_{r}^{-}, M_{l m}^{-}$, and M^{+}respectively. Now we obtain formulae for various types of g-inverses of A when $\boldsymbol{x} \notin \mathbf{M}(A)$.

Theorem 3. Let $G=M^{-}$and let $x \notin \mathbf{M}(A)$. Then

$$
\begin{equation*}
\left(I-\frac{y y^{\prime}}{y^{\prime} y}\right) B\left(I-\frac{y y^{\prime}}{y^{\prime} y}\right)=A_{r}^{-} \quad \text { if } \quad G=M_{r}^{-} \tag{i}
\end{equation*}
$$

(ii)

$$
B\left(I-\frac{y y^{\prime}}{y^{\prime} y}\right)=A_{l}^{-} \quad \text { if } \quad G=M_{l m}^{-}
$$

$$
\left(I-\frac{y y^{\prime}}{y^{\prime} y}\right) B\left(I-\frac{y y^{\prime}}{y^{\prime} y}\right)=A^{+} \quad \text { if } \quad G=M^{+}
$$

Proof. The proof of (i) is easy.
(ii):

$$
G=M_{l m}^{-} \Rightarrow\left(\begin{array}{ll}
A B+x y^{\prime} & A y+d x \\
x^{\prime} B+c y^{\prime} & x^{\prime} y+c d
\end{array}\right) \text { is symmetric. }
$$

Now, $x \notin \mathbf{M}(A) \Rightarrow A y=0, d=0 \Rightarrow B x=-c y$. By Theorem 2, $B=A^{-}$. Now,

$$
\begin{aligned}
\operatorname{AAB}\left(I-\frac{y y^{\prime}}{y^{\prime} y}\right) & =A\left(A B+x y^{\prime}\right)\left(I-\frac{y y^{\prime}}{y^{\prime} y}\right) \\
& =A\left(B A+y x^{\prime}\right)\left(I-\frac{y y^{\prime}}{y^{\prime} y}\right) \\
& =A B A=A .
\end{aligned}
$$

Hence $B\left(I-y y^{\prime} / y^{\prime} y\right)$ is A_{l}^{-}.
The proof of (iii) is easy and we omit it.

Remark. If M is nnd, then clearly $x \in M(A)$ and the results of this section are not needed in this case.

4. g-INVERSES OF A WHEN $y^{\prime} x+c d \neq 1$

Notice that when $y^{\prime} x+c d \neq 1, x \in \mathbf{M}(A)$.
Write $\theta=1-y^{\prime} x-c d \neq 0$ and

$$
\begin{equation*}
T=B+\frac{1}{\theta}(B x+c y) y^{\prime}+\frac{1}{\theta} y\left(x^{\prime} B+c y^{\prime}\right)+\frac{d}{\theta^{2}}(B x+c y)(B x+c y)^{\prime} \tag{4.1}
\end{equation*}
$$

We prove:

Theorem 4. Let $G=M^{-}$, and let $y^{\prime} x+c d \neq 1$. Let T be as in (4.1). Then
(i) $T=A^{-}$,
(ii) $T=A_{r}^{-}$if $G=M_{r}^{-}$,
(iii) $T=A_{l m}^{-}$if $G=M_{l m}^{-}$, and
(iv) $T=A^{+}$if $G=M^{+}$.

Proof. (i): From (2.2) it follows that

$$
A(B x+c y)=x\left(1-y^{\prime} x-c d\right)
$$

So $x=(1 / \theta) A(B x+c y)$. Now the result follows easily from (2.1).
(ii):

$$
\begin{aligned}
A T & =A\left(B+\frac{1}{\theta}(B x+c y) y^{\prime}+\frac{1}{\theta} y\left(x^{\prime} B+c y^{\prime}\right)+\frac{d}{\theta^{2}}(B x+c y)(B x+c y)^{\prime}\right) \\
& =A B+x y^{\prime}+\frac{1}{\theta} A y\left(x^{\prime} B+c y^{\prime}\right)+\frac{d}{\theta} x(B x+c y)^{\prime} \\
& =A B+x y^{\prime}+\frac{1}{\theta}(A y+d x)(B x+c y)^{\prime}
\end{aligned}
$$

Now

$$
\begin{aligned}
(B x+c y)^{\prime} A T= & (B x+c y)^{\prime}\left(A B+x y^{\prime}\right)+\frac{1}{\theta}(B x+c y)^{\prime}(A y+d x)(B x+c y)^{\prime} \\
= & \left(\theta x^{\prime} B+\theta c y^{\prime}\right)+\frac{1}{\theta}\left(\theta x^{\prime} y+\theta c d\right)(B x+c y)^{\prime} \\
& \text { from (2.1) and (2.3) } \\
= & \theta(B x+c y)^{\prime}+(1-\theta)(B x+c y)^{\prime}=(B x+c y)^{\prime}
\end{aligned}
$$

Now,

$$
\begin{aligned}
T A T= & B A T+\frac{1}{\theta}(B x+c y)^{\prime} A T+\frac{1}{\theta} y(B x+c y)^{\prime} A T \\
& +\frac{d}{d^{2}}(B x+c y)(B x+c y)^{\prime} A T
\end{aligned}
$$

We proved above that $(B x+c y)^{\prime} A T=(B x+c y)^{\prime}$. Hence

$$
\frac{1}{\theta} y(B x+c y)^{\prime} A T=\frac{1}{\theta} y(B x+c y)^{\prime}
$$

and

$$
\frac{d}{\theta^{2}}(B x+c y)(B x+c y)^{\prime} A T=\frac{d}{\theta^{2}}(B x+c y)(B x+c y)^{\prime}
$$

Now,

$$
B A T=B A B+B x y^{\prime}+y(B x+c y)^{\prime}=B
$$

since

$$
y=\frac{1}{\theta} B(A y+d x), \quad \text { as } \quad G=M_{r}^{-}
$$

Also,

$$
\begin{aligned}
\frac{1}{\theta}(B x+c y) y^{\prime} A T= & \frac{1}{\theta}(B x+c y)\left[y^{\prime}-d(B x+c y)^{\prime}\right] \\
& +\frac{1}{\theta^{2}}(B x+c y) \theta d(B x+c y)^{\prime} \\
= & \frac{1}{\theta}(B x+c y) y^{\prime}
\end{aligned}
$$

Hence $T A T=T$.
(iii):

$$
G=M_{l}^{-} \Rightarrow\left(\begin{array}{cc}
A B+x y^{\prime} & A y+d x \\
B x+c y & x^{\prime} y+c d
\end{array}\right) \text { is symmetric. }
$$

Further note that by construction T is symmetric. Hence T is A_{m}^{-}iff T is A_{l}^{-}. Now

$$
A T=A B+x y^{\prime}+\frac{1}{\theta}(A y+d x)(B x+c y)^{\prime}
$$

Since $G=M_{l}^{-}, A B+x y^{\prime}$ is symmetric and $(A y+d x)^{\prime}=(B x+c y)$. Hence $A T$ is symmetric.
(iv) follows trivially from (i)-(iii).

Remark. Let M and G be nnd. Then T in (4.1) can be rewritten as

$$
T=\left(\begin{array}{ll}
I & \frac{1}{\theta}(B x+c y)
\end{array}\right)\left(\begin{array}{cc}
B & y \\
y^{\prime} & d
\end{array}\right)\binom{I}{\frac{1}{\theta}(B x+c y)^{\prime}}
$$

So T is nnd. Hence the results of Theorem 4 give us various types of nnd g-inverses of A in this case.
5. g-INVERSES OF A WHEN $x^{\prime} y+c d=1$ AND $d \neq 0$

Let G be M^{-}, and let $x^{\prime} y+c d=1$ and $d \neq 0$. Then we have

$$
\begin{equation*}
A B x=-c \cdot A y \tag{5.1}
\end{equation*}
$$

and

$$
\begin{equation*}
x^{\prime} B x=-c \cdot y^{\prime} x \tag{5.2}
\end{equation*}
$$

We consider two cases, namely, $\mathrm{A} y+d x=0$ and $\mathrm{A} y+d x \neq 0$. We prove

Theorem 5. Let $G=M^{-}, x^{\prime} y+c d=1, d \neq 0$, and $A y+d x=0$. Then

$$
\begin{equation*}
B-\frac{1}{d} y y^{\prime}=A^{-} \tag{i}
\end{equation*}
$$

(ii)

$$
B-\frac{1}{d} y y^{\prime}=A_{r} \quad \text { if } \quad G=M_{r}^{-}
$$

$$
\begin{equation*}
B-\frac{1}{d} y y^{\prime}=A_{l m}^{-} \quad \text { if } \quad G=M_{l m}^{-} \tag{iii}
\end{equation*}
$$

$$
\begin{equation*}
B-\frac{1}{d} y y^{\prime}=A^{+} \quad \text { if } \quad G=M^{+} \tag{iv}
\end{equation*}
$$

Proof. (i): $A y+d x=0$ and $d \neq 0 \Rightarrow x=-(1 / d) A y$. Further, $A B A+$ $A y x^{\prime}=A$ in view of (2.1), and $A y+d x=0$. It now clearly follows that $B-(1 / d) y y^{\prime}=A^{-}$.
(ii):

$$
\begin{aligned}
\left(B-\frac{1}{d} y y^{\prime}\right) A\left(B-\frac{1}{d} y y^{\prime}\right) & =\left(B-\frac{1}{d} y y^{\prime}\right)\left(A B+x y^{\prime}\right) \\
& =\left(B-y x^{\prime} B-c y y^{\prime}\right)-\frac{1}{d} y\left(-d x^{\prime} B+y^{\prime} x y^{\prime}\right) \\
& =B-\frac{1}{d} y\left[\left(c d+x^{\prime} y\right) y^{\prime}\right]=B-\frac{1}{d} y y^{\prime}
\end{aligned}
$$

(iii): Notice that $B-(1 / d) y y^{\prime}$ is symmetric. Now $A\left[B-(1 / d) y y^{\prime}\right]=$ $A B+x y^{\prime}$ is symmetric, since $G=M_{l_{m}}^{-}$. Hence $B-(1 / d) y y^{\prime}=A_{l_{m}}^{-}$.

The proof of (iv) follows from (i)-(iii).

Remark. Consider the same setup as in Theorem 5, and let G be nnd. Then, clearly the Schur complement of d in G, namely, $B-(1 / d) y y^{\prime}$, is also nnd. Hence Theorem 5 gives various types of nnd g-inverses of A in this case.

Theorem 6. Let $G=M^{-}, x^{\prime} y+c d=1, d \neq 0$, and $\|A y+d x\|^{2}=t \neq 0$. Write $\quad \xi=(1 / t)\left(I-B A-y x^{\prime}\right)(A y+d x)$ and $R=B+\xi y^{\prime}+y \xi^{\prime}+d \xi \xi^{\prime}$. Then,
(i) $R=A^{-}$,
(ii) $R A R=A_{r}^{-}$,
(iii) $R=A_{m l}^{-}$if $G=M_{m l}^{-}$, and
(iv) $R A R=A^{+}$if $G=M^{+}$.

Proof. (i) is computational, and (ii) follows trivially.
(iii): Notice that R is symmetric. So it suffices to show that $A R$ is symmetric to prove that R is $A_{m l}^{-}$.

If $G=M_{m}^{-}$, then

$$
\begin{aligned}
\xi & =\frac{1}{t}\left(I-B A-y x^{\prime}\right)(A y+d x) \\
& =\frac{1}{t}\left(I-A B-x y^{\prime}\right)(A y+d x) \\
& =\frac{1}{t}\left[\left(A y x^{\prime}+d x x^{\prime}\right) y+d c(A y+d x)\right] \\
& =\frac{1}{t}\left[\left(x^{\prime} y+c d\right)(A y+d x)\right] \\
& =\frac{1}{t}(A y+d x)
\end{aligned}
$$

Further, by construction $A \xi=x$. Now

$$
\begin{aligned}
A R & =A B+x y^{\prime}+A y \xi^{\prime}+d x \xi^{\prime} \\
& =A B+x y^{\prime}+\frac{1}{t}(A y+d x)(A y+d x)
\end{aligned}
$$

Now $A B+x y^{\prime}$ is symmetric and hence $A R$ is symmetric.
(iv): Notice that $R A R=A_{r}^{-}$and $A R A R=A R$ is symmetric. The result now follows trivially.

Remark. Consider the same setup as in Theorem 6, and let G be nnd. Then

$$
R=\left(\begin{array}{ll}
I & \xi
\end{array}\right)\left(\begin{array}{cc}
B & y \\
y^{\prime} & d
\end{array}\right)\binom{I}{\xi^{\prime}}
$$

is also nnd. Hence Theorem 6 gives various types of nnd g-inverses in this case.
6. g-INVERSES OF A WHEN $x^{\prime} y=1, d=0$, AND $A y \neq 0$

Clearly, with this case all possible cases are exhausted. g-inverses of A in this case are obtained in a similar manner to those in Theorem 6. We only state the relevent theorem below. The proof is similar to that of Theorem 6.

Theorem 7. Let $G=M^{-}, x^{\prime} y=1, d=0$, and $A y \neq 0$. Write $\|A y\|^{2}=$ $t \neq 0$. Write $\xi=(1 / t)\left(I-B A-y x^{\prime}\right) A y$ and $R=B+\xi y^{\prime}+y \xi^{\prime}$. Then
(i) $R=A^{-}$,
(ii) $R A R=A_{r}^{-}$,
(iii) $R=\overline{A_{l m}^{-}}$if $G=M_{l m}^{-}$, and
(iv) $R A R=A^{+}$if $G=M^{+}$.

Remark. If G is nnd, then $d=0 \Rightarrow y=0$. Hence the situation in Theorem 7 never arises when G is nnd.
7. g-INVERSE OF A FROM THAT OF $\left(\begin{array}{ll}A & u \\ v^{\prime} & c\end{array}\right)$, WHERE A MAY NOT BE SYMMETRIC

In this section we consider the nonsymmetric case and give formulae to compute a g-inverse of A from that of $\left(\begin{array}{ll}A & u \\ v^{\prime} & c\end{array}\right)$. We state

Theorem 8. Let

$$
\left(\begin{array}{cc}
B & \alpha \\
\beta^{\prime} & d
\end{array}\right)=\left(\begin{array}{cc}
A & u \\
v^{\prime} & c
\end{array}\right)^{-} .
$$

Then:
(i) We have

$$
\begin{aligned}
B+ & \frac{1}{t_{1}}\left(I-B A-\alpha v^{\prime}\right)\left(A^{\prime} \beta+d v\right) \beta^{\prime} \\
& +\frac{1}{t_{2}} \alpha\left(\alpha^{\prime} A^{\prime}+d u^{\prime}\right)\left(I-A B-u \beta^{\prime}\right)=A^{-}
\end{aligned}
$$

if $A \alpha+d u \neq 0$ and $A^{\prime} \beta+d v \neq 0$, where

$$
t_{1}=\left\|A^{\prime} \beta+d v\right\|^{2} \quad \text { and } \quad t_{2}=\|A \alpha+d u\|^{2}
$$

(ii) Let $A^{\prime} \beta+d v=0$. Then $B=A^{-}$if $A \alpha=0$.
(iii) Let $A^{\prime} \beta+d v=0$ and $A \alpha \neq 0$. Then

$$
B+\frac{1}{t_{3}} \alpha \alpha^{\prime} A^{\prime}(I-A B)=A^{-}, \quad \text { where } \quad t_{3}=\|A \alpha\|^{2}
$$

(iv) Let $A^{\prime} \beta+d v \neq 0$ and $A \alpha+d u=0$. Then $B=A^{-}$if $A^{\prime} \beta=0$.
(v) Let $A^{\prime} \beta+d v \neq 0, A \alpha+d u=0, A^{\prime} \beta \neq 0$. Then

$$
B+\frac{1}{t_{4}}(I-B A) A^{\prime} \beta \beta^{\prime}=A^{-}, \quad \text { where } \quad t_{4}=\left\|A^{\prime} \beta\right\|^{2}
$$

The proof is computational and is omitted.

8. TABLE OF RESULTS

Case	Theorem(s) to be consulted
$x \notin \mathbf{M}(A)$	2,3
$y^{\prime} x+c d \neq 1$	4
$y^{\prime} x+c d=1, d \neq 0$	5,6
$x^{\prime} y=1, d=0, A y \neq 0$	7
A nonsymmetric	8

9. AN APPLICATION

Here we briefly mention an application of the results of this paper. The detailed analysis is considered elsewhere. Consider the model

$$
Y=x \beta+\epsilon, \quad E(\epsilon)=0, \quad D(\epsilon)=\sigma^{2} V
$$

where V is a known pd matrix. X may be deficient in rank. The following computations are made to get a least squares estimator of β :

$$
X^{\prime} V^{-1} Y, \quad X^{\prime} V^{-1} X, \quad\left(X^{\prime} V^{-1} X\right)^{-}, \quad \text { and } \quad \hat{\beta}=\left(X^{\prime} V^{-1} X\right)^{-} X^{\prime} V^{-1} Y
$$

In the process of model building, it is now found that the last component of β is not a suitable parameter and has to be deleted from the analysis. Partition $X=\left(X_{1}: x\right)$ where x is the last column of X. We have computed

$$
\begin{aligned}
\left(X^{\prime} V^{-1} X\right)^{-} & =\left[\binom{X_{1}^{\prime}}{x^{\prime}} V^{-1}\left(X_{1}: x\right)\right]^{-1} \\
& =\left(\begin{array}{cc}
X_{1}^{\prime} V^{-1} X_{1} & X_{1}^{\prime} V^{-1} X \\
x^{\prime} V^{-1} X_{1} & x^{\prime} V^{-1} X
\end{array}\right)
\end{aligned}
$$

When we delete the last component of β, we need

$$
\left(X_{1}^{\prime} V^{-1} X_{1}\right)^{-} \quad \text { and } \quad X_{1}^{\prime} V^{-1} Y
$$

Using formulae of this paper, one can easily compute $\left(X_{1}^{\prime} V^{-1} X_{1}\right)^{-}$from $\left(X V^{-1} X\right)^{-}$and $X_{1}^{\prime} V^{-1} Y$ is obtained from $X^{\prime} V^{-1} Y$ by deleting the last component.

10. CONCLUDING REMARKS

Let

$$
M=\left(\begin{array}{ll}
A & x \\
x^{\prime} & c
\end{array}\right)
$$

be a symmetric matrix, and suppose G is a g-inverse of A but G is not
symmetric. Then, clearly, $\frac{1}{2}\left(G+G^{\prime}\right)$ is a symmetric g-inverse of A. Again, if M is nnd, and G is any g-inverse of M, then $G M G^{\prime}$ is a nnd g-inverse of M. Hence if some g-inverse of a symmetric (or nnd) matrix M is available, one can use the results in this paper to obtain a symmetric (or nnd) g-inverse of A.

REFERENCES

1 P. Bhimasankaram, On generalized inverses of partitioned matrices, Sankhyā Ser. A 33:311-314 (1971).
2 D. Carlson, E. Haynsworth, and T. Markham, A generalization of the Schur complement by means of the Moore-Penrose inverse, SIAM I. Appl. Math. 26:169:179 (1974).
3 F. Burns, D. Carlson, E. Haynsworth, and T. Markham, Generalized inverse formulas using the Schur complement, SIAM J. Appl. Math. 26:254-259 (1974).
4 S. K. Mitra and P. Bhimasankaram, Generalized inverses of partitioned matrices and recalculation of last squares estimators for data or model changes, Sankhy \bar{a} Ser. A 33:396-610 (1971).
5 C. R. Rao and S. K. Mitra, Ceneralized Inverse of Matrices and Its Applications, Wiley, New York, 1971.
6 C. A. Rohde, Generalized inverses of partitioned matrices, SIAM J. Appl. Math. 18:1033-1035 (1965).

Received May 1987; final manuscript accepted 12 November 1987

[^0]: *On leave from the Indian Statistical Institute, Calcutta, India.

