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ABSTRACT 

Given symmetric generalized inverses of c , where r is a vector with n 

components, we obtain formulae for the generalized inverses (symmet- 
ric) of A. An application of such formulae in linear models is suggested. 

1. INTRODUCTION 

In an earlier paper (Mitra and Bhimasankaram [4]) we obtained various 
types of generalized inverses of A from the corresponding generalized 
inverses of (A: a). Rohde [6], Bhimasankaram [l], C&on et al. [2, 31, and 
others obtained g-inverses of 

from those of A. In this paper, we obtain formulae for computing symmetric 
(nnd) g-inverses of a symmetric (correspondingly nnd) matrix A from those 
of 
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where x is a vector and c a scalar. We also obtain formulae to compute a 
g-inverse of A from that of 

where A need not be symmetric. Finally, we give an application of the above 
results to the updating of BLUES in a general linear model. 

In this paper we consider only real matrices. The extension to complex 
matrices is trivial. In Sections 2 to 6, by M and G we mean the following: 

and G= (1.1) 

where A and B are symmetric. We follow the same notation as in Rao and 
Mitra [S]. We use 1luJJ to denote the Euclidean norm of u, namely, (u’u)“~. 
M(A) denotes the column space of A. 

2. WHEN DOES x E M(A)? 

Let M and G be as specified in (1.1). In this section we obtain necessary 
and sufficient conditions under which x E M(A) in terms of G and M. We 
prove 

THEOREM 1. Let M and G be as specified in (l.l), and let G= M-. 
Then x 4 M(A) if and only if Ay = 0, y’x = 1, and d = 0. Zf M is nnd, then 
x E M(A). 

Proof. G=M- 3 

I 
ABA + xy’A + Ayx’ + dxx’ = A, (2.1) 

ABx+y’x.x+c(Ay+dx)=x, (2.2) 

x’Bx + cy’x + c( y’x + cd ) = c. (2.3) 

“If” part: If Ay = 0, y’x = 1, and d = 0, then ABA = A and ABx = 0 in 
view of (2.1) and (2.2). Let, if possible, x E M(A). Now if x E M(A), then 
x = ABx = 0. This is a contradiction to y’x = 1. Hence x 4 M(A). 
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“Only if” part: 

x( Ay + dx)’ = A( Z - BA - yx’) 

from(2.1). Hence, r4M(A)*Ay+dx=O~dx= -Ay*d=Oand Ay 
= 0 [since x 4 M(A)]. Now from (2.2) it follows that ABx = (1 - y’x)x and 
hence y’x = 1. 

It is well known that if M is nnd, then x E M(A). This completes the 
proof of Theorem 1. n 

3. g-INVERSES OF A WHEN x 4 M(A) 

Consider M and G as in (l.l), and let G = M-. In this section we obtain 
formulae for computing various types of g-inverses of A from the correspond- 
ing types of g-inverses of M. - 

THEOREMS. LetG=M- andktx@M(A). Then 

(i) B= A-, 
(ii) B=A; ifandonlyifBx=OandG=M,, 
(iii) B=A&ify=rxforsomerandG=MI,, and 
(iv) B=A+ ifc=O, y=(x’x)-‘x, andG=M+. 

Proof. (i) follows trivially from (2.1) since Ay = 0 and d = 0. 
(ii): “If” part: 

G = M; * BAB + Bxy’+ yr’B + cyy’= B. (3.1) 

x EM(A)*c = -x’Bx. Now c =O, since Bx =O. Hence from (3.1) it 
foIIows that B = BAB. 

“Only if” part: 

B = A; d yx’B + Bxy’+ cyy’= 0, 

* yx’Bx + Bx + cyy’r = 0, 

* Bx = 0, since x’Bx = - c. 

Now, given that G = M- , it is easy to establish that B = A; and BX = 0 * 
G-M;. 
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(iii): Since A and B are symmetric matrices, B = A; if and only if 
B = A,. Now, 

Ay+dx 
x’y cd 

is 

So, if = 7x: ry’ is and hence is symmetric. 
proof of is trivial is omitted. 

Theorem 2 the conditions B serves A -, ; , A ;*, and 
A + and when G serves as M- , ML, Ml,, and M+ respectively. Now we 
obtain formulae for various types of g-inverses of A when x 4 M(A). 

THEOREM 3. Let G = M- and let r 4 M(A). Then 

(iii) 

(I-%)B(~-$)=A; if G=M;, 

Proof. The proof of (i) is easy. 
(ii): 

Ay+dx 
x’y + cd 

is symmetric. 

Now, xEM(A)*Ay=O, d=O-Br= -cy. By Theorem 2, *=A-. 
Now, 

AAB Z-5 =A(AB+xy’) I-5 
( ) ( ) 

=A(BA+yr’) 1-s 
( ) 

=ABA=A. 

Hence B(Z - yy’/y’y) is A;. 
The proof of (iii) is easy and we omit it. 
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REMARK. If M is nnd, then clearly z E M(A) and the results of this 
section are not needed in this case. 

4. g-INVERSES OF A WHEN y’x + cd Z 1 

Notice that when y’x + cd + 1, x E M(A). 
Write 8=1-y’x-cd#Oand 

T=B+~~Bx+cy)y’+fy(*‘l(+cy’)+~(B*+cy)(B*+cY)’. (4.1) 

We prove: 

THEOREM 4. L.etG=M-, andbty’x+cd#l. LetTbeasin (4.1). 

(i) T = A-, 

(ii) T=A; ifG=MM;, 

(iii) T = AIM if G = ML~,, and 
(iv) T = A+ if G = M+. 

Proof. (i): From (2.2) it follows that 

A(Bx+cy)=x(l-y’r-cd). 

So x = (l/B)A( Bx + cy ). Now the result follows easily from (2.1). 
(ii): 

= AB + xy’+ $Ay(x’B + cy’) + ;x( Bx + cy)’ 

=AB+ry’+;(Ay+dx)(Bx+cy)‘. 
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(13x + cy )‘AT = (Br + cy)‘( AB + xy’) + 

from (2.1) and (2.3) 

=e(Bx+cy)‘+(l-ll)(Bx+cy)‘=(Bx+cy)’. 

Now, 

TAT = BAT + $(Bx + cy)‘AT + ;y(Bx + cy)‘AT 

+ $(Bx + cy)(Bx + cy)‘AT. 

We proved above that (Br + cy)‘AT = (Br + CY )‘. Hence 

iy(Bx + cy)‘AT = $y(Bx + cy)’ 

and 

Now, 

since 

BAT = BAB + Bry’+ y( Bx + cy)‘= B, 

y=;B(Ay+dx), as G=M;. 
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Hence TAT = T. 
(iii): 

Ay+dx 
x’y + cd 

is symmetric. 

Further note that by construction T is symmetric. Hence T is A, iff T is 
A;. Now 

AT=AB+xu’+f(Ay+dx)(Bx+cy)‘. 

Since G = M;, AB + xy’ is symmetric and (Ay + dx)’ = (Bx + cy). Hence 
AT is symmetric. 

(iv) follows trivially from (i)-(iii). w 

REMARK. Let M and G be nnd. Then T in (4.1) can be rewritten as 

f(Bx+cy))( f’ :j j ;(Bx:cy)j* 

So T is nnd. Hence the results of Theorem 4 give us various types of nnd 
g-inverses of A in this case. 
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5. g-INVERSES OF A WHEN x’y + cd = 1 AND d # 0 

LetGbeM-,andletx’y+cd=landd+O.Thenwehave 

ABr= -c.Ay (5.1) 

and 

x’Bx = - c.y’x. (5.2) 

We consider two cases, namely, Ay + dx = 0 and Ay + dx + 0. We prove 

THEOREMS. LetG=M-, x’y+cd=l, d#O, andAy+dx=O. Then 

(9 B--kyy’=A- 

(ii) B-;yy’=A, 

(iii) B-;yy’=AI, 

(iv) B-;yy’=A+ 

if G=M;, 

if G= M,-,,, 

if G = M+. 

Proof. (i): Ay+dx=O and d #O * x = - (l/d)Ay. Further, ABA + 
Ayx’ = A in view of (2.1), and Ay + dx = 0. It now clearly follows that 
B - (l/d)yy’= A-. 

(ii): 

= (B - yx’B - cyy’) - f y( - dx’B + y’xy’) 

= B - ;y [(cd + x’y)y’] = B - ;YY’. 

(iii): Notice that B - (l/d)yy’ is symmetric. Now A[ B - (l/d)yy’] = 
AB + xy’ is symmetric, since G = ML. Hence B - (l/d)yy’= AFT,. 

The proof of (iv) follows from (i)-(iii). n 
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REMARK. Consider the same setup as in Theorem 5, and let G be nnd. 
Then, clearly the Schur complement of d in G, namely, B - (l/d)yy’, is also 
nnd. Hence Theorem 5 gives various types of nnd g-inverses of A in this 
case. 

THEOREMS. LetG=M-, x’y+cd=l,d#O,and llAy+dx][‘=t#O. 
Write 5 = (l/t)(Z - BA - yr’)(Ay + dx) and R = B + [y’+ y<‘+ d&$‘. 
Then, 

(i) R = A-, 
(ii) RAR=A;, 
(iii) R = A;, if G = M;,, and 
(iv) RAR = A+ if G = Mf. 

Proof. (i) is computational, and (ii) follows trivially. 
(iii): Notice that R is symmetric. So it suffices to show that AR is 

symmetric to prove that R is A$. 
If G = M;,, then 

1 
.$=,(I-BA-yx’)(Ay+dx) 

=f(Z-AB-ry’)(Ay+ds) 

=f[(Ayx’+dP’)y+dc(Ay+dr)] 

=frc x’y + cd)( Ay + dx)] 

=f(Ay+dr). 

Further, by construction A[ = x. Now 

AR = AB + xy’+ Ayt’+ dx[’ 

=AB+xy’+f(Ay+dr)(Ay+ds). 

Now AB + ry’ is symmetric and hence AR is symmetric. 
(iv): Notice that ZUR = A; and AZL4R = AR is symmetric. The result 

now follows trivially. n 
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REMAFIK. Consider the same setup as in Theorem 6, and let G be nnd. 
Then 

is also nnd. Hence Theorem 6 gives various types of nnd g-inverses in this 
case. 

6. g-INVERSES OF A WHEN x’y = 1, d = 0, AND Ay # 0 

Clearly, with this case all possible cases are exhausted. g-inverses of A in 
this case are obtained in a similar manner to those in Theorem 6. We only 
state the relevent theorem below. The proof is similar to that of Theorem 6. 

THEOREMS. LetG=M-, x’y=l, d=O, andAy#O. Write llA~11~= 
t # 0. Write 5 = (l/t)(I - BA - yr’)Ay and R = B + ,$y’+ ~5’. Then 

(i) R = A-, 
(ii) RAR = A;, 
(iii) R = Aim ifG = M,, and 
(iv) RAR=A+ ifG=M+. 

REMARK. If G is nnd, then d = 0 =z. y = 0. Hence the situation in 
Theorem 7 never arises when G is nnd. 

7. g-INVERSE OF A FROM THAT OF , WHERE A MAY NOT 

BE SYMMETRIC 

In this section we consider the nonsymmetric case and give formulae to 

compute a g-inverse of A from that of 

THEOREM 8. Let 
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Then: 

(i) We have 

+ $x’At+dur)(I - AB - up’) = A- 

ifAcu+du#O andA’fl+dv#O, where 

t, = IjA’j? + dv112 and t, = IIAa + dul12. 

(ii) Let A’fi + dv = 0. Then B = A- if Acx = 0. 
(iii) LetA’@+dv=O andAa#O. Then 

B+taa’A’(I-AB)=A-, where t3 = I(Aal12. 

(iv) LetA’j3+dv#O andAa+du=O. ThenB=A- ifA’j3=0. 
(v) Let A’/3 + dv # 0, Aa + du = 0, A’/3 # 0. Then 

a++--~A)kpp=~-, where t4 = llA’j3(12. 
4 

The proof is computational and is omitted. 

8. TABLE OF RESULTS 

Case Theorem(s) to be consulted 

x GC M(A) 293 
y’x + cd # 1 4 

y’x + cd = 1, d # 0 5,6 
x’y = 1, d = 0, Ay # 0 7 
A nonsymmetric 8 
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9. AN APPLICATION 

Here we briefly mention an application of the results of this paper. The 
detailed analysis is considered elsewhere. Consider the model 

y=xp+c, E(E) = 0, D(c) = 02v, 

where V is a known pd matrix. X may be deficient in rank. The following 
computations are made to get a least squares estimator of p: 

x’v- ‘Y) x’v- ‘x, (X’V_‘X) -, and p^= (X’V’X) X’V’Y. 

In the process of model building, it is now found that the last component of j3 
is not a suitable parameter and has to be deleted from the analysis. Partition 
X = (Xl : x) where x is the last column of X. We have computed 

(XTlx)- = [(yv-yxl:x,]-’ 

= xp-‘x1 

i 

x;v-‘x 

xvlxl I x/v-‘x 

When we delete the last component of p, we need 

(xp-lx,) - and X;V-‘Y. 

Using formulae of this paper, one can easily compute (XjV- ‘Xl)- from 
(XV-‘X)- and X;V-‘Y is obtained from X’V’Y by deleting the last 
component. 

10. CONCLUDING REMARKS 

Let 

be a symmetric matrix, and suppose G is a g-inverse of A but G is not 
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symmetric. Then, clearly, T$(G + G’) is a symmetric g-inverse of A. Again, if 
M is nnd, and G is any g-inverse of M, then GMG’ is a nnd g-inverse of M. 
Hence if some g-inuerse of a symmetric (or nnd) matrix M is available, one 
can use the results in this paper to obtain a symmetric (or nnd) g-inverse 
of A. 
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