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ABSTRACT

Given symmetric generalized inverses of (f, Z) where x is a vector with n

components, we obtain formulae for the corresponding generalized inverses (symmet-
ric) of A. An application of such formulae in linear models is suggested.

1. INTRODUCTION

In an earlier paper (Mitra and Bhimasankaram [4]) we obtained various
types of generalized inverses of A from the corresponding generalized
inverses of (A: a). Rohde [6], Bhimasankaram [1], Carlson et al. [2, 3], and
others obtained g-inverses of

(¢ o)
C D

from those of A. In this paper, we obtain formulae for computing symmetric
(und) g-inverses of a symmetric (correspondingly nnd) matrix A from those
of
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where x is a vector and ¢ a scalar. We also obtain formulae to compute a
g-inverse of A from that of
v e
v ¢/

where A need not be symmetric. Finally, we give an application of the above
results to the updating of BLUES in a general linear model.

In this paper we consider only real matrices. The extension to complex
matrices is trivial. In Sections 2 to 6, by M and G we mean the following:

(A x _(B vy
M—( C) and G (y, d) (1.1)
where A and B are symmetric. We follow the same notation as in Rao and
Mitra [5). We use }|u|| to denote the Euclidean norm of u, namely, (u'u)!/2,
M(A) denotes the column space of A.

2. WHEN DOES x € M(A)?

Let M and G be as specified in (1.1). In this section we obtain necessary
and sufficient conditions under which x € M(A) in terms of G and M. We
prove

Tueorem 1. Let M and G be as specified in (1.1), and let G=M".
Then x € M(A) ifand only if Ay =0, y'x =1, and d = 0. If M is nnd, then
xeM(A).

Proof. G=M" =

ABA + xy’A+ Ayx’+dxx'= A, (2.1)
ABx +y'x-x+ c(Ay +dx) =x, (2.2)
tBx+cy'r+clyx+ed)=c. (2.3)

“IF” part: If Ay=0, y'x=1, and d =0, then ABA= A and ABx =0 in
view of (2.1) and (2.2). Let, if possible, x € M(A). Now if x € M(A), then
x = ABx = 0. This is a contradiction to y’x = 1. Hence x & M(A).
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“Only if” part:
x(Ay+dx) = A(I - BA —yx')

from (2.1). Hence, x €M(A)= Ay+dx=0=dx= — Ay=d =0 and Ay
=0 [since x &€ M(A)]. Now from (2.2) it follows that ABx =(1 — y’x)x and
hence y'x =1.

It is well known that if M is nnd, then x € M(A). This completes the
proof of Theorem 1. ]

3. gINVERSES OF A WHEN 1z & M(A)

Consider M and G as in (1.1), and let G = M. In this section we obtain
formulae for computing various types of g-inverses of A from the correspond-
ing types of g-inverses of M. -

TaeoreM 2. Let G=M" and let x € M(A). Then

@ B=A",

(ii) B=A; ifandonly if Bx=0 and G=M,,

(iil) B=Aj,, if y=rx for some r and G=M,,,, and
(iv) B=A% ifc=0, y=(x'x)"Y, and G=M".

Proof. (i) follows trivially from (2.1) since Ay =0 and d =0.
(ii): “If” part:

G =M, = BAB+ Bxy’+ yx'B + cyy’ = B. (3.1)
xEM(A)=c= —x'Bx. Now ¢ =0, since Bx=0. Hence from (3.1) it
follows that B = BAB.

“Only if” part:
B=A_ = yx'B+ Bxy'+ cyy’ =0,
= yx'Bx + Bx + cyy’'x =0,

= Bx =0, since x'Bx= —c.

Now, given that G = M, it is easy to establish that B=A_ and Bx=0=
G=M.



134 P. BHIMASANKARAM

(iii): Since A and B are symmetric matrices, B= A; if and only if
B=A_. Now,

AB+zxy’ Ay+dx

'_—_M_
¢ L= x'B+cy x'y+ecd

is symmetric.

So, if y = rx then xy’ is symmetric and hence AB is symmetric.
The proof of (iv) is trivial and is omitted. | |

Theorem 2 describes the conditions when B servesas A~, A, A,,,, and
A" and when G serves as M, M., M, ., and M" respectively. Now we
obtain formulae for various types of g-inverses of A when x & M(A).

TueoreMm 3. Let G=M" and let x € M(A). Then

(i) (1—3,”—)3(1—y,y)=A: if G=M;,
yy yy
yy’
ii BlI-=—|=A; if G=M;,,
(i) ( yy) , ,
@ (- o
yy yy

Proof. The proof of (i) is easy.
(id):

AB+axy' Ay+dx

G=Mlm:(x’B+cy’ x'y+cd

) is symmetric.
Now, x ¢ M(A)=>Ay=0, d=0= Bx= —cy. By Theorem 2, B=A".
Now,
’ yl
AAB(I—E?—)=A(AB+xy')(I—y——)
yy

’

vy

=A(BA+yx')(I——iy—,~)

’

=ABA=A.

Hence B(I —yy'/y'y)is A .
The proof of (iii) is easy and we omit it. [ ]
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Remark. If M is nnd, then clearly x € M(A) and the results of this
section are not needed in this case.
4. gINVERSES OF A WHEN y'x +cd #1

Notice that when y'x +cd # 1, x eM(A).
Write § =1—y'x — cd #+ 0 and

1 1 d
T=B+ E(Bx +cy)y' + Ey(x’B +cy’)+ F(Bx +cy)(Bx+cy). (4.1)
We prove:

THEOREM 4. Let G=M", and let y'x + cd #1. Let T be as in (4.1).
Then

D T=A",

@) T=A; if G=M;,

(iii) T=Aj, if G=M;,, and
(iv) T=A* if G=M*,

Proof. (i): From (2.2) it follows that
A(Bx+cy)=x(1—y'x—cd).

So x =(1/6)A(Bx + cy). Now the result follows easily from (2.1).
(di):

1 1 d
AT = A(B 42 (Bt cy)y'+ Sy(vB+oy)+ o (Be+oy)(Br+ cy)
1 d
=AB+ay'+ EAy(x’B +cy’)+ Ex(Bx +cy)

1
=AB+xy’ + E(Ay +dx)(Bx +cy)'.
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Now
1
(Bx + cy)AT = (Bx +cy)(AB+xy’) + E(Bx +cy)(Ay+dx)(Bx+cy)

1
=(0x'B+6cy’) + E(ﬂx’y +68cd)(Bx +cy)

from (2.1) and (2.3)
=60(Bx+cy)+(1—0)(Bx+cy)=(Bx+cy).

Now,

1 1
TAT = BAT + 5(Bx +cy )’ AT + -H—y(Bx +cy ) AT

d
+ F(Bx +cy)(Bx + cy ) AT.
We proved above that (Bx + cy)' AT = (Bx + cy)’. Hence
1 1
Ey(Bx +cy) AT = Zy(Bx +cy)’
and
d d ,
F(Bx +cy)(Bx +cy) AT = F(Bx +cy)(Bx+cy)'.

Now,
BAT = BAB + Bxy'+ y(Bx + cy)' = B,

since

1
y=EB(Ay+dx), as G=M,.
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Also,
1 1
5(Bx+cy)y’AT=—O;(Bx+cy)[y’—d(Bx+cy)’]
1 ’
+—0—2(Bx+cy)0d(Bx+cy)
1 B ,
_6( x+cy)y’.
Hence TAT =T.

AB+zxy’ Ay+dx

=M_
¢ L= Bx+cy =x'y+cd

is symmetric.

Further note that by construction T is symmetric. Hence T is A, iff T is
A; . Now

1
AT =AB+axy'+ E(Ay +dx)(Bx + cy)'.

Since G=M;, AB+ xy’ is symmetric and (Ay + dx)’ = (Bx + cy). Hence
AT is symmetric.
(iv) follows trivially from (i)—(iii). |

ReEmark. Let M and G be nnd. Then T in (4.1) can be rewritten as

T=(I %(Bx”y))(f, Z) %(Bxlﬂy),.

So T is nnd. Hence the results of Theorem 4 give us various types of nnd
g-inverses of A in this case.
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5. gINVERSES OF A WHEN x'y+c¢d=1AND d #0

Let G be M™, and let x’y + ¢d =1 and d # 0. Then we have
ABx= —c-Ay (5.1)
and
x'Bx=—c-y'x. (5.2)

We consider two cases, namely, Ay + dx =0 and Ay + dx # 0. We prove

TueoREM 5. Let G=M", x'y+cd=1, d#0, and Ay +dx =0. Then

1
i B——yy'=A",
(i) Svy
1
(i) B-—w'=4, if G=M,
1 . _—
(iid) B-—w'=4;, if G=M;,
1
(iv) B-—a—yy’=A+ if G=M".

Proof. (i): Ay+dx=0and d#0=x= —(1/d)Ay. Further, ABA +
Ayx'= A in view of (2.1), and Ay +dx=0. It now clearly follows that
B—(1/d)yy’'=A".

(ii):

1 1 1
- — 4 —_—— 'l = — e ’ A + ’
(B dyy)A(B dyy) (B dyy)( B +xy’)

1
=(B—yx'B—cyy’) - Ey( —dx'B+y'xy’)

1 1
— _ ’ N1=B-— ’
B——yl(cd +xy)y] YL
(iii): Notice that B —(1/d)yy’ is symmetric. Now A[B —(1/d)yy’] =
AB + xy’ is symmetric, since G = M,,,. Hence B—(1/d)yy’= A,,,.
The proof of (iv) follows from (i)—(iii). ]
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Remark. Consider the same setup as in Theorem 3, and let G be nnd.
Then, clearly the Schur complement of d in G, namely, B —(1/d)yy’, is also
nnd. Hence Theorem 5 gives various types of nnd g-inverses of A in this
case.

THEOREM6. LetG=M",xy+cd=1,d+#0, and |Ay + dx||*=¢t #0.
Write £¢=(1/t)(I— BA —yx')(Ay +dx) and R=B+§y'+y& +dé§'.
Then,

(@ R=A",

(i) RAR=A[,

(iii) R= AL, if G =M, and

(iv) RAR = A* if G = M*.

Proof. (i) is computational, and (ii) follows trivially.

(iii): Notice that R is symmetric. So it suffices to show that AR is
symmetric to prove that R is A,

If G=M_,, then

ml>

= %(I — BA — yx')(Ay + dx)
- %(1— AB —xy’)( Ay + dx)
= %[(Ayx’+ dxx’)y + dc(Ay + dx))
1
= 7[(x’y +cd)( Ay + dx))

1
= 7(Ay +dx).

Further, by construction A{=x. Now
AR = AB+ xy’+ Ay&’ + dx§’

1
=AB+uxy’'+ -t-(Ay +dx)(Ay + dx).

Now AB + xy’ is symmetric and hence AR is symmetric.
(iv): Notice that RAR= A, and ARAR = AR is symmetric. The result
now follows trivially. ]
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Remark. Consider the same setup as in Theorem 6, and let G be nnd.

Then
e of2

is also nnd. Hence Theorem 6 gives various types of nnd g-inverses in this
case.

6. gINVERSES OF AWHEN x'y=1, d =0, AND Ay #0

Clearly, with this case all possible cases are exhausted. g-inverses of A in
this case are obtained in a similar manner to those in Theorem 6. We only
state the relevent theorem below. The proof is similar to that of Theorem 6.

TueoreM 7. Let G=M~, x'y=1, d =0, and Ay # 0. Write || Ay|*=
t+0. Write {=(1/t)(I — BA—yx)Ay and R= B+ £y’ + y§'. Then

@ R=A",

(i) RAR=A;,

(i) R= A, if G=Mj,, and

(iv) RAR=A" if G = M".

Remarx. If G is nnd, then d =0=y =0. Hence the situation in
Theorem 7 never arises when G is nnd.

7. gINVERSE OF A FROM THAT OF (:?, z), WHERE A MAY NOT
BE SYMMETRIC

In this section we consider the nonsymmetric case and give formulae to

compute a g-inverse of A from that of (UA, z) We state

THEOREM 8. Let

& a)=(2 v
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Then:
(i) We have

1
B+ —(I- BA— av))(AB + do)p’
1
1
+ t—a(a’A'+ du)(I-AB—uf’)=A"
2

if Aa+du+ 0 and A'B + dv # 0, where
t,=||AB+dv||® and t,=|Aa+du|?>

(i) Let A'B+dv=0. Then B= A~ if Aa=0.
(iii) Let A’B + dv =0 and Aa+ 0. Then

1
B+t—aa’A’(I—AB)=A', where t;=||Aq||%.
3

(iv) Let AB+dv+#0 and Aa+du=0.Then B= A~ if A’B=0.
(V) Let AB+dv#0, Aa+du=0, A'B+ 0. Then

1
B+ —(I-BA)ABR'=A",  where t,=|| A"
4

The proof is computational and is omitted.

8. TABLE OF RESULTS

Case Theorem(s) to be consulted
x &€ M(A) 2,3
yx+ed+1 4
yx+ed=1,d#0 5,6

x'y=1,d=0, Ay#0

7
A nonsymmetric 8
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9. AN APPLICATION

Here we briefly mention an application of the results of this paper. The
detailed analysis is considered elsewhere. Consider the model

Y=x8+c¢, E(e)=0, D(e) =02V,

where V is a known pd matrix. X may be deficient in rank. The following
computations are made to get a least squares estimator of

Xv-ly, XVIX, (XVX) , and f=(X'VX) X'V°lY.

In the process of model building, it is now found that the last component of 8
is not a suitable parameter and has to be deleted from the analysis. Partition
X = (X,: x) where x is the last column of X. We have computed

Xy

(XV-IX) = [( I )V'I(Xl: x)] B

XjV-IX, X[v-Ix
PVIX,  x'VX

When we delete the last component of 8, we need
(X{v-X,) and X;V7'V.

Using formulae of this paper, one can easily compute (X{V~'X,)” from
(XV~1X)~ and X]V~!Y is obtained from X'V~!Y by deleting the last
component.

10. CONCLUDING REMARKS

Let

be a symmetric matrix, and suppose G is a g-inverse of A but G is not
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symmetric. Then, clearly, (G + G’) is a symmetric g-inverse of A. Again, if
M is nnd, and G is any g-inverse of M, then GMG’ is a nnd g-inverse of M.
Hence if some g-inverse of a symmetric (or nnd) matrix M is available, one
can use the results in this paper to obtain a symmetric (or nnd) g-inverse
of A.
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