

Available online at www.sciencedirect.com

LINEAR ALGEBRA AND ITS APPLICATIONS

Linear Algebra and its Applications 418 (2006) 751-762

www.elsevier.com/locate/laa

Congruence of multilinear forms

Genrich R. Belitskii^a, Vladimir V. Sergeichuk^{b,*}

^a Department of Mathematics, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel ^b Institute of Mathematics, Tereshchenkivska St. 3, Kiev, Ukraine

> Received 16 November 2005; accepted 6 March 2006 Available online 27 April 2006 Submitted by P. Šemrl

Abstract

Let

 $F: U \times \cdots \times U \to \mathbb{K}, \quad G: V \times \cdots \times V \to \mathbb{K}$

be two *n*-linear forms with $n \ge 2$ on finite dimensional vector spaces U and V over a field K. We say that F and G are symmetrically equivalent if there exist linear bijections $\varphi_1, \ldots, \varphi_n : U \to V$ such that

 $F(u_1,\ldots,u_n)=G(\varphi_{i_1}u_1,\ldots,\varphi_{i_n}u_n)$

for all $u_1, \ldots, u_n \in U$ and each reordering i_1, \ldots, i_n of $1, \ldots, n$. The forms are said to be congruent if $\varphi_1 = \cdots = \varphi_n$.

Let F and G be symmetrically equivalent. We prove that

- (i) if $\mathbb{K} = \mathbb{C}$, then *F* and *G* are congruent;
- (ii) if K = R, F = F₁ ⊕ · · · ⊕ F_s ⊕ 0, G = G₁ ⊕ · · · ⊕ G_r ⊕ 0, and all summands F_i and G_j are non-zero and direct-sum-indecomposable, then s = r and, after a suitable reindexing, F_i is congruent to ±G_i.

© 2006 Elsevier Inc. All rights reserved.

AMS classification: 15A69

Keywords: Multilinear forms; Tensors; Equivalence and congruence

* Corresponding author.

0024-3795/\$ - see front matter $_{\odot}$ 2006 Elsevier Inc. All rights reserved. doi:10.1016/j.laa.2006.03.003

E-mail addresses: genrich@cs.bgu.ac.il (G.R. Belitskii), sergeich@imath.kiev.ua (V.V. Sergeichuk).

1. Introduction

Two matrices A and B over a field K are called *congruent* if $A = S^T B S$ for some nonsingular S. Two matrix pairs (A_1, B_1) and (A_2, B_2) are called *equivalent* if $A_1 = RA_2S$ and $B_1 = RB_2S$ for some nonsingular R and S. Clearly, if A and B are congruent, then (A, A^T) and (B, B^T) are equivalent. Quite unexpectedly, the inverse statement holds for complex matrices too: if (A, A^T) and (B, B^T) are equivalent, then A and B are congruent [2, Chapter VI, §3, Theorem 3]. This statement was extended in [3,4] to arbitrary systems of linear mappings and bilinear forms. In this article, we extend it to multilinear forms.

A multilinear form (or, more precisely, *n*-linear form, $n \ge 2$) on a finite dimensional vector space U over a field K is a mapping $F : U \times \cdots \times U \rightarrow K$ such that

$$F(u_1, \dots, u_{i-1}, au'_i + bu''_i, u_{i+1}, \dots, u_n) = aF(u_1, \dots, u'_i, \dots, u_n) + bF(u_1, \dots, u''_i, \dots, u_n)$$

for all $i \in \{1, ..., n\}$, $a, b \in \mathbb{K}$, and $u_1, ..., u'_i, u''_i, ..., u_n \in U$.

Definition 1. Let

$$F: U \times \dots \times U \to \mathbb{K}, \quad G: V \times \dots \times V \to \mathbb{K}$$
 (1)

be two *n*-linear forms.

(a) *F* and *G* are called *equivalent* if there exist linear bijections $\varphi_1, \ldots, \varphi_n : U \to V$ such that

$$F(u_1,\ldots,u_n)=G(\varphi_1u_1,\ldots,\varphi_nu_n)$$

for all $u_1, \ldots, u_n \in U$.

(b) *F* and *G* are called *symmetrically equivalent* if there exist linear bijections $\varphi_1, \ldots, \varphi_n : U \to V$ such that

$$F(u_1,\ldots,u_n) = G(\varphi_{i_1}u_1,\ldots,\varphi_{i_n}u_n)$$
⁽²⁾

for all $u_1, \ldots, u_n \in U$ and each reordering i_1, \ldots, i_n of $1, \ldots, n$.

(c) *F* and *G* are called *congruent* if there exists a linear bijection $\varphi : U \to V$ such that

 $F(u_1, \ldots, u_n) = G(\varphi u_1, \ldots, \varphi u_n)$ for all $u_1, \ldots, u_n \in U$.

The *direct sum* of forms (1) is the multilinear form

 $F \oplus G : (U \oplus V) \times \cdots \times (U \oplus V) \to \mathbb{K}$

defined as follows:

 $(F \oplus G)(u_1 + v_1, \ldots, u_n + v_n) := F(u_1, \ldots, u_n) + G(v_1, \ldots, v_n)$

for all $u_1, \ldots, u_n \in U$ and $v_1, \ldots, v_n \in V$.

We will use the internal definition: if $F : U \times \cdots \times U \to \mathbb{K}$ is a multilinear form, then $F = F_1 \oplus F_2$ means that there is a decomposition $U = U_1 \oplus U_2$ such that

- (i) $F(x_1, \ldots, x_n) = 0$ as soon as $x_i \in U_1$ and $x_j \in U_2$ for some *i* and *j*.
- (ii) $F_1 = F | U_1$ and $F_2 = F | U_2$ are the restrictions of F to U_1 and U_2 .

A multilinear form $F : U \times \cdots \times U \to \mathbb{K}$ is *indecomposable* if for each decomposition $F = F_1 \oplus F_2$ and the corresponding decomposition $U = U_1 \oplus U_2$ we have $U_1 = 0$ or $U_2 = 0$.

Our main result is the following theorem.

Theorem 2. (a) If two multilinear forms over \mathbb{C} are symmetrically equivalent, then they are congruent.

(b) If two multilinear forms F and G over \mathbb{R} are symmetrically equivalent and

 $F = F_1 \oplus \cdots \oplus F_s \oplus 0, \quad G = G_1 \oplus \cdots \oplus G_r \oplus 0$

are their decompositions such that all summands F_i and G_j are nonzero and indecomposable, then s = r and, after a suitable reindexing, each F_i is congruent to G_i or $-G_i$.

The statement (a) of this theorem is proved in the next section. We prove (b) in the end of Section 3 basing on Corollary 11, in which we argue that every *n*-linear form $F : U \times \cdots \times U \to \mathbb{K}$ with $n \ge 3$ over an arbitrary field \mathbb{K} decomposes into a direct sum of indecomposable forms uniquely up to congruence of summands. Moreover, if $F = F_1 \oplus \cdots \oplus F_s \oplus 0$ is a decomposition in which F_1, \ldots, F_s are nonzero and indecomposable, and $U = U_1 \oplus \cdots \oplus U_s \oplus U_0$ is the corresponding decomposition of U, then the sequence of subspaces $U_1 + U_0, \ldots, U_s + U_0, U_0$ is determined by F uniquely up to permutations of $U_1 + U_0, \ldots, U_s + U_0$.

2. Symmetric equivalence and congruence

In this section, we prove Theorem 2(a) and the following theorem, which is a weakened form of Theorem 2(b).

Theorem 3. If two multilinear forms F and G over \mathbb{R} are symmetrically equivalent, then there are decompositions

 $F = F_1 \oplus F_2$, $G = G_1 \oplus G_2$

such that F_1 is congruent to G_1 and F_2 is congruent to $-G_2$.

Its proof is based on two lemmas.

Lemma 4. (a) Let T be a nonsingular complex matrix having a single eigenvalue. Then

 $\forall m \in \mathbb{N} \quad \exists f(x) \in \mathbb{C}[x] : \quad f(T)^m = T^{-1}.$

(b) Let T be a real matrix whose set of eigenvalues consists of one positive real number or a pair of distinct conjugate complex numbers. Then

$$\forall m \in \mathbb{N} \quad \exists f(x) \in \mathbb{R}[x] : \quad f(T)^m = T^{-1}.$$
(3)

Proof. (a) Let *T* be a nonsingular complex matrix with a single eigenvalue λ . Since the matrix $T - \lambda I$ is nilpotent (this follows from its Jordan canonical form), the substitution of *T* for *x* into the Taylor expansion

$$x^{-\frac{1}{m}} = \lambda^{-\frac{1}{m}} + \left(-\frac{1}{m}\right)\lambda^{-\frac{1}{m}-1}(x-\lambda) + \frac{1}{2!}\left(-\frac{1}{m}\right)\left(-\frac{1}{m}-1\right)\lambda^{-\frac{1}{m}-2}(x-\lambda)^{2} + \cdots$$
(4)

gives some matrix

$$f(T), \quad f(x) \in \mathbb{C}[x], \tag{5}$$

satisfying $f(T)^m = T^{-1}$.

(b) Let *T* be a square real matrix. If it has a single eigenvalue that is a positive real number λ , then all coefficients in (4) are real, so the matrix (5) satisfies (3).

Let T have only two eigenvalues

$$\lambda = a + ib, \quad \lambda = a - ib \qquad (a, b \in \mathbb{R}, b > 0).$$
(6)

It suffices to prove (3) for any matrix that is similar to *T* over \mathbb{R} , so we may suppose that *T* is the real Jordan matrix

$$T = R^{-1} \begin{bmatrix} J & 0 \\ 0 & J \end{bmatrix} R = \begin{bmatrix} aI + F & bI \\ -bI & aI + F \end{bmatrix}, \qquad R := \begin{bmatrix} I & -iI \\ I & iI \end{bmatrix}$$

in which $J = \lambda I + F$ is a direct sum of Jordan blocks with the same eigenvalue λ (and so F is a nilpotent upper triangular matrix).

It suffices to prove that

$$\forall m \in \mathbb{N} \quad \exists f(x) \in \mathbb{R}[x] : \ f(J)^m = J^{-1} \tag{7}$$

since such f(x) satisfies (3):

$$f(T)^{m} = f(R^{-1}(J \oplus \overline{J})R)^{m} = R^{-1}f(J \oplus \overline{J})^{m}R$$
$$= R^{-1}(f(J)^{m} \oplus \overline{f(J)}^{m})R = R^{-1}(J \oplus \overline{J})^{-1}R = T^{-1}.$$

The matrix *F* is nilpotent, so the substitution of $J = \lambda I + F$ into the Taylor expansion (4) gives some matrix g(J) with $g(x) \in \mathbb{C}[x]$ satisfying $g(J)^m = J^{-1}$. Represent g(x) in the form:

 $g(x) = g_0(x) + ig_1(x), \quad g_0(x), g_1(x) \in \mathbb{R}[x].$

It suffices to prove that J reduces to iI by a finite sequence of polynomial substitutions

 $J \mapsto h(J), \quad h(x) \in \mathbb{R}[x].$

Indeed, their composite is some polynomial $p(x) \in \mathbb{R}[x]$ such that p(J) = iI, and then $f(x) := g_0(x) + p(x)g_1(x) \in \mathbb{R}[x]$ satisfies (7):

$$f(J)^{m} = (g_{0}(J) + p(J)g_{1}(J))^{m} = (g_{0}(J) + ig_{1}(J))^{m} = g(J)^{m} = J^{-1}.$$

First, we replace J by $b^{-1}(J - aI)$ (see (6)) making J = iI + G, where $G := b^{-1}F$. Next, we replace J by

$$\frac{3}{2}J + \frac{1}{2}J^3 = \frac{3}{2}(iI + G) + \frac{1}{2}(-iI - 3G + 3iG^2 + G^3) = iI + H,$$

where $H := (3iG^2 + G^3)/2$. The degree of nilpotency of *H* is less than the degree of nilpotency of *F*; we repeat the last substitution until obtain i*I*. \Box

Definition 5. Let $G: V \times \cdots \times V \to \mathbb{K}$ be an *n*-linear form. We say that a linear mapping $\tau : V \to V$ is *G*-selfadjoint if

$$G(v_1, \ldots, v_{i-1}, \tau v_i, v_{i+1}, \ldots, v_n) = G(v_1, \ldots, v_{j-1}, \tau v_j, v_{j+1}, \ldots, v_n)$$

for all $v_1, \ldots, v_n \in V$ and all *i* and *j*.

If τ is G-selfadjoint, then for every $f(x) \in \mathbb{K}[x]$ the linear mapping $f(\tau)$ is G-selfadjoint too.

Lemma 6. Let $G : V \times \cdots \times V \to \mathbb{K}$ be a multilinear form over a field \mathbb{K} and let $\tau : V \to V$ be a *G*-selfadjoint linear mapping. If

$$V = V_1 \oplus \dots \oplus V_s \tag{8}$$

is a decomposition of V into a direct sum of τ -invariant subspaces such that the restrictions $\tau | V_i$ and $\tau | V_i$ of τ to V_i and V_j have no common eigenvalues for all $i \neq j$, then

$$G = G_1 \oplus \dots \oplus G_s, \quad G_i := G|V_i. \tag{9}$$

Proof. It suffices to consider the case s = 2. To simplify the formulas, we assume that G is a bilinear form. Choose $v_1 \in V_1$ and $v_2 \in V_2$, we must prove that $G(v_1, v_2) = G(v_2, v_1) = 0$.

Let f(x) be the minimal polynomial of $\tau | V_2$. Since $\tau | V_1$ and $\tau | V_2$ have no common eigenvalues, $f(\tau | V_1) : V_1 \to V_1$ is a bijection, so there exists $v'_1 \in V_1$ such that $v_1 = f(\tau)v'_1$. Since τ is G-selfadjoint, $f(\tau)$ is G-selfadjoint too, and so

$$G(v_1, v_2) = G(f(\tau)v'_1, v_2) = G(v'_1, f(\tau)v_2)$$

= $G(v'_1, f(\tau|V_2)v_2) = G(v'_1, 0v_2) = G(v'_1, 0) = 0$

Analogously, $G(v_2, v_1) = 0$. \Box

Proof of Theorem 2(a). Let *n*-linear forms (1) over $\mathbb{K} = \mathbb{C}$ be symmetrically equivalent; this means that there exist linear bijections $\varphi_1, \ldots, \varphi_n : U \to V$ satisfying (2) for each reordering i_1, \ldots, i_n of $1, \ldots, n$. Let us prove by induction that *F* and *G* are congruent. Assume that $\varphi := \varphi_1 = \cdots = \varphi_t$ for some t < n and prove that there exist linear bijections

$$\psi_1 = \cdots = \psi_t = \psi_{t+1}, \psi_{t+2}, \dots, \psi_n : U \to V$$

such that

$$F(u_1, \dots, u_n) = G(\psi_{i_1} u_1, \dots, \psi_{i_n} u_n)$$
(10)

for all $u_1, \ldots, u_n \in U$ and each reordering i_1, \ldots, i_n of $1, \ldots, n$.

By (2) and since $\varphi_1, \ldots, \varphi_n$ are bijections, for every pair of indices i, j such that i < j and for all $u_i, u_j \in U$ and $v_1, \ldots, v_{i-1}, v_{i+1}, \ldots, v_{j-1}, v_{j+1}, \ldots, v_n \in V$, we have

$$G(v_1, \dots, v_{i-1}, \varphi u_i, v_{i+1}, \dots, v_{j-1}, \varphi_{t+1} u_j, v_{j+1}, \dots, v_n) = G(v_1, \dots, v_{i-1}, \varphi_{t+1} u_i, v_{i+1}, \dots, v_{j-1}, \varphi u_j, v_{j+1}, \dots, v_n).$$
(11)

Denote $v_i := \varphi_{t+1}u_i$ and $v_i := \varphi_{t+1}u_i$. Then (11) takes the form:

$$G(\ldots,\varphi\varphi_{t+1}^{-1}v_i,\ldots,v_j,\ldots)=G(\ldots,v_i,\ldots,\varphi\varphi_{t+1}^{-1}v_j,\ldots),$$

this means that the linear mapping $\tau := \varphi \varphi_{t+1}^{-1} : V \to V$ is *G*-selfadjoint.

Let $\lambda_1, \ldots, \lambda_s$ be all distinct eigenvalues of τ and let (8) be the decomposition of V into the direct sum of τ -invariant subspaces V_1, \ldots, V_s such that every $\tau_i := \tau | V_i$ has a single eigenvalue λ_i . Lemma 6 ensures (9). For every $f_i(x) \in \mathbb{C}[x]$, the linear mapping $f_i(\tau_i) : V_i \to V_i$ is G_i -selfadjoint. Using Lemma 4(a), we take $f_i(x)$ such that $f_i(\tau_i)^{t+1} = \tau_i^{-1}$. Then

$$\rho := f_1(\tau_1) \oplus \cdots \oplus f_s(\tau_s) : V \to V$$

is G-selfadjoint and $\rho^{t+1} = \tau^{-1}$.

Define

$$\psi_1 = \dots = \psi_{t+1} := \rho \varphi, \quad \psi_{t+2} := \varphi_{t+2}, \dots, \psi_n := \varphi_n.$$
 (12)

Since ρ is G-selfadjoint and

$$\rho^{t+1}\varphi = \tau^{-1}\varphi = (\varphi\varphi_{t+1}^{-1})^{-1}\varphi = \varphi_{t+1},$$

we have

$$G(\psi_1 u_1, \dots, \psi_n u_n) = G(\rho \varphi u_1, \dots, \rho \varphi u_t, \rho \varphi u_{t+1}, \varphi_{t+2} u_{t+2}, \dots, \varphi_n u_n)$$

= $G(\varphi u_1, \dots, \varphi u_t, \rho^{t+1} \varphi u_{t+1}, \varphi_{t+2} u_{t+2}, \dots, \varphi_n u_n)$
= $G(\varphi_1 u_1, \dots, \varphi_n u_n) = F(u_1, \dots, u_n).$

So (10) holds for $i_1 = 1, i_2 = 2, ..., i_n = n$. The equality (10) for an arbitrary reordering $i_1, ..., i_n$ of 1, ..., n is proved analogously. \Box

Proof of Theorem 3. Let *n*-linear forms (1) over $\mathbb{K} = \mathbb{R}$ be symmetrically equivalent; this means that there exist linear bijections $\varphi_1, \ldots, \varphi_n : U \to V$ satisfying (2) for each reordering i_1, \ldots, i_n of $1, \ldots, n$. Assume that $\varphi := \varphi_1 = \cdots = \varphi_t$ for some t < n. Just as in the proof of Theorem 2(a), $\tau := \varphi \varphi_{t+1}^{-1}$ is *G*-selfadjoint. Let (8) be the decomposition of *V* into the direct sum of τ -invariant subspaces such that every $\tau_p := \tau | V_p$ has a single real eigenvalue λ_p or a pair of conjugate complex eigenvalues

$$\lambda_p = a_p + \mathrm{i}b_p, \quad \bar{\lambda}_p = a_p - \mathrm{i}b_p, \qquad b_p > 0,$$

and $\lambda_p \neq \lambda_q$ if $p \neq q$. Lemma 6 ensures the decomposition (9).

Define the G-selfadjoint linear bijection

$$\varepsilon = \varepsilon_1 \mathbf{1}_{V_1} \oplus \cdots \oplus \varepsilon_s \mathbf{1}_{V_s} : V \to V$$

in which $\varepsilon_i = -1$ if λ_i is a negative real number, and $\varepsilon_i = 1$ otherwise. Replacing φ_{t+1} by $\varepsilon \varphi_{t+1}$, we obtain τ without negative real eigenvalues. But the right-hand member of the equality (2) may change its sign on some subspaces V_p . To preserve (2), we also replace φ_{t+2} with $\varepsilon \varphi_{t+2}$ if t + 1 < n and replace $G = G_1 \oplus \cdots \oplus G_s$ (see (9)) with

$$\varepsilon_1 G_1 \oplus \cdots \oplus \varepsilon_s G_s \tag{13}$$

if t + 1 = n. By Lemma 4(b), for every *i* there exists $f_i(x) \in \mathbb{R}[x]$ such that $f_i(\tau_i)^{t+1} = \tau_i^{-1}$. Define

$$\rho = f_1(\tau_1) \oplus \cdots \oplus f_s(\tau_s) : V \to V,$$

then $\rho^{t+1} = \tau^{-1}$. Reasoning as in the proof of Theorem 2(a), we find that (10) with (13) instead of *G* holds for the linear mappings (12). \Box

We say that two systems of *n*-linear forms

$$F_1, \ldots, F_s : U \times \cdots \times U \to \mathbb{K}, \quad G_1, \ldots, G_s : V \times \cdots \times V \to \mathbb{K}$$

are *equivalent* if there exist linear bijections $\varphi_1, \ldots, \varphi_n : U \to V$ such that

 $F_i(u_1,\ldots,u_n)=G_i(\varphi_1u_1,\ldots,\varphi_nu_n)$

for each *i* and for all $u_1, \ldots, u_n \in U$. These systems are said to be *congruent* if $\varphi_1 = \cdots = \varphi_n$.

For every *n*-linear form *F*, we construct the system of *n*-linear forms

$$\mathscr{S}(F) = \{F^{\sigma} | \sigma \in S_n\}, \quad F^{\sigma}(u_1, \dots, u_n) := F(u_{\sigma(1)}, \dots, u_{\sigma(n)}), \tag{14}$$

where S_n denotes the set of all substitutions on $1, \ldots, n$.

The next corollary is another form of Theorem 2(a).

Corollary 7. Two multilinear forms F and G over \mathbb{C} are congruent if and only if the systems of multilinear forms $\mathcal{G}(F)$ and $\mathcal{G}(G)$ are equivalent.

To each substitution $\sigma \in S_n$, we assign some $\varepsilon(\sigma) \in \{1, -1\}$. Generalizing the notions of symmetric and skew-symmetric bilinear forms, we say that an *n*-linear form *F* is ε -symmetric if $F^{\sigma} = \varepsilon(\sigma)F$ for all $\sigma \in S_n$. If *G* is another ε -symmetric *n*-linear form, then $\mathscr{S}(F)$ and $\mathscr{S}(G)$ are equivalent if and only if *F* and *G* are equivalent. So the next corollary follows from Corollary 7.

Corollary 8. Two ε -symmetric multilinear forms over \mathbb{C} are equivalent if and only if they are congruent.

3. Direct decompositions

Every bilinear form over \mathbb{C} or \mathbb{R} decomposes into a direct sum of indecomposable forms uniquely up to congruence of summands; see the classification of bilinear forms in [1,5,4]. In [4, Theorem 2 and §2] this statement was extended to all systems of linear mappings and bilinear forms over \mathbb{C} or \mathbb{R} . The next theorem shows that a stronger statement holds for *n*-linear forms with $n \ge 3$ over all fields.

Theorem 9. Let $F : U \times \cdots \times U \to \mathbb{K}$ be an *n*-linear form with $n \ge 3$ over a field \mathbb{K} .

- (a) Let $F = F' \oplus 0$ and let F' have no zero direct summands. If $U = U' \oplus U_0$ is the corresponding decomposition of U, then U_0 is uniquely determined by F and F' is determined up to congruence.
- (b) Let F have no zero direct summands and let F = F₁ ⊕ · · · ⊕ F_s be its decomposition into a direct sum of indecomposable forms. If U = U₁ ⊕ · · · ⊕ U_s is the corresponding decomposition of U, then the sequence U₁, . . . , U_s is determined by F uniquely up to permutations.

Proof. (a) The subspace U_0 is uniquely determined by F since U_0 is the set of all $u \in U$ satisfying

$$F(u, x_1, \dots, x_{n-1}) = F(x_1, u, x_2, \dots, x_{n-1}) = \dots = F(x_1, \dots, x_{n-1}, u) = 0$$

for all $x_1, \ldots, x_{n-1} \in U$.

Let $F = F' \oplus 0 = G' \oplus 0$ be two decompositions in which F' and G' have no zero direct summands, and let $U = U' \oplus U_0 = V' \oplus U_0$ be the corresponding decompositions of U. Choose bases u_1, \ldots, u_m of U' and v_1, \ldots, v_m of V' such that $u_1 - v_1, \ldots, u_m - v_m$ belong to U_0 . Then

$$F(u_{i_1},\ldots,u_{i_n})=F(v_{i_1},\ldots,v_{i_n})$$

for all $i_1, \ldots, i_n \in \{1, \ldots, m\}$, and so the linear bijection

$$\varphi: U' \longrightarrow V', \quad u_1 \mapsto v_1, \ldots, u_m \mapsto v_m,$$

gives the congruence of F' and G'.

(b) Let $F: U \times \cdots \times U \to \mathbb{K}$ be an *n*-linear form with $n \ge 3$ that has no zero direct summands, let

$$F = F_1 \oplus \dots \oplus F_s = G_1 \oplus \dots \oplus G_r \tag{15}$$

be two decompositions of F into direct sums of indecomposable forms, and let

$$U = U_1 \oplus \dots \oplus U_s = V_1 \oplus \dots \oplus V_r \tag{16}$$

be the corresponding decompositions of U.

Put

$$d_1 = \dim U_1, \dots, d_s = \dim U_s \tag{17}$$

and choose two bases

$$u_1, \dots, u_m \in U_1 \cup \dots \cup U_s, \quad v_1, \dots, v_m \in V_1 \cup \dots \cup V_r$$
(18)

of the space U with the following ordering of the first basis:

 u_1, \ldots, u_{d_1} is a basis of $U_1, \quad u_{d_1+1}, \ldots, u_{d_1+d_2}$ is a basis of U_2, \ldots (19)

Let *C* be the transition matrix from u_1, \ldots, u_m to v_1, \ldots, v_m . Partition it into *s* horizontal and *s* vertical strips of sizes d_1, d_2, \ldots, d_s . Since *C* is nonsingular, by interchanging its columns (i.e., reindexing v_1, \ldots, v_m) we make nonsingular all diagonal blocks. Changing the bases (19), we make elementary transformations within the horizontal strips of *C* and reduce it to the form:

$$C = \begin{bmatrix} I_{d_1} & C_{12} & \dots & C_{1s} \\ C_{21} & I_{d_2} & \dots & C_{2s} \\ \dots & \dots & \dots & \dots \\ C_{s1} & C_{s2} & \dots & I_{d_s} \end{bmatrix}.$$
 (20)

It suffices to prove that $u_1 = v_1, \ldots, u_m = v_m$, that is,

$$C_{pq} = 0 \quad \text{if } p \neq q. \tag{21}$$

Indeed, by (18) $v_1 \in V_p$ for some p. Since F_1 is indecomposable, if $d_1 > 1$ then $u_1, u_2 \in U_1$ and

$$F(\dots, u_1, \dots, u_2, \dots) \neq 0$$
 or $F(\dots, u_2, \dots, u_1, \dots) \neq 0$ (22)

for some elements of U denoted by points. If (21) holds, then $u_1 = v_1$ and $u_2 = v_2$. Since $v_1 \in V_p$, (22) ensures that $v_2 \notin V_q$ for all $q \neq p$, and so $v_2 \in V_p$. This means that $U_1 \subset V_p$. Therefore, after a suitable reindexing of V_1, \ldots, V_s we obtain $U_1 \subset V_1, \ldots, U_r \subset V_r$. By (16), r = s and $U_1 = V_1, \ldots, U_r = V_r$; so the statement (b) follows from (22).

Let us prove (21). For each substitution $\sigma \in S_n$, the *n*-linear form F^{σ} defined in (14) can be given by the *n*-dimensional matrix

$$\mathbb{A}^{\sigma} = [a^{\sigma}_{ij,\dots,k}]^m_{i,j,\dots,k=1}, \quad a^{\sigma}_{ij,\dots,k} := F^{\sigma}(u_i, u_j, \dots, u_k)$$

in the basis u_1, \ldots, u_m , or by the *n*-dimensional matrix

$$\mathbb{B}^{\sigma} = [b^{\sigma}_{ij,\dots,k}]^{m}_{i,j,\dots,k=1}, \quad b^{\sigma}_{ij,\dots,k} := F^{\sigma}(v_i, v_j, \dots, v_k)$$

in the basis v_1, \ldots, v_m . Then for all $x_1, \ldots, x_n \in U$ and their coordinate vectors $[x_i] = (x_{1i}, \ldots, x_{mi})^T$ in the basis u_1, \ldots, u_m , we have

$$F^{\sigma}(x_1, \dots, x_n) = \sum_{i, j, \dots, k=1}^m a_{ij\dots k}^{\sigma} x_{i1} x_{j2} \cdots x_{kn}.$$
(23)

If $C = [c_{ij}]$ is the transition matrix (20), then

$$b_{i'j',\dots,k'}^{\sigma} = \sum_{i,j,\dots,k=1}^{m} a_{ij,\dots,k}^{\sigma} c_{ii'} c_{jj'} \cdots c_{kk'}.$$
(24)

By (15), $a_{ij,\dots,k}^{\sigma} = F^{\sigma}(u_i, u_j, \dots, u_k) \neq 0$ only if all u_i, u_j, \dots, u_k belong to the same space U_l . Hence \mathbb{A}^{σ} and, analogously, \mathbb{B}^{σ} decompose into the direct sums of *n*-dimensional matrices:

$$\mathbb{A}^{\sigma} = \mathbb{A}^{\sigma}_{1} \oplus \dots \oplus \mathbb{A}^{\sigma}_{s}, \quad \mathbb{B}^{\sigma} = \mathbb{B}^{\sigma}_{1} \oplus \dots \oplus \mathbb{B}^{\sigma}_{r}, \tag{25}$$

in which every \mathbb{A}_i^{σ} has size $d_i \times \cdots \times d_i$ and every \mathbb{B}_j^{σ} has size dim $V_j \times \cdots \times \dim V_j$. We prove (21) using induction in *n*.

Base of induction: n = 3. The three-dimensional matrices \mathbb{A}^{σ} and \mathbb{B}^{σ} can be given by the sequences of *m*-by-*m* matrices

$$A_1^{\sigma} = [a_{ij1}^{\sigma}]_{i,j=1}^m, \dots, A_m^{\sigma} = [a_{ijm}^{\sigma}]_{i,j=1}^m, B_1^{\sigma} = [b_{ij1}^{\sigma}]_{i,j=1}^m, \dots, B_m^{\sigma} = [b_{ijm}^{\sigma}]_{i,j=1}^m;$$

we call these matrices the *layers* of \mathbb{A}^{σ} and \mathbb{B}^{σ} . The equality (23) takes the form:

$$F^{\sigma}(x_1, x_2, x_3) = [x_1]^{\mathrm{T}} (A_1^{\sigma} x_{13} + \dots + A_m^{\sigma} x_{m3}) [x_2]$$
(26)

for all $x_1, x_2, x_3 \in U$ and their coordinate vectors $[x_i] = (x_{1i}, \ldots, x_{mi})^T$ in the basis u_1, \ldots, u_m . Put

$$H_1^{\sigma} := A_1^{\sigma} c_{11} + \dots + A_m^{\sigma} c_{m1},$$

$$\dots$$
$$H_m^{\sigma} := A_1^{\sigma} c_{1m} + \dots + A_m^{\sigma} c_{mm}$$
(27)

By (24)

$$b_{i'j'k'}^{\sigma} = \sum_{i,j=1}^{m} (a_{ij1}^{\sigma}c_{1k'} + \dots + a_{ijm}^{\sigma}c_{mk'})c_{ii'}c_{jj'}$$

and so

$$B_1^{\sigma} = C^{\mathrm{T}} H_1^{\sigma} C, \dots, \quad B_m^{\sigma} = C^{\mathrm{T}} H_m^{\sigma} C.$$
⁽²⁸⁾

Partition $\{1, \ldots, m\}$ into the subsets

 $\mathscr{I}_1 = \{1, \dots, d_1\}, \quad \mathscr{I}_2 = \{d_1 + 1, \dots, d_1 + d_2\}, \dots$ (29)

(see (17)). By (25), if $k \in \mathscr{I}_q$ for some q, then the kth layer of \mathbb{A}^{σ} has the form

$$A_k^{\sigma} = 0_{d_1} \oplus \dots \oplus 0_{d_{q-1}} \oplus A_k^{\sigma} \oplus 0_{d_{q+1}} \oplus \dots \oplus 0_{d_s}$$
(30)

in which \widetilde{A}_k^{σ} is d_q -by- d_q . So by (27) and since all diagonal blocks of the matrix (20) are the identity matrices, we have

$$H_k^{\sigma} = \sum_{i \in \mathscr{I}_1} \widetilde{A}_i^{\sigma} c_{ik} \oplus \dots \oplus \sum_{i \in \mathscr{I}_{q-1}} \widetilde{A}_i^{\sigma} c_{ik} \oplus \widetilde{A}_k^{\sigma} \oplus \sum_{i \in \mathscr{I}_{q+1}} \widetilde{A}_i^{\sigma} c_{ik} \oplus \dots \oplus \sum_{i \in \mathscr{I}_s} \widetilde{A}_i^{\sigma} c_{ik}.$$
 (31)

We may suppose that

$$\sum_{\sigma \in S_3} \sum_{i=1}^{m} \operatorname{rank} A_i^{\sigma} \ge \sum_{\sigma \in S_3} \sum_{i=1}^{m} \operatorname{rank} B_i^{\sigma};$$
(32)

G.R. Belitskii, V.V. Sergeichuk / Linear Algebra and its Applications 418 (2006) 751-762

otherwise we interchange the direct sums in (15). By (30) and (28),

$$\sum_{\sigma \in S_3} \sum_{i=1}^{m} \operatorname{rank} \widetilde{A}_i^{\sigma} \ge \sum_{\sigma \in S_3} \sum_{i=1}^{m} \operatorname{rank} H_i^{\sigma}.$$
(33)

Let us fix distinct p and q and prove that $C_{pq} = 0$ in (20). Due to (31), (33), and (30),

$$\forall k \in \mathscr{I}_q : \quad \sum_{i \in \mathscr{I}_p} A_i^\sigma c_{ik} = 0. \tag{34}$$

Replacing in this sum each A_i^{σ} by the basis vector u_i , we define

$$u := \sum_{i \in \mathscr{I}_p} u_i c_{ik} \in U_p.$$
(35)

Since

$$[u] = (0, \dots, 0, c_{d+1,k}, \dots, c_{d+d_p,k}, 0, \dots, 0)^{\mathrm{T}}, \quad d := d_1 + \dots + d_{p-1}$$

by (26) and (34) we have $F^{\sigma}(x, y, u) = 0$ for all $x, y \in U_p$. This equality holds for all substitutions $\sigma \in S_3$, hence

$$F(u, x, y) = F(x, u, y) = F(x, y, u) = 0,$$
(36)

and so $F|u\mathbb{K}$ is a zero direct summand of $F_p = F|U_p$. Since F_p is indecomposable, u = 0; that is, $c_{d+1,k} = \cdots = c_{d+d_p,k} = 0$. These equalities hold for all $k \in \mathscr{I}_q$, hence $C_{pq} = 0$. This proves (21) for n = 3.

Induction step. Let $n \ge 4$ and assume that (21) holds for all (n - 1)-linear forms.

The *n*-dimensional matrices \mathbb{A}^{σ} and \mathbb{B}^{σ} can be given by the sequences of (n - 1)-dimensional matrices

$$A_{1}^{\sigma} = [a_{i,\dots,j1}^{\sigma}]_{i,\dots,j=1}^{m}, \dots, A_{m}^{\sigma} = [a_{i,\dots,jm}^{\sigma}]_{i,\dots,j=1}^{m}, B_{1}^{\sigma} = [b_{i,\dots,j1}^{\sigma}]_{i,\dots,j=1}^{m}, \dots, B_{m}^{\sigma} = [b_{i,\dots,jm}^{\sigma}]_{i,\dots,j=1}^{m}$$

By (24)

$$b_{i',...,j'1}^{\sigma} = \sum_{i,...,j} (a_{i,...,j1}^{\sigma}c_{11} + \dots + a_{i,...,jm}^{\sigma}c_{m1})c_{ii}' \cdots c_{jj}',$$
...
$$b_{i',...,j'm}^{\sigma} = \sum_{i,...,j} (a_{i,...,j1}^{\sigma}c_{1m} + \dots + a_{i,...,jm}^{\sigma}c_{mm})c_{ii}' \cdots c_{jj}'.$$
(37)

Due to (25) and analogous to (30), each A_k^{σ} with $k \in \mathscr{I}_q$ (see (29)) is a direct sum of $d_1 \times \cdots \times d_1, \ldots, d_s \times \cdots \times d_s$ matrices, and only the *q*th summand \widetilde{A}_k^{σ} may be nonzero. This implies (31) for each *k* and for H_k^{σ} defined in (27).

For each (n - 1)-linear form G, denote by s(G) the number of *nonzero* summands in a decomposition of G into a direct sum of indecomposable forms; this number is uniquely determined by G due to induction hypothesis. Put s(M) := s(G) if G is given by an (n - 1)-dimensional matrix M. By (37), the set of (n - 1)-linear forms given by (n - 1)-dimensional matrices (27) is congruent to the set of (n - 1)-linear forms given by $B_1^{\sigma}, \ldots, B_m^{\sigma}$. Hence

$$s(H_1^{\sigma}) = s(B_1^{\sigma}), \dots, s(H_m^{\sigma}) = s(B_m^{\sigma}).$$
 (38)

We suppose that

$$\sum_{\sigma \in S_n} \sum_{k=1}^m s(A_k^{\sigma}) \ge \sum_{\sigma \in S_n} \sum_{k=1}^m s(B_k^{\sigma})$$

otherwise we interchange the direct sums in (15). Then by (38)

$$\sum_{\sigma \in S_n} \sum_{k=1}^m s(\widetilde{A}_k^{\sigma}) \ge \sum_{\sigma \in S_n} \sum_{k=1}^m s(H_k^{\sigma}).$$
(39)

Let us fix distinct p and q and prove that $C_{pq} = 0$ in (20). By (31),

$$s(H_k^{\sigma}) = s(\widetilde{A}_k^{\sigma}) + \sum_{p \neq q} s\left(\sum_{i \in \mathscr{I}_p} \widetilde{A}_i^{\sigma} c_{ik}\right)$$

for each $k \in \mathscr{I}_q$. Combining it with (39), we have

$$\sum_{i \in \mathscr{I}_p} A_i^{\sigma} c_{ik} = \sum_{i \in \mathscr{I}_p} \widetilde{A}_i^{\sigma} c_{ik} = 0$$

for each $k \in \mathcal{I}_q$. Define *u* by (35). As in (36), we obtain

$$F(u, x, ..., y) = F(x, u, ..., y) = \dots = F(x, ..., y, u) = 0$$

for all $x, \ldots, y \in U_p$ and so $F|u\mathbb{K}$ is a zero direct summand of $F_p = F|U_p$. Since F_p is indecomposable, u = 0; so $C_{pq} = 0$. This proves (21) for n > 3. \Box

Remark 10. Theorem 9(b) does not hold for bilinear forms: for example, the matrix of scalar product is the identity in each orthonormal basis of a Euclidean space. This distinction between bilinear and *n*-linear forms with $n \ge 3$ may be explained by the fact that decomposable bilinear forms are more frequent. Let us consider forms in a two-dimensional vector space. To decompose a bilinear form, we must make zero two entries in its 2×2 matrix. To decompose a trilinear form, we must make zero six entries in its $2 \times 2 \times 2$ matrix. In both the cases, these zeros are made by transition matrices, which have four entries.

Corollary 11. Let $F: U \times \cdots \times U \to \mathbb{K}$ be an n-linear form with $n \ge 3$ over a field \mathbb{K} . If

$$F = F_1 \oplus \dots \oplus F_s \oplus 0 \tag{40}$$

and the summands F_1, \ldots, F_s are nonzero and indecomposable, then these summands are determined by F uniquely up to congruence. Moreover, if $U = U_1 \oplus \cdots \oplus U_s \oplus U_0$ is the corresponding decomposition of U, then the sequence of subspaces

$$U_1 + U_0, \dots, U_s + U_0, U_0 \tag{41}$$

is determined by F uniquely up to permutations of $U_1 + U_0, \ldots, U_s + U_0$.

Proof of Theorem 2(b). For n = 2 this theorem was proved in [4, Section 2.1] (and was extended to arbitrary systems of forms and linear mappings in [4, Theorem 2]). For $n \ge 3$ this theorem follows from Theorem 3 and Corollary 11. \Box

References

- [1] R.A. Horn, V.V. Sergeichuk, Congruence of a square matrix and its transpose, Linear Algebra Appl. 389 (2004) 347–353.
- [2] A.I Mal'cev, Foundations of Linear Algebra, W.H. Freeman & Co., San Francisco, CA-London, 1963.
- [3] A.V Roiter, Bocses with involution, in: Ju.A. Mitropol'skii (Ed.), Representations and Quadratic Forms, Inst. Mat. Akad. Nauk Ukrain. SSR, Kiev, 1979, pp. 124–128 (in Russian).
- [4] V.V. Sergeichuk, Classification problems for systems of forms and linear mappings, Math. USSR Izvestiya 31 (3) (1988) 481–501.
- [5] R.A. Horn, V.V. Sergeichuk, Canonical forms for complex matrix congruence and *congruence, Linear Algebra Appl., in press, doi:10.1016/j.laa.2006.01.005.