Congruence of multilinear forms

Genrich R. Belitskii ${ }^{\text {a }}$, Vladimir V. Sergeichuk b,*
${ }^{\text {a }}$ Department of Mathematics, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
${ }^{\mathrm{b}}$ Institute of Mathematics, Tereshchenkivska St. 3, Kiev, Ukraine
Received 16 November 2005; accepted 6 March 2006
Available online 27 April 2006
Submitted by P. Šemrl

Abstract

Let

$$
F: U \times \cdots \times U \rightarrow \mathbb{K}, \quad G: V \times \cdots \times V \rightarrow \mathbb{K}
$$

be two n-linear forms with $n \geqslant 2$ on finite dimensional vector spaces U and V over a field \mathbb{K}. We say that F and G are symmetrically equivalent if there exist linear bijections $\varphi_{1}, \ldots, \varphi_{n}: U \rightarrow V$ such that

$$
F\left(u_{1}, \ldots, u_{n}\right)=G\left(\varphi_{i_{1}} u_{1}, \ldots, \varphi_{i_{n}} u_{n}\right)
$$

for all $u_{1}, \ldots, u_{n} \in U$ and each reordering i_{1}, \ldots, i_{n} of $1, \ldots, n$. The forms are said to be congruent if $\varphi_{1}=\cdots=\varphi_{n}$.
Let F and G be symmetrically equivalent. We prove that
(i) if $\mathbb{K}=\mathbb{C}$, then F and G are congruent;
(ii) if $\mathbb{K}=\mathbb{R}, F=F_{1} \oplus \cdots \oplus F_{s} \oplus 0, G=G_{1} \oplus \cdots \oplus G_{r} \oplus 0$, and all summands F_{i} and G_{j} are nonzero and direct-sum-indecomposable, then $s=r$ and, after a suitable reindexing, F_{i} is congruent to $\pm G_{i}$.
© 2006 Elsevier Inc. All rights reserved.

AMS classification: 15A69
Keywords: Multilinear forms; Tensors; Equivalence and congruence

[^0]
1. Introduction

Two matrices A and B over a field \mathbb{K} are called congruent if $A=S^{\mathrm{T}} B S$ for some nonsingular S. Two matrix pairs $\left(A_{1}, B_{1}\right)$ and $\left(A_{2}, B_{2}\right)$ are called equivalent if $A_{1}=R A_{2} S$ and $B_{1}=R B_{2} S$ for some nonsingular R and S. Clearly, if A and B are congruent, then $\left(A, A^{\mathrm{T}}\right)$ and $\left(B, B^{\mathrm{T}}\right)$ are equivalent. Quite unexpectedly, the inverse statement holds for complex matrices too: if (A, A^{T}) and (B, B^{T}) are equivalent, then A and B are congruent [2, Chapter VI, $\S 3$, Theorem 3]. This statement was extended in [3,4] to arbitrary systems of linear mappings and bilinear forms. In this article, we extend it to multilinear forms.

A multilinear form (or, more precisely, n-linear form, $n \geqslant 2$) on a finite dimensional vector space U over a field \mathbb{K} is a mapping $F: U \times \cdots \times U \rightarrow \mathbb{K}$ such that

$$
\begin{aligned}
& F\left(u_{1}, \ldots, u_{i-1}, a u_{i}^{\prime}+b u_{i}^{\prime \prime}, u_{i+1}, \ldots, u_{n}\right) \\
& \quad=a F\left(u_{1}, \ldots, u_{i}^{\prime}, \ldots, u_{n}\right)+b F\left(u_{1}, \ldots, u_{i}^{\prime \prime}, \ldots, u_{n}\right)
\end{aligned}
$$

for all $i \in\{1, \ldots, n\}, a, b \in \mathbb{K}$, and $u_{1}, \ldots, u_{i}^{\prime}, u_{i}^{\prime \prime}, \ldots, u_{n} \in U$.
Definition 1. Let

$$
\begin{equation*}
F: U \times \cdots \times U \rightarrow \mathbb{K}, \quad G: V \times \cdots \times V \rightarrow \mathbb{K} \tag{1}
\end{equation*}
$$

be two n-linear forms.
(a) F and G are called equivalent if there exist linear bijections $\varphi_{1}, \ldots, \varphi_{n}: U \rightarrow V$ such that $F\left(u_{1}, \ldots, u_{n}\right)=G\left(\varphi_{1} u_{1}, \ldots, \varphi_{n} u_{n}\right)$
for all $u_{1}, \ldots, u_{n} \in U$.
(b) F and G are called symmetrically equivalent if there exist linear bijections $\varphi_{1}, \ldots, \varphi_{n}$: $U \rightarrow V$ such that
$F\left(u_{1}, \ldots, u_{n}\right)=G\left(\varphi_{i_{1}} u_{1}, \ldots, \varphi_{i_{n}} u_{n}\right)$
for all $u_{1}, \ldots, u_{n} \in U$ and each reordering i_{1}, \ldots, i_{n} of $1, \ldots, n$.
(c) F and G are called congruent if there exists a linear bijection $\varphi: U \rightarrow V$ such that
$F\left(u_{1}, \ldots, u_{n}\right)=G\left(\varphi u_{1}, \ldots, \varphi u_{n}\right)$
for all $u_{1}, \ldots, u_{n} \in U$.
The direct sum of forms (1) is the multilinear form

$$
F \oplus G:(U \oplus V) \times \cdots \times(U \oplus V) \rightarrow \mathbb{K}
$$

defined as follows:

$$
(F \oplus G)\left(u_{1}+v_{1}, \ldots, u_{n}+v_{n}\right):=F\left(u_{1}, \ldots, u_{n}\right)+G\left(v_{1}, \ldots, v_{n}\right)
$$

for all $u_{1}, \ldots, u_{n} \in U$ and $v_{1}, \ldots, v_{n} \in V$.
We will use the internal definition: if $F: U \times \cdots \times U \rightarrow \mathbb{K}$ is a multilinear form, then $F=$ $F_{1} \oplus F_{2}$ means that there is a decomposition $U=U_{1} \oplus U_{2}$ such that
(i) $F\left(x_{1}, \ldots, x_{n}\right)=0$ as soon as $x_{i} \in U_{1}$ and $x_{j} \in U_{2}$ for some i and j.
(ii) $F_{1}=F \mid U_{1}$ and $F_{2}=F \mid U_{2}$ are the restrictions of F to U_{1} and U_{2}.

A multilinear form $F: U \times \cdots \times U \rightarrow \mathbb{K}$ is indecomposable if for each decomposition $F=$ $F_{1} \oplus F_{2}$ and the corresponding decomposition $U=U_{1} \oplus U_{2}$ we have $U_{1}=0$ or $U_{2}=0$.

Our main result is the following theorem.
Theorem 2. (a) If two multilinear forms over \mathbb{C} are symmetrically equivalent, then they are congruent.
(b) If two multilinear forms F and G over \mathbb{R} are symmetrically equivalent and

$$
F=F_{1} \oplus \cdots \oplus F_{s} \oplus 0, \quad G=G_{1} \oplus \cdots \oplus G_{r} \oplus 0
$$

are their decompositions such that all summands F_{i} and G_{j} are nonzero and indecomposable, then $s=r$ and, after a suitable reindexing, each F_{i} is congruent to G_{i} or $-G_{i}$.

The statement (a) of this theorem is proved in the next section. We prove (b) in the end of Section 3 basing on Corollary 11, in which we argue that every n-linear form $F: U \times \cdots \times U \rightarrow \mathbb{K}$ with $n \geqslant 3$ over an arbitrary field \mathbb{K} decomposes into a direct sum of indecomposable forms uniquely up to congruence of summands. Moreover, if $F=F_{1} \oplus \cdots \oplus F_{s} \oplus 0$ is a decomposition in which F_{1}, \ldots, F_{s} are nonzero and indecomposable, and $U=U_{1} \oplus \cdots \oplus U_{s} \oplus U_{0}$ is the corresponding decomposition of U, then the sequence of subspaces $U_{1}+U_{0}, \ldots, U_{s}+U_{0}, U_{0}$ is determined by F uniquely up to permutations of $U_{1}+U_{0}, \ldots, U_{s}+U_{0}$.

2. Symmetric equivalence and congruence

In this section, we prove Theorem 2(a) and the following theorem, which is a weakened form of Theorem 2(b).

Theorem 3. If two multilinear forms F and G over \mathbb{R} are symmetrically equivalent, then there are decompositions

$$
F=F_{1} \oplus F_{2}, \quad G=G_{1} \oplus G_{2}
$$

such that F_{1} is congruent to G_{1} and F_{2} is congruent to $-G_{2}$.
Its proof is based on two lemmas.
Lemma 4. (a) Let T be a nonsingular complex matrix having a single eigenvalue. Then

$$
\forall m \in \mathbb{N} \quad \exists f(x) \in \mathbb{C}[x]: \quad f(T)^{m}=T^{-1}
$$

(b) Let T be a real matrix whose set of eigenvalues consists of one positive real number or a pair of distinct conjugate complex numbers. Then

$$
\begin{equation*}
\forall m \in \mathbb{N} \quad \exists f(x) \in \mathbb{R}[x]: \quad f(T)^{m}=T^{-1} \tag{3}
\end{equation*}
$$

Proof. (a) Let T be a nonsingular complex matrix with a single eigenvalue λ. Since the matrix $T-\lambda I$ is nilpotent (this follows from its Jordan canonical form), the substitution of T for x into the Taylor expansion

$$
\begin{align*}
x^{-\frac{1}{m}}= & \lambda^{-\frac{1}{m}}+\left(-\frac{1}{m}\right) \lambda^{-\frac{1}{m}-1}(x-\lambda) \\
& +\frac{1}{2!}\left(-\frac{1}{m}\right)\left(-\frac{1}{m}-1\right) \lambda^{-\frac{1}{m}-2}(x-\lambda)^{2}+\cdots \tag{4}
\end{align*}
$$

gives some matrix

$$
\begin{equation*}
f(T), \quad f(x) \in \mathbb{C}[x], \tag{5}
\end{equation*}
$$

satisfying $f(T)^{m}=T^{-1}$.
(b) Let T be a square real matrix. If it has a single eigenvalue that is a positive real number λ, then all coefficients in (4) are real, so the matrix (5) satisfies (3).

Let T have only two eigenvalues

$$
\begin{equation*}
\lambda=a+\mathrm{i} b, \quad \bar{\lambda}=a-\mathrm{i} b \quad(a, b \in \mathbb{R}, b>0) \tag{6}
\end{equation*}
$$

It suffices to prove (3) for any matrix that is similar to T over \mathbb{R}, so we may suppose that T is the real Jordan matrix

$$
T=R^{-1}\left[\begin{array}{ll}
J & 0 \\
0 & \bar{J}
\end{array}\right] R=\left[\begin{array}{cc}
a I+F & b I \\
-b I & a I+F
\end{array}\right], \quad R:=\left[\begin{array}{cc}
I & -\mathrm{i} I \\
I & \mathrm{i} I
\end{array}\right]
$$

in which $J=\lambda I+F$ is a direct sum of Jordan blocks with the same eigenvalue λ (and so F is a nilpotent upper triangular matrix).

It suffices to prove that

$$
\begin{equation*}
\forall m \in \mathbb{N} \quad \exists f(x) \in \mathbb{R}[x]: f(J)^{m}=J^{-1} \tag{7}
\end{equation*}
$$

since such $f(x)$ satisfies (3):

$$
\begin{aligned}
f(T)^{m} & =f\left(R^{-1}(J \oplus \bar{J}) R\right)^{m}=R^{-1} f(J \oplus \bar{J})^{m} R \\
& =R^{-1}\left(f(J)^{m} \oplus \overline{f(J)}^{m}\right) R=R^{-1}(J \oplus \bar{J})^{-1} R=T^{-1}
\end{aligned}
$$

The matrix F is nilpotent, so the substitution of $J=\lambda I+F$ into the Taylor expansion (4) gives some matrix $g(J)$ with $g(x) \in \mathbb{C}[x]$ satisfying $g(J)^{m}=J^{-1}$. Represent $g(x)$ in the form:

$$
g(x)=g_{0}(x)+\mathrm{i} g_{1}(x), \quad g_{0}(x), g_{1}(x) \in \mathbb{R}[x]
$$

It suffices to prove that J reduces to iI by a finite sequence of polynomial substitutions

$$
J \longmapsto h(J), \quad h(x) \in \mathbb{R}[x] .
$$

Indeed, their composite is some polynomial $p(x) \in \mathbb{R}[x]$ such that $p(J)=\mathrm{i} I$, and then $f(x):=$ $g_{0}(x)+p(x) g_{1}(x) \in \mathbb{R}[x]$ satisfies (7):

$$
f(J)^{m}=\left(g_{0}(J)+p(J) g_{1}(J)\right)^{m}=\left(g_{0}(J)+\mathrm{i} g_{1}(J)\right)^{m}=g(J)^{m}=J^{-1}
$$

First, we replace J by $b^{-1}(J-a I)$ (see (6)) making $J=\mathrm{i} I+G$, where $G:=b^{-1} F$. Next, we replace J by

$$
\frac{3}{2} J+\frac{1}{2} J^{3}=\frac{3}{2}(\mathrm{i} I+G)+\frac{1}{2}\left(-\mathrm{i} I-3 G+3 \mathrm{i} G^{2}+G^{3}\right)=\mathrm{i} I+H
$$

where $H:=\left(3 \mathrm{i} G^{2}+G^{3}\right) / 2$. The degree of nilpotency of H is less than the degree of nilpotency of F; we repeat the last substitution until obtain iI.

Definition 5. Let $G: V \times \cdots \times V \rightarrow \mathbb{K}$ be an n-linear form. We say that a linear mapping τ : $V \rightarrow V$ is G-selfadjoint if

$$
G\left(v_{1}, \ldots, v_{i-1}, \tau v_{i}, v_{i+1}, \ldots, v_{n}\right)=G\left(v_{1}, \ldots, v_{j-1}, \tau v_{j}, v_{j+1}, \ldots, v_{n}\right)
$$

for all $v_{1}, \ldots, v_{n} \in V$ and all i and j.
If τ is G-selfadjoint, then for every $f(x) \in \mathbb{K}[x]$ the linear mapping $f(\tau)$ is G-selfadjoint too.

Lemma 6. Let $G: V \times \cdots \times V \rightarrow \mathbb{K}$ be a multilinear form over a field \mathbb{K} and let $\tau: V \rightarrow V$ be a G-selfadjoint linear mapping. If

$$
\begin{equation*}
V=V_{1} \oplus \cdots \oplus V_{s} \tag{8}
\end{equation*}
$$

is a decomposition of V into a direct sum of τ-invariant subspaces such that the restrictions $\tau \mid V_{i}$ and $\tau \mid V_{j}$ of τ to V_{i} and V_{j} have no common eigenvalues for all $i \neq j$, then

$$
\begin{equation*}
G=G_{1} \oplus \cdots \oplus G_{s}, \quad G_{i}:=G \mid V_{i} . \tag{9}
\end{equation*}
$$

Proof. It suffices to consider the case $s=2$. To simplify the formulas, we assume that G is a bilinear form. Choose $v_{1} \in V_{1}$ and $v_{2} \in V_{2}$, we must prove that $G\left(v_{1}, v_{2}\right)=G\left(v_{2}, v_{1}\right)=0$.

Let $f(x)$ be the minimal polynomial of $\tau \mid V_{2}$. Since $\tau \mid V_{1}$ and $\tau \mid V_{2}$ have no common eigenvalues, $f\left(\tau \mid V_{1}\right): V_{1} \rightarrow V_{1}$ is a bijection, so there exists $v_{1}^{\prime} \in V_{1}$ such that $v_{1}=f(\tau) v_{1}^{\prime}$. Since τ is G-selfadjoint, $f(\tau)$ is G-selfadjoint too, and so

$$
\begin{aligned}
G\left(v_{1}, v_{2}\right) & =G\left(f(\tau) v_{1}^{\prime}, v_{2}\right)=G\left(v_{1}^{\prime}, f(\tau) v_{2}\right) \\
& =G\left(v_{1}^{\prime}, f\left(\tau \mid V_{2}\right) v_{2}\right)=G\left(v_{1}^{\prime}, 0 v_{2}\right)=G\left(v_{1}^{\prime}, 0\right)=0
\end{aligned}
$$

Analogously, $G\left(v_{2}, v_{1}\right)=0$.
Proof of Theorem 2(a). Let n-linear forms (1) over $\mathbb{K}=\mathbb{C}$ be symmetrically equivalent; this means that there exist linear bijections $\varphi_{1}, \ldots, \varphi_{n}: U \rightarrow V$ satisfying (2) for each reordering i_{1}, \ldots, i_{n} of $1, \ldots, n$. Let us prove by induction that F and G are congruent. Assume that $\varphi:=\varphi_{1}=$ $\cdots=\varphi_{t}$ for some $t<n$ and prove that there exist linear bijections

$$
\psi_{1}=\cdots=\psi_{t}=\psi_{t+1}, \psi_{t+2}, \ldots, \psi_{n}: U \rightarrow V
$$

such that

$$
\begin{equation*}
F\left(u_{1}, \ldots, u_{n}\right)=G\left(\psi_{i_{1}} u_{1}, \ldots, \psi_{i_{n}} u_{n}\right) \tag{10}
\end{equation*}
$$

for all $u_{1}, \ldots, u_{n} \in U$ and each reordering i_{1}, \ldots, i_{n} of $1, \ldots, n$.
By (2) and since $\varphi_{1}, \ldots, \varphi_{n}$ are bijections, for every pair of indices i, j such that $i<j$ and for all $u_{i}, u_{j} \in U$ and $v_{1}, \ldots, v_{i-1}, v_{i+1}, \ldots, v_{j-1}, v_{j+1}, \ldots, v_{n} \in V$, we have

$$
\begin{align*}
& G\left(v_{1}, \ldots, v_{i-1}, \varphi u_{i}, v_{i+1}, \ldots, v_{j-1}, \varphi_{t+1} u_{j}, v_{j+1}, \ldots, v_{n}\right) \\
& \quad=G\left(v_{1}, \ldots, v_{i-1}, \varphi_{t+1} u_{i}, v_{i+1}, \ldots, v_{j-1}, \varphi u_{j}, v_{j+1}, \ldots, v_{n}\right) \tag{11}
\end{align*}
$$

Denote $v_{i}:=\varphi_{t+1} u_{i}$ and $v_{j}:=\varphi_{t+1} u_{j}$. Then (11) takes the form:

$$
G\left(\ldots, \varphi \varphi_{t+1}^{-1} v_{i}, \ldots, v_{j}, \ldots\right)=G\left(\ldots, v_{i}, \ldots, \varphi \varphi_{t+1}^{-1} v_{j}, \ldots\right),
$$

this means that the linear mapping $\tau:=\varphi \varphi_{t+1}^{-1}: V \rightarrow V$ is G-selfadjoint.
Let $\lambda_{1}, \ldots, \lambda_{s}$ be all distinct eigenvalues of τ and let (8) be the decomposition of V into the direct sum of τ-invariant subspaces V_{1}, \ldots, V_{s} such that every $\tau_{i}:=\tau \mid V_{i}$ has a single eigenvalue λ_{i}. Lemma 6 ensures (9). For every $f_{i}(x) \in \mathbb{C}[x]$, the linear mapping $f_{i}\left(\tau_{i}\right): V_{i} \rightarrow V_{i}$ is G_{i}-selfadjoint. Using Lemma 4(a), we take $f_{i}(x)$ such that $f_{i}\left(\tau_{i}\right)^{t+1}=\tau_{i}^{-1}$. Then

$$
\rho:=f_{1}\left(\tau_{1}\right) \oplus \cdots \oplus f_{s}\left(\tau_{s}\right): V \rightarrow V
$$

is G-selfadjoint and $\rho^{t+1}=\tau^{-1}$.

Define

$$
\begin{equation*}
\psi_{1}=\cdots=\psi_{t+1}:=\rho \varphi, \quad \psi_{t+2}:=\varphi_{t+2}, \ldots, \psi_{n}:=\varphi_{n} . \tag{12}
\end{equation*}
$$

Since ρ is G-selfadjoint and

$$
\rho^{t+1} \varphi=\tau^{-1} \varphi=\left(\varphi \varphi_{t+1}^{-1}\right)^{-1} \varphi=\varphi_{t+1}
$$

we have

$$
\begin{aligned}
G\left(\psi_{1} u_{1}, \ldots, \psi_{n} u_{n}\right) & =G\left(\rho \varphi u_{1}, \ldots, \rho \varphi u_{t}, \rho \varphi u_{t+1}, \varphi_{t+2} u_{t+2}, \ldots, \varphi_{n} u_{n}\right) \\
& =G\left(\varphi u_{1}, \ldots, \varphi u_{t}, \rho^{t+1} \varphi u_{t+1}, \varphi_{t+2} u_{t+2}, \ldots, \varphi_{n} u_{n}\right) \\
& =G\left(\varphi_{1} u_{1}, \ldots, \varphi_{n} u_{n}\right)=F\left(u_{1}, \ldots, u_{n}\right) .
\end{aligned}
$$

So (10) holds for $i_{1}=1, i_{2}=2, \ldots, i_{n}=n$. The equality (10) for an arbitrary reordering i_{1}, \ldots, i_{n} of $1, \ldots, n$ is proved analogously.

Proof of Theorem 3. Let n-linear forms (1) over $\mathbb{K}=\mathbb{R}$ be symmetrically equivalent; this means that there exist linear bijections $\varphi_{1}, \ldots, \varphi_{n}: U \rightarrow V$ satisfying (2) for each reordering i_{1}, \ldots, i_{n} of $1, \ldots, n$. Assume that $\varphi:=\varphi_{1}=\cdots=\varphi_{t}$ for some $t<n$. Just as in the proof of Theorem 2(a), $\tau:=\varphi \varphi_{t+1}^{-1}$ is G-selfadjoint. Let (8) be the decomposition of V into the direct sum of τ-invariant subspaces such that every $\tau_{p}:=\tau \mid V_{p}$ has a single real eigenvalue λ_{p} or a pair of conjugate complex eigenvalues

$$
\lambda_{p}=a_{p}+\mathrm{i} b_{p}, \quad \bar{\lambda}_{p}=a_{p}-\mathrm{i} b_{p}, \quad b_{p}>0,
$$

and $\lambda_{p} \neq \lambda_{q}$ if $p \neq q$. Lemma 6 ensures the decomposition (9).
Define the G-selfadjoint linear bijection

$$
\varepsilon=\varepsilon_{1} 1_{V_{1}} \oplus \cdots \oplus \varepsilon_{s} 1_{V_{s}}: V \rightarrow V
$$

in which $\varepsilon_{i}=-1$ if λ_{i} is a negative real number, and $\varepsilon_{i}=1$ otherwise. Replacing φ_{t+1} by $\varepsilon \varphi_{t+1}$, we obtain τ without negative real eigenvalues. But the right-hand member of the equality (2) may change its sign on some subspaces V_{p}. To preserve (2), we also replace φ_{t+2} with $\varepsilon \varphi_{t+2}$ if $t+1<n$ and replace $G=G_{1} \oplus \cdots \oplus G_{s}$ (see (9)) with

$$
\begin{equation*}
\varepsilon_{1} G_{1} \oplus \cdots \oplus \varepsilon_{s} G_{s} \tag{13}
\end{equation*}
$$

if $t+1=n$. By Lemma 4(b), for every i there exists $f_{i}(x) \in \mathbb{R}[x]$ such that $f_{i}\left(\tau_{i}\right)^{t+1}=\tau_{i}^{-1}$. Define

$$
\rho=f_{1}\left(\tau_{1}\right) \oplus \cdots \oplus f_{s}\left(\tau_{s}\right): V \rightarrow V
$$

then $\rho^{t+1}=\tau^{-1}$. Reasoning as in the proof of Theorem 2(a), we find that (10) with (13) instead of G holds for the linear mappings (12).

We say that two systems of n-linear forms

$$
F_{1}, \ldots, F_{s}: U \times \cdots \times U \rightarrow \mathbb{K}, \quad G_{1}, \ldots, G_{s}: V \times \cdots \times V \rightarrow \mathbb{K}
$$

are equivalent if there exist linear bijections $\varphi_{1}, \ldots, \varphi_{n}: U \rightarrow V$ such that

$$
F_{i}\left(u_{1}, \ldots, u_{n}\right)=G_{i}\left(\varphi_{1} u_{1}, \ldots, \varphi_{n} u_{n}\right)
$$

for each i and for all $u_{1}, \ldots, u_{n} \in U$. These systems are said to be congruent if $\varphi_{1}=\cdots=\varphi_{n}$.

For every n-linear form F, we construct the system of n-linear forms

$$
\begin{equation*}
\mathscr{S}(F)=\left\{F^{\sigma} \mid \sigma \in S_{n}\right\}, \quad F^{\sigma}\left(u_{1}, \ldots, u_{n}\right):=F\left(u_{\sigma(1)}, \ldots, u_{\sigma(n)}\right), \tag{14}
\end{equation*}
$$

where S_{n} denotes the set of all substitutions on $1, \ldots, n$.
The next corollary is another form of Theorem 2(a).
Corollary 7. Two multilinear forms F and G over \mathbb{C} are congruent if and only if the systems of multilinear forms $\mathscr{S}(F)$ and $\mathscr{S}(G)$ are equivalent.

To each substitution $\sigma \in S_{n}$, we assign some $\varepsilon(\sigma) \in\{1,-1\}$. Generalizing the notions of symmetric and skew-symmetric bilinear forms, we say that an n-linear form F is ε-symmetric if $F^{\sigma}=\varepsilon(\sigma) F$ for all $\sigma \in S_{n}$. If G is another ε-symmetric n-linear form, then $\mathscr{S}(F)$ and $\mathscr{S}(G)$ are equivalent if and only if F and G are equivalent. So the next corollary follows from Corollary 7.

Corollary 8. Two ε-symmetric multilinear forms over \mathbb{C} are equivalent if and only if they are congruent.

3. Direct decompositions

Every bilinear form over \mathbb{C} or \mathbb{R} decomposes into a direct sum of indecomposable forms uniquely up to congruence of summands; see the classification of bilinear forms in [1,5,4]. In [4, Theorem 2 and §2] this statement was extended to all systems of linear mappings and bilinear forms over \mathbb{C} or \mathbb{R}. The next theorem shows that a stronger statement holds for n-linear forms with $n \geqslant 3$ over all fields.

Theorem 9. Let $F: U \times \cdots \times U \rightarrow \mathbb{K}$ be an n-linear form with $n \geqslant 3$ over a field \mathbb{K}.
(a) Let $F=F^{\prime} \oplus 0$ and let F^{\prime} have no zero direct summands. If $U=U^{\prime} \oplus U_{0}$ is the corresponding decomposition of U, then U_{0} is uniquely determined by F and F^{\prime} is determined up to congruence.
(b) Let F have no zero direct summands and let $F=F_{1} \oplus \cdots \oplus F_{s}$ be its decomposition into a direct sum of indecomposable forms. If $U=U_{1} \oplus \cdots \oplus U_{s}$ is the corresponding decomposition of U, then the sequence U_{1}, \ldots, U_{s} is determined by F uniquely up to permutations.

Proof. (a) The subspace U_{0} is uniquely determined by F since U_{0} is the set of all $u \in U$ satisfying

$$
F\left(u, x_{1}, \ldots, x_{n-1}\right)=F\left(x_{1}, u, x_{2} \ldots, x_{n-1}\right)=\cdots=F\left(x_{1}, \ldots, x_{n-1}, u\right)=0
$$

for all $x_{1}, \ldots, x_{n-1} \in U$.
Let $F=F^{\prime} \oplus 0=G^{\prime} \oplus 0$ be two decompositions in which F^{\prime} and G^{\prime} have no zero direct summands, and let $U=U^{\prime} \oplus U_{0}=V^{\prime} \oplus U_{0}$ be the corresponding decompositions of U. Choose bases u_{1}, \ldots, u_{m} of U^{\prime} and v_{1}, \ldots, v_{m} of V^{\prime} such that $u_{1}-v_{1}, \ldots, u_{m}-v_{m}$ belong to U_{0}. Then

$$
F\left(u_{i_{1}}, \ldots, u_{i_{n}}\right)=F\left(v_{i_{1}}, \ldots, v_{i_{n}}\right)
$$

for all $i_{1}, \ldots, i_{n} \in\{1, \ldots, m\}$, and so the linear bijection

$$
\varphi: U^{\prime} \longrightarrow V^{\prime}, \quad u_{1} \mapsto v_{1}, \ldots, u_{m} \mapsto v_{m},
$$

gives the congruence of F^{\prime} and G^{\prime}.
(b) Let $F: U \times \cdots \times U \rightarrow \mathbb{K}$ be an n-linear form with $n \geqslant 3$ that has no zero direct summands, let

$$
\begin{equation*}
F=F_{1} \oplus \cdots \oplus F_{s}=G_{1} \oplus \cdots \oplus G_{r} \tag{15}
\end{equation*}
$$

be two decompositions of F into direct sums of indecomposable forms, and let

$$
\begin{equation*}
U=U_{1} \oplus \cdots \oplus U_{s}=V_{1} \oplus \cdots \oplus V_{r} \tag{16}
\end{equation*}
$$

be the corresponding decompositions of U.
Put

$$
\begin{equation*}
d_{1}=\operatorname{dim} U_{1}, \ldots, d_{s}=\operatorname{dim} U_{s} \tag{17}
\end{equation*}
$$

and choose two bases

$$
\begin{equation*}
u_{1}, \ldots, u_{m} \in U_{1} \cup \cdots \cup U_{s}, \quad v_{1}, \ldots, v_{m} \in V_{1} \cup \cdots \cup V_{r} \tag{18}
\end{equation*}
$$

of the space U with the following ordering of the first basis:

$$
\begin{equation*}
u_{1}, \ldots, u_{d_{1}} \text { is a basis of } U_{1}, \quad u_{d_{1}+1}, \ldots, u_{d_{1}+d_{2}} \text { is a basis of } U_{2}, \ldots \tag{19}
\end{equation*}
$$

Let C be the transition matrix from u_{1}, \ldots, u_{m} to v_{1}, \ldots, v_{m}. Partition it into s horizontal and s vertical strips of sizes $d_{1}, d_{2}, \ldots, d_{s}$. Since C is nonsingular, by interchanging its columns (i.e., reindexing v_{1}, \ldots, v_{m}) we make nonsingular all diagonal blocks. Changing the bases (19), we make elementary transformations within the horizontal strips of C and reduce it to the form:

$$
C=\left[\begin{array}{cccc}
I_{d_{1}} & C_{12} & \ldots & C_{1 s} \tag{20}\\
C_{21} & I_{d_{2}} & \ldots & C_{2 s} \\
\ldots & \ldots & \ldots & \ldots \\
C_{s 1} & C_{s 2} & \ldots & I_{d_{s}}
\end{array}\right]
$$

It suffices to prove that $u_{1}=v_{1}, \ldots, u_{m}=v_{m}$, that is,

$$
\begin{equation*}
C_{p q}=0 \quad \text { if } p \neq q \tag{21}
\end{equation*}
$$

Indeed, by (18) $v_{1} \in V_{p}$ for some p. Since F_{1} is indecomposable, if $d_{1}>1$ then $u_{1}, u_{2} \in U_{1}$ and

$$
\begin{equation*}
F\left(\ldots, u_{1}, \ldots, u_{2}, \ldots\right) \neq 0 \quad \text { or } \quad F\left(\ldots, u_{2}, \ldots, u_{1}, \ldots\right) \neq 0 \tag{22}
\end{equation*}
$$

for some elements of U denoted by points. If (21) holds, then $u_{1}=v_{1}$ and $u_{2}=v_{2}$. Since $v_{1} \in V_{p}$, (22) ensures that $v_{2} \notin V_{q}$ for all $q \neq p$, and so $v_{2} \in V_{p}$. This means that $U_{1} \subset V_{p}$. Therefore, after a suitable reindexing of V_{1}, \ldots, V_{s} we obtain $U_{1} \subset V_{1}, \ldots, U_{r} \subset V_{r}$. By (16), $r=s$ and $U_{1}=V_{1}, \ldots, U_{r}=V_{r}$; so the statement (b) follows from (22).

Let us prove (21). For each substitution $\sigma \in S_{n}$, the n-linear form F^{σ} defined in (14) can be given by the n-dimensional matrix

$$
\mathbb{A}^{\sigma}=\left[a_{i j, \ldots, k}^{\sigma}\right]_{i, j, \ldots, k=1}^{m}, \quad a_{i j, \ldots, k}^{\sigma}:=F^{\sigma}\left(u_{i}, u_{j}, \ldots, u_{k}\right)
$$

in the basis u_{1}, \ldots, u_{m}, or by the n-dimensional matrix

$$
\mathbb{B}^{\sigma}=\left[b_{i j, \ldots, k}^{\sigma}\right]_{i, j, \ldots, k=1}^{m}, \quad b_{i j, \ldots, k}^{\sigma}:=F^{\sigma}\left(v_{i}, v_{j}, \ldots, v_{k}\right)
$$

in the basis v_{1}, \ldots, v_{m}. Then for all $x_{1}, \ldots, x_{n} \in U$ and their coordinate vectors $\left[x_{i}\right]=$ $\left(x_{1 i}, \ldots, x_{m i}\right)^{\mathrm{T}}$ in the basis u_{1}, \ldots, u_{m}, we have

$$
\begin{equation*}
F^{\sigma}\left(x_{1}, \ldots, x_{n}\right)=\sum_{i, j, \ldots, k=1}^{m} a_{i j \ldots k}^{\sigma} x_{i 1} x_{j 2} \cdots x_{k n} \tag{23}
\end{equation*}
$$

If $C=\left[c_{i j}\right]$ is the transition matrix (20), then

$$
\begin{equation*}
b_{i^{\prime} j^{\prime}, \ldots, k^{\prime}}^{\sigma}=\sum_{i, j, \ldots, k=1}^{m} a_{i j, \ldots, k}^{\sigma} c_{i i^{\prime}} c_{j j^{\prime}} \cdots c_{k k^{\prime}} \tag{24}
\end{equation*}
$$

By (15), $a_{i j, \ldots, k}^{\sigma}=F^{\sigma}\left(u_{i}, u_{j}, \ldots, u_{k}\right) \neq 0$ only if all $u_{i}, u_{j}, \ldots, u_{k}$ belong to the same space U_{l}. Hence \mathbb{A}^{σ} and, analogously, \mathbb{B}^{σ} decompose into the direct sums of n-dimensional matrices:

$$
\begin{equation*}
\mathbb{A}^{\sigma}=\mathbb{A}_{1}^{\sigma} \oplus \cdots \oplus \mathbb{A}_{s}^{\sigma}, \quad \mathbb{B}^{\sigma}=\mathbb{B}_{1}^{\sigma} \oplus \cdots \oplus \mathbb{B}_{r}^{\sigma}, \tag{25}
\end{equation*}
$$

in which every \mathbb{A}_{i}^{σ} has size $d_{i} \times \cdots \times d_{i}$ and every \mathbb{B}_{j}^{σ} has size $\operatorname{dim} V_{j} \times \cdots \times \operatorname{dim} V_{j}$.
We prove (21) using induction in n.
Base of induction: $n=3$. The three-dimensional matrices \mathbb{A}^{σ} and \mathbb{B}^{σ} can be given by the sequences of m-by- m matrices

$$
\begin{aligned}
& A_{1}^{\sigma}=\left[a_{i j 1}^{\sigma}\right]_{i, j=1}^{m}, \ldots, A_{m}^{\sigma}=\left[a_{i j m}^{\sigma}\right]_{i, j=1}^{m}, \\
& B_{1}^{\sigma}=\left[b_{i j 1}^{\sigma}\right]_{i, j=1}^{m}, \ldots, B_{m}^{\sigma}=\left[b_{i j m}^{\sigma}\right]_{i, j=1}^{m} ;
\end{aligned}
$$

we call these matrices the layers of \mathbb{A}^{σ} and \mathbb{B}^{σ}. The equality (23) takes the form:

$$
\begin{equation*}
F^{\sigma}\left(x_{1}, x_{2}, x_{3}\right)=\left[x_{1}\right]^{\mathrm{T}}\left(A_{1}^{\sigma} x_{13}+\cdots+A_{m}^{\sigma} x_{m 3}\right)\left[x_{2}\right] \tag{26}
\end{equation*}
$$

for all $x_{1}, x_{2}, x_{3} \in U$ and their coordinate vectors $\left[x_{i}\right]=\left(x_{1 i}, \ldots, x_{m i}\right)^{\mathrm{T}}$ in the basis u_{1}, \ldots, u_{m}. Put

$$
\begin{align*}
& H_{1}^{\sigma}:=A_{1}^{\sigma} c_{11}+\cdots+A_{m}^{\sigma} c_{m 1}, \tag{27}\\
& \cdots \\
& H_{m}^{\sigma}:=A_{1}^{\sigma} c_{1 m}+\cdots+A_{m}^{\sigma} c_{m m}
\end{align*}
$$

By (24)

$$
b_{i^{\prime} j^{\prime} k^{\prime}}^{\sigma}=\sum_{i, j=1}^{m}\left(a_{i j 1}^{\sigma} c_{1 k^{\prime}}+\cdots+a_{i j m}^{\sigma} c_{m k^{\prime}}\right) c_{i i^{\prime}} c_{j j^{\prime}}
$$

and so

$$
\begin{equation*}
B_{1}^{\sigma}=C^{\mathrm{T}} H_{1}^{\sigma} C, \ldots, \quad B_{m}^{\sigma}=C^{\mathrm{T}} H_{m}^{\sigma} C . \tag{28}
\end{equation*}
$$

Partition $\{1, \ldots, m\}$ into the subsets

$$
\begin{equation*}
\mathscr{I}_{1}=\left\{1, \ldots, d_{1}\right\}, \quad \mathscr{I}_{2}=\left\{d_{1}+1, \ldots, d_{1}+d_{2}\right\}, \ldots \tag{29}
\end{equation*}
$$

(see (17)). By (25), if $k \in \mathscr{I}_{q}$ for some q, then the k th layer of \mathbb{A}^{σ} has the form

$$
\begin{equation*}
A_{k}^{\sigma}=0_{d_{1}} \oplus \cdots \oplus 0_{d_{q-1}} \oplus \widetilde{A}_{k}^{\sigma} \oplus 0_{d_{q+1}} \oplus \cdots \oplus 0_{d_{s}} \tag{30}
\end{equation*}
$$

in which $\widetilde{A}_{k}^{\sigma}$ is d_{q}-by- d_{q}. So by (27) and since all diagonal blocks of the matrix (20) are the identity matrices, we have

$$
\begin{equation*}
H_{k}^{\sigma}=\sum_{i \in \mathscr{I}_{1}} \widetilde{A}_{i}^{\sigma} c_{i k} \oplus \cdots \oplus \sum_{i \in \mathscr{I}_{q-1}} \widetilde{A}_{i}^{\sigma} c_{i k} \oplus \widetilde{A}_{k}^{\sigma} \oplus \sum_{i \in \mathscr{I}_{q+1}} \widetilde{A}_{i}^{\sigma} c_{i k} \oplus \cdots \oplus \sum_{i \in \mathscr{I}_{s}} \widetilde{A}_{i}^{\sigma} c_{i k} . \tag{31}
\end{equation*}
$$

We may suppose that

$$
\begin{equation*}
\sum_{\sigma \in S_{3}} \sum_{i=1}^{m} \operatorname{rank} A_{i}^{\sigma} \geqslant \sum_{\sigma \in S_{3}} \sum_{i=1}^{m} \operatorname{rank} B_{i}^{\sigma} \tag{32}
\end{equation*}
$$

otherwise we interchange the direct sums in (15). By (30) and (28),

$$
\begin{equation*}
\sum_{\sigma \in S_{3}} \sum_{i=1}^{m} \operatorname{rank} \widetilde{A}_{i}^{\sigma} \geqslant \sum_{\sigma \in S_{3}} \sum_{i=1}^{m} \operatorname{rank} H_{i}^{\sigma} . \tag{33}
\end{equation*}
$$

Let us fix distinct p and q and prove that $C_{p q}=0$ in (20). Due to (31), (33), and (30),

$$
\begin{equation*}
\forall k \in \mathscr{I}_{q}: \quad \sum_{i \in \mathscr{I}_{p}} A_{i}^{\sigma} c_{i k}=0 . \tag{34}
\end{equation*}
$$

Replacing in this sum each A_{i}^{σ} by the basis vector u_{i}, we define

$$
\begin{equation*}
u:=\sum_{i \in \mathscr{I}_{p}} u_{i} c_{i k} \in U_{p} . \tag{35}
\end{equation*}
$$

Since

$$
[u]=\left(0, \ldots, 0, c_{d+1, k}, \ldots, c_{d+d_{p}, k}, 0, \ldots, 0\right)^{\mathrm{T}}, \quad d:=d_{1}+\ldots+d_{p-1}
$$

by (26) and (34) we have $F^{\sigma}(x, y, u)=0$ for all $x, y \in U_{p}$. This equality holds for all substitutions $\sigma \in S_{3}$, hence

$$
\begin{equation*}
F(u, x, y)=F(x, u, y)=F(x, y, u)=0 \tag{36}
\end{equation*}
$$

and so $F \mid u \mathbb{K}$ is a zero direct summand of $F_{p}=F \mid U_{p}$. Since F_{p} is indecomposable, $u=0$; that is, $c_{d+1, k}=\cdots=c_{d+d_{p}, k}=0$. These equalities hold for all $k \in \mathscr{I}_{q}$, hence $C_{p q}=0$. This proves (21) for $n=3$.

Induction step. Let $n \geqslant 4$ and assume that (21) holds for all ($n-1$)-linear forms.
The n-dimensional matrices \mathbb{A}^{σ} and \mathbb{B}^{σ} can be given by the sequences of $(n-1)$-dimensional matrices

$$
\begin{aligned}
& A_{1}^{\sigma}=\left[a_{i, \ldots, j 1}^{\sigma}\right]_{i, \ldots, j=1}^{m}, \ldots, A_{m}^{\sigma}=\left[a_{i, \ldots, j m}^{\sigma}\right]_{i, \ldots, j=1}^{m} \\
& B_{1}^{\sigma}=\left[b_{i, \ldots, j 1}^{\sigma}\right]_{i, \ldots, j=1}^{m}, \ldots, B_{m}^{\sigma}=\left[b_{i, \ldots, j m}^{\sigma}\right]_{i, \ldots, j=1}^{m}
\end{aligned}
$$

By (24)

$$
\begin{align*}
& b_{i^{\prime}, \ldots, j^{\prime} 1}^{\sigma}=\sum_{i, \ldots, j}\left(a_{i, \ldots, j 1}^{\sigma} c_{11}+\cdots+a_{i, \ldots, j m}^{\sigma} c_{m 1}\right) c_{i i}^{\prime} \cdots c_{j j}^{\prime} \\
& \ldots \tag{37}\\
& b_{i^{\prime}, \ldots, j^{\prime} m}^{\sigma}=\sum_{i, \ldots, j}\left(a_{i, \ldots, j 1}^{\sigma} c_{1 m}+\cdots+a_{i, \ldots, j m}^{\sigma} c_{m m}\right) c_{i i}^{\prime} \cdots c_{j j}^{\prime}
\end{align*}
$$

Due to (25) and analogous to (30), each A_{k}^{σ} with $k \in \mathscr{I}_{q}$ (see (29)) is a direct sum of $d_{1} \times \cdots \times$ $d_{1}, \ldots, d_{s} \times \cdots \times d_{s}$ matrices, and only the q th summand $\widetilde{A}_{k}^{\sigma}$ may be nonzero. This implies (31) for each k and for H_{k}^{σ} defined in (27).

For each $(n-1)$-linear form G, denote by $s(G)$ the number of nonzero summands in a decomposition of G into a direct sum of indecomposable forms; this number is uniquely determined by G due to induction hypothesis. Put $s(M):=s(G)$ if G is given by an $(n-1)$-dimensional matrix M. By (37), the set of $(n-1)$-linear forms given by $(n-1)$-dimensional matrices (27) is congruent to the set of $(n-1)$-linear forms given by $B_{1}^{\sigma}, \ldots, B_{m}^{\sigma}$. Hence

$$
\begin{equation*}
s\left(H_{1}^{\sigma}\right)=s\left(B_{1}^{\sigma}\right), \ldots, s\left(H_{m}^{\sigma}\right)=s\left(B_{m}^{\sigma}\right) \tag{38}
\end{equation*}
$$

We suppose that

$$
\sum_{\sigma \in S_{n}} \sum_{k=1}^{m} s\left(A_{k}^{\sigma}\right) \geqslant \sum_{\sigma \in S_{n}} \sum_{k=1}^{m} s\left(B_{k}^{\sigma}\right)
$$

otherwise we interchange the direct sums in (15). Then by (38)

$$
\begin{equation*}
\sum_{\sigma \in S_{n}} \sum_{k=1}^{m} s\left(\tilde{A}_{k}^{\sigma}\right) \geqslant \sum_{\sigma \in S_{n}} \sum_{k=1}^{m} s\left(H_{k}^{\sigma}\right) . \tag{39}
\end{equation*}
$$

Let us fix distinct p and q and prove that $C_{p q}=0$ in (20). By (31),

$$
s\left(H_{k}^{\sigma}\right)=s\left(\widetilde{A}_{k}^{\sigma}\right)+\sum_{p \neq q} s\left(\sum_{i \in \mathscr{I}_{p}} \widetilde{A}_{i}^{\sigma} c_{i k}\right)
$$

for each $k \in \mathscr{I}_{q}$. Combining it with (39), we have

$$
\sum_{i \in \mathscr{I}_{p}} A_{i}^{\sigma} c_{i k}=\sum_{i \in \mathscr{I}_{p}} \widetilde{A}_{i}^{\sigma} c_{i k}=0
$$

for each $k \in \mathscr{I}_{q}$. Define u by (35). As in (36), we obtain

$$
F(u, x, \ldots, y)=F(x, u, \ldots, y)=\cdots=F(x, \ldots, y, u)=0
$$

for all $x, \ldots, y \in U_{p}$ and so $F \mid u \mathbb{K}$ is a zero direct summand of $F_{p}=F \mid U_{p}$. Since F_{p} is indecomposable, $u=0$; so $C_{p q}=0$. This proves (21) for $n>3$.

Remark 10. Theorem 9(b) does not hold for bilinear forms: for example, the matrix of scalar product is the identity in each orthonormal basis of a Euclidean space. This distinction between bilinear and n-linear forms with $n \geqslant 3$ may be explained by the fact that decomposable bilinear forms are more frequent. Let us consider forms in a two-dimensional vector space. To decompose a bilinear form, we must make zero two entries in its 2×2 matrix. To decompose a trilinear form, we must make zero six entries in its $2 \times 2 \times 2$ matrix. In both the cases, these zeros are made by transition matrices, which have four entries.

Corollary 11. Let $F: U \times \cdots \times U \rightarrow \mathbb{K}$ be an n-linear form with $n \geqslant 3$ over a field \mathbb{K}. If

$$
\begin{equation*}
F=F_{1} \oplus \cdots \oplus F_{s} \oplus 0 \tag{40}
\end{equation*}
$$

and the summands F_{1}, \ldots, F_{s} are nonzero and indecomposable, then these summands are determined by F uniquely up to congruence. Moreover, if $U=U_{1} \oplus \cdots \oplus U_{s} \oplus U_{0}$ is the corresponding decomposition of U, then the sequence of subspaces

$$
\begin{equation*}
U_{1}+U_{0}, \ldots, U_{s}+U_{0}, U_{0} \tag{41}
\end{equation*}
$$

is determined by F uniquely up to permutations of $U_{1}+U_{0}, \ldots, U_{s}+U_{0}$.
Proof of Theorem 2(b). For $n=2$ this theorem was proved in [4, Section 2.1] (and was extended to arbitrary systems of forms and linear mappings in [4, Theorem 2]). For $n \geqslant 3$ this theorem follows from Theorem 3 and Corollary 11.

References

[1] R.A. Horn, V.V. Sergeichuk, Congruence of a square matrix and its transpose, Linear Algebra Appl. 389 (2004) 347-353.
[2] A.I Mal'cev, Foundations of Linear Algebra, W.H. Freeman \& Co., San Francisco, CA-London, 1963.
[3] A.V Roiter, Bocses with involution, in: Ju.A. Mitropol'skii (Ed.), Representations and Quadratic Forms, Inst. Mat. Akad. Nauk Ukrain. SSR, Kiev, 1979, pp. 124-128 (in Russian).
[4] V.V. Sergeichuk, Classification problems for systems of forms and linear mappings, Math. USSR Izvestiya 31 (3) (1988) 481-501.
[5] R.A. Horn, V.V. Sergeichuk, Canonical forms for complex matrix congruence and *congruence, Linear Algebra Appl., in press, doi:10.1016/j.laa.2006.01.005.

[^0]: * Corresponding author.

 E-mail addresses: genrich@cs.bgu.ac.il (G.R. Belitskii), sergeich@imath.kiev.ua (V.V. Sergeichuk).

