
Linear Algebra and its Applications 418 (2006) 751–762
www.elsevier.com/locate/laa

Congruence of multilinear forms

Genrich R. Belitskii a, Vladimir V. Sergeichuk b,∗

a Department of Mathematics, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
b Institute of Mathematics, Tereshchenkivska St. 3, Kiev, Ukraine

Received 16 November 2005; accepted 6 March 2006
Available online 27 April 2006

Submitted by P. Šemrl

Abstract

Let

F : U × · · · × U → K, G : V × · · · × V → K

be two n-linear forms with n � 2 on finite dimensional vector spaces U and V over a field K. We say that F
and G are symmetrically equivalent if there exist linear bijections ϕ1, . . . , ϕn : U → V such that

F(u1, . . . , un) = G(ϕi1u1, . . . , ϕinun)

for all u1, . . . , un ∈ U and each reordering i1, . . . , in of 1, . . . , n. The forms are said to be congruent if
ϕ1 = · · · = ϕn.
Let F and G be symmetrically equivalent. We prove that

(i) if K = C, then F and G are congruent;
(ii) if K = R, F = F1 ⊕ · · · ⊕ Fs ⊕ 0,G = G1 ⊕ · · · ⊕Gr ⊕ 0, and all summands Fi andGj are non-

zero and direct-sum-indecomposable, then s = r and, after a suitable reindexing, Fi is congruent to
±Gi .
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1. Introduction

Two matrices A and B over a field K are called congruent if A = STBS for some nonsingular
S. Two matrix pairs (A1, B1) and (A2, B2) are called equivalent if A1 = RA2S and B1 = RB2S

for some nonsingular R and S. Clearly, if A and B are congruent, then (A,AT) and (B, BT) are
equivalent. Quite unexpectedly, the inverse statement holds for complex matrices too: if (A,AT)

and (B, BT) are equivalent, then A and B are congruent [2, Chapter VI, §3, Theorem 3]. This
statement was extended in [3,4] to arbitrary systems of linear mappings and bilinear forms. In
this article, we extend it to multilinear forms.

A multilinear form (or, more precisely, n-linear form, n � 2) on a finite dimensional vector
space U over a field K is a mapping F : U × · · · × U → K such that

F(u1, . . . , ui−1, au
′
i + bu′′

i , ui+1, . . . , un)

= aF(u1, . . . , u
′
i , . . . , un)+ bF(u1, . . . , u

′′
i , . . . , un)

for all i ∈ {1, . . . , n}, a, b ∈ K, and u1, . . . , u
′
i , u

′′
i , . . . , un ∈ U .

Definition 1. Let

F : U × · · · × U → K, G : V × · · · × V → K (1)

be two n-linear forms.

(a) F and G are called equivalent if there exist linear bijections ϕ1, . . . , ϕn : U → V such that

F(u1, . . . , un) = G(ϕ1u1, . . . , ϕnun)

for all u1, . . . , un ∈ U .
(b) F and G are called symmetrically equivalent if there exist linear bijections ϕ1, . . . , ϕn :

U → V such that

F(u1, . . . , un) = G(ϕi1u1, . . . , ϕinun) (2)

for all u1, . . . , un ∈ U and each reordering i1, . . . , in of 1, . . . , n.
(c) F and G are called congruent if there exists a linear bijection ϕ : U → V such that

F(u1, . . . , un) = G(ϕu1, . . . , ϕun)

for all u1, . . . , un ∈ U .

The direct sum of forms (1) is the multilinear form

F ⊕G : (U ⊕ V )× · · · × (U ⊕ V ) → K

defined as follows:

(F ⊕G)(u1 + v1, . . . , un + vn) :=F(u1, . . . , un)+G(v1, . . . , vn)

for all u1, . . . , un ∈ U and v1, . . . , vn ∈ V .
We will use the internal definition: if F : U × · · · × U → K is a multilinear form, then F =

F1 ⊕ F2 means that there is a decomposition U = U1 ⊕ U2 such that

(i) F(x1, . . . , xn) = 0 as soon as xi ∈ U1 and xj ∈ U2 for some i and j.
(ii) F1 = F |U1 and F2 = F |U2 are the restrictions of F to U1 and U2.
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A multilinear form F : U × · · · × U → K is indecomposable if for each decomposition F =
F1 ⊕ F2 and the corresponding decomposition U = U1 ⊕ U2 we have U1 = 0 or U2 = 0.

Our main result is the following theorem.

Theorem 2. (a) If two multilinear forms over C are symmetrically equivalent, then they are
congruent.

(b) If two multilinear forms F and G over R are symmetrically equivalent and

F = F1 ⊕ · · · ⊕ Fs ⊕ 0, G = G1 ⊕ · · · ⊕Gr ⊕ 0

are their decompositions such that all summands Fi and Gj are nonzero and indecomposable,
then s = r and, after a suitable reindexing, each Fi is congruent to Gi or −Gi.

The statement (a) of this theorem is proved in the next section. We prove (b) in the end of Section
3 basing on Corollary 11, in which we argue that every n-linear form F : U × · · · × U → K with
n � 3 over an arbitrary field K decomposes into a direct sum of indecomposable forms uniquely
up to congruence of summands. Moreover, ifF = F1 ⊕ · · · ⊕ Fs ⊕ 0 is a decomposition in which
F1, . . . , Fs are nonzero and indecomposable, andU = U1 ⊕ · · · ⊕ Us ⊕ U0 is the corresponding
decomposition of U, then the sequence of subspaces U1 + U0, . . . , Us + U0, U0 is determined
by F uniquely up to permutations of U1 + U0, . . . , Us + U0.

2. Symmetric equivalence and congruence

In this section, we prove Theorem 2(a) and the following theorem, which is a weakened form
of Theorem 2(b).

Theorem 3. If two multilinear forms F and G over R are symmetrically equivalent, then there
are decompositions

F = F1 ⊕ F2, G = G1 ⊕G2

such that F1 is congruent to G1 and F2 is congruent to −G2.

Its proof is based on two lemmas.

Lemma 4. (a) Let T be a nonsingular complex matrix having a single eigenvalue. Then

∀m ∈ N ∃f (x) ∈ C[x] : f (T )m = T −1.

(b) Let T be a real matrix whose set of eigenvalues consists of one positive real number or a
pair of distinct conjugate complex numbers. Then

∀m ∈ N ∃f (x) ∈ R[x] : f (T )m = T −1. (3)

Proof. (a) Let T be a nonsingular complex matrix with a single eigenvalue λ. Since the matrix
T − λI is nilpotent (this follows from its Jordan canonical form), the substitution of T for x into
the Taylor expansion

x− 1
m =λ− 1

m +
(

− 1

m

)
λ− 1

m
−1(x − λ)

+ 1

2!
(

− 1

m

) (
− 1

m
− 1

)
λ− 1

m
−2(x − λ)2 + · · · (4)
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gives some matrix

f (T ), f (x) ∈ C[x], (5)

satisfying f (T )m = T −1.
(b) Let T be a square real matrix. If it has a single eigenvalue that is a positive real number λ,

then all coefficients in (4) are real, so the matrix (5) satisfies (3).
Let T have only two eigenvalues

λ = a + ib, λ̄ = a − ib (a, b ∈ R, b > 0). (6)

It suffices to prove (3) for any matrix that is similar to T over R, so we may suppose that T is the
real Jordan matrix

T = R−1
[
J 0
0 J

]
R =

[
aI + F bI

−bI aI + F

]
, R :=

[
I −iI
I iI

]
in which J = λI + F is a direct sum of Jordan blocks with the same eigenvalue λ (and so F is a
nilpotent upper triangular matrix).

It suffices to prove that

∀m ∈ N ∃f (x) ∈ R[x] : f (J )m = J−1 (7)

since such f (x) satisfies (3):

f (T )m=f (R−1(J ⊕ J )R)m = R−1f (J ⊕ J )mR

=R−1(f (J )m ⊕ f (J )
m
)R = R−1(J ⊕ J )−1R = T −1.

The matrix F is nilpotent, so the substitution of J = λI + F into the Taylor expansion (4)
gives some matrix g(J ) with g(x) ∈ C[x] satisfying g(J )m = J−1. Represent g(x) in the form:

g(x) = g0(x)+ ig1(x), g0(x), g1(x) ∈ R[x].
It suffices to prove that J reduces to iI by a finite sequence of polynomial substitutions

J �−→ h(J ), h(x) ∈ R[x].
Indeed, their composite is some polynomial p(x) ∈ R[x] such that p(J ) = iI , and then f (x) :=
g0(x)+ p(x)g1(x) ∈ R[x] satisfies (7):

f (J )m = (g0(J )+ p(J )g1(J ))
m = (g0(J )+ ig1(J ))

m = g(J )m = J−1.

First, we replace J by b−1(J − aI) (see (6)) making J = iI +G, where G :=b−1F . Next, we
replace J by

3

2
J + 1

2
J 3 = 3

2
(iI +G)+ 1

2
(−iI − 3G+ 3iG2 +G3) = iI +H,

where H := (3iG2 +G3)/2. The degree of nilpotency of H is less than the degree of nilpotency
of F; we repeat the last substitution until obtain iI . �

Definition 5. Let G : V × · · · × V → K be an n-linear form. We say that a linear mapping τ :
V → V is G-selfadjoint if

G(v1, . . . , vi−1, τvi, vi+1, . . . , vn) = G(v1, . . . , vj−1, τvj , vj+1, . . . , vn)

for all v1, . . . , vn ∈ V and all i and j.

If τ is G-selfadjoint, then for every f (x) ∈ K[x] the linear mapping f (τ) is G-selfadjoint too.
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Lemma 6. Let G : V × · · · × V → K be a multilinear form over a field K and let τ : V → V

be a G-selfadjoint linear mapping. If

V = V1 ⊕ · · · ⊕ Vs (8)

is a decomposition of V into a direct sum of τ -invariant subspaces such that the restrictions τ |Vi
and τ |Vj of τ to Vi and Vj have no common eigenvalues for all i /= j, then

G = G1 ⊕ · · · ⊕Gs, Gi := G|Vi. (9)

Proof. It suffices to consider the case s = 2. To simplify the formulas, we assume that G is a
bilinear form. Choose v1 ∈ V1 and v2 ∈ V2, we must prove that G(v1, v2) = G(v2, v1) = 0.

Letf (x)be the minimal polynomial of τ |V2. Since τ |V1 and τ |V2 have no common eigenvalues,
f (τ |V1) : V1 → V1 is a bijection, so there exists v′

1 ∈ V1 such that v1 = f (τ)v′
1. Since τ is

G-selfadjoint, f (τ) is G-selfadjoint too, and so

G(v1, v2)=G(f (τ)v′
1, v2) = G(v′

1, f (τ )v2)

=G(v′
1, f (τ |V2)v2) = G(v′

1, 0v2) = G(v′
1, 0) = 0.

Analogously, G(v2, v1) = 0. �

Proof of Theorem 2(a). Let n-linear forms (1) over K = C be symmetrically equivalent; this
means that there exist linear bijections ϕ1, . . . , ϕn : U → V satisfying (2) for each reordering
i1, . . . , in of 1, . . . , n. Let us prove by induction that F and G are congruent. Assume thatϕ :=ϕ1 =
· · · = ϕt for some t < n and prove that there exist linear bijections

ψ1 = · · · = ψt = ψt+1, ψt+2, . . . , ψn : U → V

such that

F(u1, . . . , un) = G(ψi1u1, . . . , ψinun) (10)

for all u1, . . . , un ∈ U and each reordering i1, . . . , in of 1, . . . , n.
By (2) and since ϕ1, . . . , ϕn are bijections, for every pair of indices i, j such that i < j and

for all ui, uj ∈ U and v1, . . . , vi−1, vi+1, . . . , vj−1, vj+1, . . . , vn ∈ V , we have

G(v1, . . . , vi−1, ϕui, vi+1, . . . , vj−1, ϕt+1uj , vj+1, . . . , vn)

= G(v1, . . . , vi−1, ϕt+1ui, vi+1, . . . , vj−1, ϕuj , vj+1, . . . , vn). (11)

Denote vi :=ϕt+1ui and vj :=ϕt+1uj . Then (11) takes the form:

G(. . . , ϕϕ−1
t+1vi, . . . , vj , . . .) = G(. . . , vi, . . . , ϕϕ

−1
t+1vj , . . .),

this means that the linear mapping τ :=ϕϕ−1
t+1 : V → V is G-selfadjoint.

Let λ1, . . . , λs be all distinct eigenvalues of τ and let (8) be the decomposition of V into
the direct sum of τ -invariant subspaces V1, . . . , Vs such that every τi :=τ |Vi has a single eigen-
value λi . Lemma 6 ensures (9). For every fi(x) ∈ C[x], the linear mapping fi(τi) : Vi → Vi is
Gi-selfadjoint. Using Lemma 4(a), we take fi(x) such that fi(τi)t+1 = τ−1

i . Then

ρ :=f1(τ1)⊕ · · · ⊕ fs(τs) : V → V

is G-selfadjoint and ρt+1 = τ−1.
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Define

ψ1 = · · · = ψt+1 :=ρϕ, ψt+2 :=ϕt+2, . . . , ψn :=ϕn. (12)

Since ρ is G-selfadjoint and

ρt+1ϕ = τ−1ϕ = (ϕϕ−1
t+1)

−1ϕ = ϕt+1,

we have

G(ψ1u1, . . . , ψnun)=G(ρϕu1, . . . , ρϕut , ρϕut+1, ϕt+2ut+2, . . . , ϕnun)

=G(ϕu1, . . . , ϕut , ρ
t+1ϕut+1, ϕt+2ut+2, . . . , ϕnun)

=G(ϕ1u1, . . . , ϕnun) = F(u1, . . . , un).

So (10) holds for i1 = 1, i2 = 2, . . . , in = n. The equality (10) for an arbitrary reordering
i1, . . . , in of 1, . . . , n is proved analogously. �

Proof of Theorem 3. Let n-linear forms (1) over K = R be symmetrically equivalent; this means
that there exist linear bijections ϕ1, . . . , ϕn : U → V satisfying (2) for each reordering i1, . . . , in
of 1, . . . , n. Assume that ϕ :=ϕ1 = · · · = ϕt for some t < n. Just as in the proof of Theorem 2(a),
τ :=ϕϕ−1

t+1 is G-selfadjoint. Let (8) be the decomposition of V into the direct sum of τ -invariant
subspaces such that every τp := τ |Vp has a single real eigenvalue λp or a pair of conjugate
complex eigenvalues

λp = ap + ibp, λ̄p = ap − ibp, bp > 0,

and λp /= λq if p /= q. Lemma 6 ensures the decomposition (9).
Define the G-selfadjoint linear bijection

ε = ε11V1 ⊕ · · · ⊕ εs1Vs : V → V

in which εi = −1 if λi is a negative real number, and εi = 1 otherwise. Replacing ϕt+1 by εϕt+1,
we obtain τ without negative real eigenvalues. But the right-hand member of the equality (2)
may change its sign on some subspaces Vp. To preserve (2), we also replace ϕt+2 with εϕt+2 if
t + 1 < n and replace G = G1 ⊕ · · · ⊕Gs (see (9)) with

ε1G1 ⊕ · · · ⊕ εsGs (13)

if t + 1 = n. By Lemma 4(b), for every i there exists fi(x) ∈ R[x] such that fi(τi)t+1 = τ−1
i .

Define

ρ = f1(τ1)⊕ · · · ⊕ fs(τs) : V → V,

then ρt+1 = τ−1. Reasoning as in the proof of Theorem 2(a), we find that (10) with (13) instead
of G holds for the linear mappings (12). �

We say that two systems of n-linear forms

F1, . . . , Fs : U × · · · × U → K, G1, . . . ,Gs : V × · · · × V → K

are equivalent if there exist linear bijections ϕ1, . . . , ϕn : U → V such that

Fi(u1, . . . , un) = Gi(ϕ1u1, . . . , ϕnun)

for each i and for all u1, . . . , un ∈ U . These systems are said to be congruent if ϕ1 = · · · = ϕn.
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For every n-linear form F, we construct the system of n-linear forms

S(F ) = {Fσ |σ ∈ Sn}, F σ (u1, . . . , un) :=F(uσ(1), . . . , uσ(n)), (14)

where Sn denotes the set of all substitutions on 1, . . . , n.
The next corollary is another form of Theorem 2(a).

Corollary 7. Two multilinear forms F and G over C are congruent if and only if the systems of
multilinear forms S(F ) and S(G) are equivalent.

To each substitution σ ∈ Sn, we assign some ε(σ ) ∈ {1,−1}. Generalizing the notions of
symmetric and skew-symmetric bilinear forms, we say that an n-linear form F is ε-symmetric if
Fσ = ε(σ )F for all σ ∈ Sn. If G is another ε-symmetric n-linear form, then S(F ) and S(G) are
equivalent if and only if F and G are equivalent. So the next corollary follows from Corollary 7.

Corollary 8. Two ε-symmetric multilinear forms over C are equivalent if and only if they are
congruent.

3. Direct decompositions

Every bilinear form over C or R decomposes into a direct sum of indecomposable forms
uniquely up to congruence of summands; see the classification of bilinear forms in [1,5,4]. In
[4, Theorem 2 and §2] this statement was extended to all systems of linear mappings and bilinear
forms over C or R. The next theorem shows that a stronger statement holds for n-linear forms
with n � 3 over all fields.

Theorem 9. Let F : U × · · · × U → K be an n-linear form with n � 3 over a field K.

(a) Let F = F ′ ⊕ 0 and let F ′ have no zero direct summands. If U = U ′ ⊕ U0 is the corre-
sponding decomposition of U, then U0 is uniquely determined by F and F ′ is determined
up to congruence.

(b) Let F have no zero direct summands and let F = F1 ⊕ · · · ⊕ Fs be its decomposition into a
direct sum of indecomposable forms. IfU = U1 ⊕ · · · ⊕ Us is the corresponding decompo-
sition of U, then the sequence U1, . . . , Us is determined by F uniquely up to permutations.

Proof. (a) The subspaceU0 is uniquely determined by F sinceU0 is the set of all u ∈ U satisfying

F(u, x1, . . . , xn−1) = F(x1, u, x2 . . . , xn−1) = · · · = F(x1, . . . , xn−1, u) = 0

for all x1, . . . , xn−1 ∈ U .
Let F = F ′ ⊕ 0 = G′ ⊕ 0 be two decompositions in which F ′ and G′ have no zero direct

summands, and letU = U ′ ⊕ U0 = V ′ ⊕ U0 be the corresponding decompositions of U. Choose
bases u1, . . . , um ofU ′ and v1, . . . , vm of V ′ such that u1 − v1, . . . , um − vm belong toU0. Then

F(ui1 , . . . , uin) = F(vi1 , . . . , vin)

for all i1, . . . , in ∈ {1, . . . , m}, and so the linear bijection

ϕ : U ′ −→ V ′, u1 �→ v1, . . . , um �→ vm,

gives the congruence of F ′ and G′.
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(b) Let F : U × · · · × U → K be an n-linear form with n � 3 that has no zero direct sum-
mands, let

F = F1 ⊕ · · · ⊕ Fs = G1 ⊕ · · · ⊕Gr (15)

be two decompositions of F into direct sums of indecomposable forms, and let

U = U1 ⊕ · · · ⊕ Us = V1 ⊕ · · · ⊕ Vr (16)

be the corresponding decompositions of U.
Put

d1 = dimU1, . . . , ds = dimUs (17)

and choose two bases

u1, . . . , um ∈ U1 ∪ · · · ∪ Us, v1, . . . , vm ∈ V1 ∪ · · · ∪ Vr (18)

of the space U with the following ordering of the first basis:

u1, . . . , ud1 is a basis of U1, ud1+1, . . . , ud1+d2 is a basis of U2, . . . (19)

Let C be the transition matrix from u1, . . . , um to v1, . . . , vm. Partition it into s horizontal and
s vertical strips of sizes d1, d2, . . . , ds . Since C is nonsingular, by interchanging its columns (i.e.,
reindexing v1, . . . , vm) we make nonsingular all diagonal blocks. Changing the bases (19), we
make elementary transformations within the horizontal strips of C and reduce it to the form:

C =



Id1 C12 . . . C1s
C21 Id2 . . . C2s
· · · · · · · · · · · ·
Cs1 Cs2 . . . Ids


 . (20)

It suffices to prove that u1 = v1, . . . , um = vm, that is,

Cpq = 0 if p /= q. (21)

Indeed, by (18) v1 ∈ Vp for some p. Since F1 is indecomposable, if d1 > 1 then u1, u2 ∈ U1 and

F(. . . , u1, . . . , u2, . . .) /= 0 or F(. . . , u2, . . . , u1, . . .) /= 0 (22)

for some elements of U denoted by points. If (21) holds, then u1 = v1 and u2 = v2. Since v1 ∈ Vp,
(22) ensures that v2 /∈ Vq for all q /= p, and so v2 ∈ Vp. This means that U1 ⊂ Vp. Therefore,
after a suitable reindexing of V1, . . . , Vs we obtain U1 ⊂ V1, . . . , Ur ⊂ Vr . By (16), r = s and
U1 = V1, . . . , Ur = Vr ; so the statement (b) follows from (22).

Let us prove (21). For each substitution σ ∈ Sn, the n-linear form Fσ defined in (14) can be
given by the n-dimensional matrix

Aσ = [aσij,...,k]mi,j,...,k=1, aσij,...,k := Fσ (ui, uj , . . . , uk)

in the basis u1, . . . , um, or by the n-dimensional matrix

Bσ = [bσij,...,k]mi,j,...,k=1, bσij,...,k :=Fσ (vi, vj , . . . , vk)
in the basis v1, . . . , vm. Then for all x1, . . . , xn ∈ U and their coordinate vectors [xi] =
(x1i , . . . , xmi)

T in the basis u1, . . . , um, we have

Fσ (x1, . . . , xn) =
m∑

i,j,...,k=1

aσij ...kxi1xj2 · · · xkn. (23)
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If C = [cij ] is the transition matrix (20), then

bσi′j ′,...,k′ =
m∑

i,j,...,k=1

aσij,...,kcii′cjj ′ · · · ckk′ . (24)

By (15), aσij,...,k = Fσ (ui, uj , . . . , uk) /= 0 only if all ui, uj , . . . , uk belong to the same space
Ul . Hence Aσ and, analogously, Bσ decompose into the direct sums of n-dimensional matrices:

Aσ = Aσ
1 ⊕ · · · ⊕ Aσ

s , Bσ = Bσ1 ⊕ · · · ⊕ Bσr , (25)

in which every Aσ
i has size di × · · · × di and every Bσj has size dim Vj × · · · × dim Vj .

We prove (21) using induction in n.
Base of induction: n = 3. The three-dimensional matrices Aσ and Bσ can be given by the
sequences of m-by-m matrices

Aσ1 = [aσij1]mi,j=1, . . . , A
σ
m = [aσijm]mi,j=1,

Bσ1 = [bσij1]mi,j=1, . . . , B
σ
m = [bσijm]mi,j=1;

we call these matrices the layers of Aσ and Bσ . The equality (23) takes the form:

Fσ (x1, x2, x3) = [x1]T(Aσ1 x13 + · · · + Aσmxm3)[x2] (26)

for all x1, x2, x3 ∈ U and their coordinate vectors [xi] = (x1i , . . . , xmi)
T in the basis u1, . . . , um.

Put

Hσ
1 :=Aσ1 c11 + · · · + Aσmcm1,

· · · (27)

Hσ
m :=Aσ1 c1m + · · · + Aσmcmm

By (24)

bσi′j ′k′ =
m∑

i,j=1

(aσij1c1k′ + · · · + aσijmcmk′)cii′cjj ′

and so

Bσ1 = CTHσ
1 C, . . . , Bσm = CTHσ

mC. (28)

Partition {1, . . . , m} into the subsets

I1 = {1, . . . , d1}, I2 = {d1 + 1, . . . , d1 + d2}, . . . (29)

(see (17)). By (25), if k ∈ Iq for some q, then the kth layer of Aσ has the form

Aσk = 0d1 ⊕ · · · ⊕ 0dq−1 ⊕ Ãσk ⊕ 0dq+1 ⊕ · · · ⊕ 0ds (30)

in which Ãσk is dq -by-dq . So by (27) and since all diagonal blocks of the matrix (20) are the
identity matrices, we have

Hσ
k =

∑
i∈I1

Ãσi cik ⊕ · · · ⊕
∑

i∈Iq−1

Ãσi cik ⊕ Ãσk ⊕
∑

i∈Iq+1

Ãσi cik ⊕ · · · ⊕
∑
i∈Is

Ãσi cik. (31)

We may suppose that∑
σ∈S3

m∑
i=1

rankAσi �
∑
σ∈S3

m∑
i=1

rankBσi ; (32)
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otherwise we interchange the direct sums in (15). By (30) and (28),

∑
σ∈S3

m∑
i=1

rank Ãσi �
∑
σ∈S3

m∑
i=1

rankHσ
i . (33)

Let us fix distinct p and q and prove that Cpq = 0 in (20). Due to (31), (33), and (30),

∀k ∈ Iq :
∑
i∈Ip

Aσi cik = 0. (34)

Replacing in this sum each Aσi by the basis vector ui , we define

u :=
∑
i∈Ip

uicik ∈ Up. (35)

Since

[u] = (0, . . . , 0, cd+1,k, . . . , cd+dp,k, 0, . . . , 0)T, d :=d1 + . . .+ dp−1

by (26) and (34) we haveFσ (x, y, u) = 0 for allx, y ∈ Up. This equality holds for all substitutions
σ ∈ S3, hence

F(u, x, y) = F(x, u, y) = F(x, y, u) = 0, (36)

and so F |uK is a zero direct summand of Fp = F |Up. Since Fp is indecomposable, u = 0; that
is, cd+1,k = · · · = cd+dp,k = 0. These equalities hold for all k ∈ Iq , henceCpq = 0. This proves
(21) for n = 3.
Induction step. Let n � 4 and assume that (21) holds for all (n− 1)-linear forms.

The n-dimensional matrices Aσ and Bσ can be given by the sequences of (n− 1)-dimensional
matrices

Aσ1 = [aσi,...,j1]mi,...,j=1, . . . , A
σ
m = [aσi,...,jm]mi,...,j=1,

Bσ1 = [bσi,...,j1]mi,...,j=1 , . . . , B
σ
m = [bσi,...,jm]mi,...,j=1.

By (24)

bσi′,...,j ′1 =
∑
i,...,j

(aσi,...,j1c11 + · · · + aσi,...,jmcm1)c
′
ii · · · c′jj ,

· · · (37)

bσi′,...,j ′m =
∑
i,...,j

(aσi,...,j1c1m + · · · + aσi,...,jmcmm)c
′
ii · · · c′jj .

Due to (25) and analogous to (30), each Aσk with k ∈ Iq (see (29)) is a direct sum of d1 × · · · ×
d1, . . . , ds × · · · × ds matrices, and only the qth summand Ãσk may be nonzero. This implies (31)
for each k and for Hσ

k defined in (27).
For each (n− 1)-linear form G, denote by s(G) the number of nonzero summands in a decom-

position of G into a direct sum of indecomposable forms; this number is uniquely determined by G
due to induction hypothesis. Put s(M) := s(G) if G is given by an (n− 1)-dimensional matrix M.
By (37), the set of (n− 1)-linear forms given by (n− 1)-dimensional matrices (27) is congruent
to the set of (n− 1)-linear forms given by Bσ1 , . . . , B

σ
m. Hence

s(Hσ
1 ) = s(Bσ1 ), . . . , s(H

σ
m) = s(Bσm). (38)
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We suppose that

∑
σ∈Sn

m∑
k=1

s(Aσk ) �
∑
σ∈Sn

m∑
k=1

s(Bσk )

otherwise we interchange the direct sums in (15). Then by (38)

∑
σ∈Sn

m∑
k=1

s(Ãσk ) �
∑
σ∈Sn

m∑
k=1

s(Hσ
k ). (39)

Let us fix distinct p and q and prove that Cpq = 0 in (20). By (31),

s(Hσ
k ) = s(Ãσk )+

∑
p /=q

s


 ∑
i∈Ip

Ãσi cik




for each k ∈ Iq . Combining it with (39), we have∑
i∈Ip

Aσi cik =
∑
i∈Ip

Ãσi cik = 0

for each k ∈ Iq . Define u by (35). As in (36), we obtain

F(u, x, . . . , y) = F(x, u, . . . , y) = · · · = F(x, . . . , y, u) = 0

for all x, . . . , y ∈ Up and so F |uK is a zero direct summand of Fp = F |Up. Since Fp is inde-
composable, u = 0; so Cpq = 0. This proves (21) for n > 3. �

Remark 10. Theorem 9(b) does not hold for bilinear forms: for example, the matrix of scalar
product is the identity in each orthonormal basis of a Euclidean space. This distinction between
bilinear and n-linear forms with n � 3 may be explained by the fact that decomposable bilinear
forms are more frequent. Let us consider forms in a two-dimensional vector space. To decompose
a bilinear form, we must make zero two entries in its 2 × 2 matrix. To decompose a trilinear form,
we must make zero six entries in its 2 × 2 × 2 matrix. In both the cases, these zeros are made by
transition matrices, which have four entries.

Corollary 11. Let F : U × · · · × U → K be an n-linear form with n � 3 over a field K. If

F = F1 ⊕ · · · ⊕ Fs ⊕ 0 (40)

and the summands F1, . . . , Fs are nonzero and indecomposable, then these summands are deter-
mined by F uniquely up to congruence.Moreover, ifU = U1 ⊕ · · · ⊕ Us ⊕ U0 is the correspond-
ing decomposition of U, then the sequence of subspaces

U1 + U0, . . . , Us + U0, U0 (41)

is determined by F uniquely up to permutations of U1 + U0, . . . , Us + U0.

Proof of Theorem 2(b). For n = 2 this theorem was proved in [4, Section 2.1] (and was extended
to arbitrary systems of forms and linear mappings in [4, Theorem 2]). For n � 3 this theorem
follows from Theorem 3 and Corollary 11. �
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