provided by Elsevier - Publisher Connector

Available online at www.sciencedirect.com

a7 . . . LINEAR ALGEBRA
*.” ScienceDirect AND ITS
APPLICATIONS

ELSEVIER Linear Algebra and its Applications 418 (2006) 751-762

www.elsevier.com/locate/laa

Congruence of multilinear forms

Genrich R. Belitskii 2, Vladimir V. Sergeichuk >*

& Department of Mathematics, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
b mstitute of Mathematics, Tereshchenkivska St. 3, Kiev, Ukraine

Received 16 November 2005; accepted 6 March 2006
Available online 27 April 2006
Submitted by P. Semrl

Abstract

Let
F:Ux - -xU—=K, G:Vx---xV-=>K

be two n-linear forms with n > 2 on finite dimensional vector spaces U and V over a field K. We say that F’
and G are symmetrically equivalent if there exist linear bijections ¢1, ..., ¢, : U — V such that

Fuy,...,up) = G(pjut, ..., ¢i,un)

for all uy,...,u, € U and each reordering iy, ...,iy of 1,...,n. The forms are said to be congruent if
Y1 =""=0n.

Let F and G be symmetrically equivalent. We prove that

(i) if K = C, then F and G are congruent;

MHIK=RF=F& - ®F®0,G=G|®---®G, ®0, and all summands F; and G ; are non-
zero and direct-sum-indecomposable, then s = r and, after a suitable reindexing, F; is congruent to
+G;.
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1. Introduction

Two matrices A and B over a field K are called congruent if A = ST BS for some nonsingular
S. Two matrix pairs (A1, By) and (A3, By) are called equivalent if Ay = RA>S and By = RB>S
for some nonsingular R and S. Clearly, if A and B are congruent, then (A, AT) and (B, BT) are
equivalent. Quite unexpectedly, the inverse statement holds for complex matrices too: if (A, AT)
and (B, BT) are equivalent, then A and B are congruent [2, Chapter VI, §3, Theorem 3]. This
statement was extended in [3,4] to arbitrary systems of linear mappings and bilinear forms. In
this article, we extend it to multilinear forms.

A multilinear form (or, more precisely, n-linear form, n > 2) on a finite dimensional vector
space U over a field K is a mapping F : U x --- x U — K such that

/ "
FQuy,...,ui—1,au; +bu; uiy1, ..., uy)
/ "
=aFQy,....,u;, ... uy) +bFQuy,....u;, ... up)

foralli e {l,...,n},a,be K, anduy,...,u.,u’,...,u, € U.
1 1

Definition 1. Let
F:Ux---xU—->K, G:Vx---xV->K @))

be two n-linear forms.

(a) F and G are called equivalent if there exist linear bijections ¢1, ..., ¢, : U — V such that

F(uy,...,uy) = G(pruy, ..., @uuy)

forall uy,...,u, € U.
(b) F and G are called symmetrically equivalent if there exist linear bijections ¢1, ..., ¢, :
U — V such that

Fuy,...,un) = G(gjui, ..., ¢i,un) ()
forall uy, ..., u, € U and each reordering iy, ...,i, of 1,..., n.

(c) F and G are called congruent if there exists a linear bijection ¢ : U — V such that
F(Ml, "'7un) = G(goulv ---9‘Pun)

forall uy,...,u, € U.

The direct sum of forms (1) is the multilinear form
FOG:UdV)x---xUV)—=>K
defined as follows:
(FOG)uy+vi,...,up+vy):=Fuy,...,up) + Gy, ..., v,)

forall uy,...,u, €e Uandvy,...,v, € V.
We will use the internal definition: if F : U x --- x U — K is a multilinear form, then F =
F1 & F> means that there is a decomposition U = U; @ U, such that

(i) F(x1,...,x,) =0assoonas x; € Uy and x; € U for some 7 and j.
(i) F1 = F|U; and F, = F|U; are the restrictions of F to U and U,.
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A multilinear form F : U x --- x U — K is indecomposable if for each decomposition F =
F1 & F; and the corresponding decomposition U = U; @ U, we have U = 0 or Uy = 0.
Our main result is the following theorem.

Theorem 2. (a) If two multilinear forms over C are symmetrically equivalent, then they are
congruent.
(b) If two multilinear forms F and G over R are symmetrically equivalent and
F=F® - -®F;,®0, G=G1®---®&G, &0

are their decompositions such that all summands F; and G j are nonzero and indecomposable,
then s = r and, after a suitable reindexing, each F; is congruent to G; or —Gj.

The statement (a) of this theorem is proved in the next section. We prove (b) in the end of Section
3 basing on Corollary 11, in which we argue that every n-linear form F : U x --- x U — K with
n > 3 over an arbitrary field K decomposes into a direct sum of indecomposable forms uniquely
up to congruence of summands. Moreover, if F = F; @ --- @ Fy & 0is adecomposition in which
F1, ..., Fy are nonzero and indecomposable, and U = Uy @ - - - @ Uy @ U is the corresponding
decomposition of U, then the sequence of subspaces U; + Uy, ..., Us + Uy, Uy is determined
by F uniquely up to permutations of Uy + Uy, ..., Us + Up.

2. Symmetric equivalence and congruence

In this section, we prove Theorem 2(a) and the following theorem, which is a weakened form
of Theorem 2(b).

Theorem 3. If two multilinear forms F and G over R are symmetrically equivalent, then there
are decompositions

F=F&F, G=G®%G;

such that Fy is congruent to G1 and F, is congruent to —G.
Its proof is based on two lemmas.

Lemma 4. (a) Let T be a nonsingular complex matrix having a single eigenvalue. Then
vmeN 3f(x)eClx]l: fOM"=T1""

(b) Let T be a real matrix whose set of eigenvalues consists of one positive real number or a
pair of distinct conjugate complex numbers. Then

VmeN 3f(x)eRx]: fO"=T1"" (3)
Proof. (a) Let T be a nonsingular complex matrix with a single eigenvalue A. Since the matrix

T — Al is nilpotent (this follows from its Jordan canonical form), the substitution of 7 for x into
the Taylor expansion

e P 1 1
X m=)Am —— A m (x—)\,)

( )(———1>A w2 — )2 - )
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gives some matrix
f(T), fx) e Clx], ©)
satisfying f(T)" = T~
(b) Let T be a square real matrix. If it has a single eigenvalue that is a positive real number A,

then all coefficients in (4) are real, so the matrix (5) satisfies (3).
Let T have only two eigenvalues

A=a+ib, A=a—ib (a,beR, b>0). (©6)

It suffices to prove (3) for any matrix that is similar to 7 over R, so we may suppose that 7 is the
real Jordan matrix

o[ 0], [al+F bl -
r=r [0 TIR= =t arvr] RS w

in which J = A 4 F is a direct sum of Jordan blocks with the same eigenvalue A (and so F'is a
nilpotent upper triangular matrix).
It suffices to prove that

vmeN 3f(x)eRx]: fF(H"=J"! @)

since such f(x) satisfies (3):

FM"=fRT@NR" =R f(J TR
=R GO FDIR=R"'VeDR=T"".
The matrix F is nilpotent, so the substitution of J = Al 4+ F into the Taylor expansion (4)
gives some matrix g(J) with g(x) € C[x] satisfying g(J)" = J -1, Represent g(x) in the form:
g(x) = go(x) +ig1(x), go(x), g1(x) € Rlx].
It suffices to prove that J reduces to i/ by a finite sequence of polynomial substitutions
J+— h(J), h(x) e R[x].
Indeed, their composite is some polynomial p(x) € R[x] such that p(J) = i/, and then f(x) :=
g0(x) + p(x)g1(x) € R[x] satisfies (7):
F™ = (go()) + p(N)g1(IN)™ = (g0(J) +ig1(I)N" = g(N)" =J~".

First, we replace J by b=Y(J —al) (see (6)) making J =il + G, where G :=b~ ! F. Next, we
replace J by

3 1 3 3 . 1 . c 2 3 :

§J+§J = 5(11+G)+§(—11—3G+31G + G°) =il + H,

where H := (3iG? + G*)/2. The degree of nilpotency of H is less than the degree of nilpotency
of F; we repeat the last substitution until obtaini/. [

Definition 5. Let G : V x --- x V — K be an n-linear form. We say that a linear mapping 7 :
V — V is G-selfadjoint if
G,y Vi1, TV, Vigdy a5 V) = GV, o0, U1, TV, Vjag, ey Uy)

for all vy, ..., v, € V and all i and j.

If t is G-selfadjoint, then for every f(x) € K[x] the linear mapping f () is G-selfadjoint too.
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Lemma6. Let G : V x --- x V — K be a multilinear form over a field K and lett : V — V
be a G-selfadjoint linear mapping. If

V=Vi& -V (®)

is a decomposition of V into a direct sum of T-invariant subspaces such that the restrictions t|V;
and t|V;j of T to Vi and V; have no common eigenvalues for all i #+ j, then

G=G1®---®Gs;, G;:=GlV,. )

Proof. It suffices to consider the case s = 2. To simplify the formulas, we assume that G is a
bilinear form. Choose v € V| and vy € V5, we must prove that G(vy, v2) = G(va, v1) = 0.

Let f(x) be the minimal polynomial of | V5. Since t|Vj and 7|V, have no common eigenvalues,
f(z|V1) : Vi — V1 is a bijection, so there exists vi € V1 such that vy = f(t)vi. Since T is
G-selfadjoint, f(7) is G-selfadjoint too, and so

G (v, 1)=G(f(D)v], v2) = G, f(T)v2)
=G}, f(z|V))vy) = G(v}, 0vp) = G(v},0) =0.

Analogously, G(v2,v;) =0. O

Proof of Theorem 2(a). Let n-linear forms (1) over I = C be symmetrically equivalent; this

means that there exist linear bijections ¢y, ..., ¢, : U — V satisfying (2) for each reordering
i1,...,ipof 1,..., n.Letusprovebyinduction that F and G are congruent. Assume thatp := ¢ =
--- = ¢; for some ¢t < n and prove that there exist linear bijections
1,01 ="':Wt=1ﬁz+1,¢z+2,~-~,1/fn . U_) V
such that
F(uy,...,un) = GWiyuy, ..., ¥i,un) (10)
forall uy, ..., u, € U and each reordering iy, ...,iy of 1,..., n.
By (2) and since ¢y, ..., ¢, are bijections, for every pair of indices i, j such that i < j and
for all Ui, Uj e U and Uiy oo e Vi—1, Vigls oo Vj—1, Vjgl, - o Un € V, we have
G, - Vie 1, QUG Vigdy oy Vi1 Qo U, Vi, - o5 Up)
J JoVj
=G, Vie 1, Qi1 Uiy Vil ooy Vi1, QUG Vjtd, oy Up). (11D

Denote v; :==@,41u; and vj :=¢;1u;. Then (11) takes the form:
G(...,(p(p;rllv,-,...,vj,...) =G(...,vi,...,(p(p;rllvj,...),

this means that the linear mapping t ::q)(p;rl] : V. — V is G-selfadjoint.

Let A1, ..., Ay be all distinct eigenvalues of 7 and let (8) be the decomposition of V into
the direct sum of t-invariant subspaces V1, ..., V; such that every 7; :=7|V; has a single eigen-
value };. Lemma 6 ensures (9). For every f;(x) € C[x], the linear mapping f;(t;) : V; — V; is
G;-selfadjoint. Using Lemma 4(a), we take f;(x) such that f;(z;)’ 1= ri_l. Then

p=f@)® - @ fs(ty): V>V

is G-selfadjoint and p't! = ¢~
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Define
Vi=- =V 1 =00, Yi12: =042, s Yn=n. (12)
Since p is G-selfadjoint and
P o =170 = (00 )0 = @41

we have

G(Wuy, ..., Yaun) =G(poui, ..., pQUL, POUL1, Pr42Ur42,s - -+ 5 Pplly)
=G(put, ..., ou, 0" QU1 Griottisa,s .., Paltn)
=G(pruy, ..., ooup) = F(uy, ..., uy).

So (10) holds for i =1,ip =2,...,i, =n. The equality (10) for an arbitrary reordering
it,...,ipof 1,..., nis proved analogously. [J

Proof of Theorem 3. Let n-linear forms (1) over X = R be symmetrically equivalent; this means
that there exist linear bijections ¢1, ..., ¢, : U — V satisfying (2) for each reordering iy, ..., i,
of 1,...,n. Assume that g :=¢; = - - - = ¢, for some ¢t < n. Just as in the proof of Theorem 2(a),
Ti= (p(p;_ll is G-selfadjoint. Let (8) be the decomposition of V into the direct sum of t-invariant
subspaces such that every 7, := 7|V, has a single real eigenvalue A, or a pair of conjugate
complex eigenvalues

Ap=ap+iby, Ap=ap —ibp, bp >0,

and A, # Ay if p # g. Lemma 6 ensures the decomposition (9).
Define the G-selfadjoint linear bijection

e=¢ely, @ - Dely, : V>V

in which ¢; = —1if }; is a negative real number, and ¢; = 1 otherwise. Replacing ¢;11 by €¢;+1,
we obtain T without negative real eigenvalues. But the right-hand member of the equality (2)
may change its sign on some subspaces V,. To preserve (2), we also replace ¢;2 with e, if
t+1 <nandreplace G = G| @ - - - ® G (see (9)) with

e1G1 @ - ® &Gy (13)

if t + 1 = n. By Lemma 4(b), for every i there exists f;(x) € R[x] such that f,-(r,~)"H = tl._l.
Define

p=fE)® D fs(r): V>V,
then p’*! = 1. Reasoning as in the proof of Theorem 2(a), we find that (10) with (13) instead
of G holds for the linear mappings (12). O
We say that two systems of n-linear forms
F,...,F,b:Ux---xU—->K, Gi...,.Gg:Vx---xV—>K
are equivalent if there exist linear bijections ¢y, ..., ¢, : U — V such that
Fiuy, ..., un) = Gi(prut, ..., gulty)

for each i and for all uy, ..., u, € U. These systems are said to be congruent if o1 = - - - = ¢,,.
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For every n-linear form F, we construct the system of n-linear forms
F(F)={F°lo €Sy}, FoQui,...,un)=FQUgy, -, Usmn)), (14)

where S, denotes the set of all substitutionson 1, ..., n.
The next corollary is another form of Theorem 2(a).

Corollary 7. Two multilinear forms F and G over C are congruent if and only if the systems of
multilinear forms & (F) and & (G) are equivalent.

To each substitution o € S,, we assign some e(o) € {1, —1}. Generalizing the notions of
symmetric and skew-symmetric bilinear forms, we say that an n-linear form F is e-symmetric if
F° =¢(o)F forall o € §,. If G is another e-symmetric n-linear form, then & (F) and ¥ (G) are
equivalent if and only if F and G are equivalent. So the next corollary follows from Corollary 7.

Corollary 8. Twwo e-symmetric multilinear forms over C are equivalent if and only if they are
congruent.

3. Direct decompositions

Every bilinear form over C or R decomposes into a direct sum of indecomposable forms
uniquely up to congruence of summands; see the classification of bilinear forms in [1,5,4]. In
[4, Theorem 2 and §2] this statement was extended to all systems of linear mappings and bilinear
forms over C or R. The next theorem shows that a stronger statement holds for n-linear forms
with n > 3 over all fields.

Theorem 9. Let F : U x --- x U — K be an n-linear form with n > 3 over a field K.

(a) Let F = F' ® 0 and let F' have no zero direct summands. If U = U’ @ Uy is the corre-
sponding decomposition of U, then Uy is uniquely determined by F and F' is determined
up to congruence.

(b) Let F have no zero direct summands and let F = F1 @ - - - @ F; be its decomposition into a
direct sum of indecomposable forms. [fU = Uy @ - - - @ Us is the corresponding decompo-
sition of U, then the sequence Uy, ..., Uy is determined by F uniquely up to permutations.

Proof. (a) The subspace Uy is uniquely determined by F'since Uy is the set of all u € U satisfying
Fu,x1,....xp-1) =FQx,u,x2...,x-1) = =F(x1,...,x-1,u) =0

forall xq,...,x,—1 € U.
Let F = F' & 0= G &0 be two decompositions in which ¥’ and G’ have no zero direct
summands, and let U = U’ @ Uy = V' @ Uy be the corresponding decompositions of U. Choose

basesuy,...,u, of U and vy, ..., v, of V' suchthatu; — vy, ..., u,; — v, belong to Uy. Then
FQuj,...,ui,) =F,...,v,)

foralliy,...,i, € {1, ..., m}, and so the linear bijection
U — V', uirv,...,un+— vy,

gives the congruence of F’ and G'.
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(b) Let F : U x --- x U — K be an n-linear form with n > 3 that has no zero direct sum-
mands, let

F=F® - ®F=G& &G, (15)
be two decompositions of F into direct sums of indecomposable forms, and let
U=U,&®---U;=V&d -V, (16)
be the corresponding decompositions of U.
Put
dy =dimUy,...,d; = dim U 17

and choose two bases
U, ..., upy e U---UUs, wvi,...,op€VIU---UV, (18)

of the space U with the following ordering of the first basis:

ui,...,uqg, isabasisof Uy, ug,41,...,Uq+a, isabasisof Ua, ... (19)
Let C be the transition matrix from uq, ..., u,, to vy, ..., v,. Partition it into s horizontal and
s vertical strips of sizes dy, da, . . ., dy. Since C is nonsingular, by interchanging its columns (i.e.,
reindexing vy, ..., v,) we make nonsingular all diagonal blocks. Changing the bases (19), we
make elementary transformations within the horizontal strips of C and reduce it to the form:
Iyy Crp ... Cis
c=|C o O 20)
Cs1 Cyoo ... Iy
It suffices to prove that u; = vy, ..., Uy, = vy, thatis,
Cpg=0 ifp+#gq. 2D
Indeed, by (18) v; € V), for some p. Since Fj is indecomposable, if d; > 1 thenuy, up € Uy and
F(..,u;,...,u2,..)#0 or F(..,up,...,ug,...)#0 (22)

for some elements of U denoted by points. If (21) holds, thenu; = vy and us = v,. Since vy € V),
(22) ensures that vy ¢ V,, for all g # p, and so vy € V,,. This means that Uy C V,,. Therefore,
after a suitable reindexing of V1, ..., Vs we obtain Uy C V1, ..., U, C V.. By (16), r = s and
Uy = Vi, ..., U, = V,; so the statement (b) follows from (22).

Let us prove (21). For each substitution o € §,,, the n-linear form F° defined in (14) can be
given by the n-dimensional matrix

A% =laf; (I k=1 G = F i ug, o up)
in the basis u1, ..., u,, or by the n-dimensional matrix
B° = [bg ..... k]?:lj ’’’’’ kel b;’j """ ei=F7 i, v, ..., v)
in the basis vi,...,v,. Then for all xq,...,x, € U and their coordinate vectors [x;] =
(CSTIE xm,-)T in the basis uy, ..., u,;, we have
m
Fo(x1,...,x,) = Z af’j.__kxilsz-uxkn. (23)

i,j,...k=1
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If C = [¢;;] is the transition matrix (20), then

m

Doy = D A5 kG i (24)

iy jyeek=1
By (15), al?’j ..... « = Fui,uj,...,ux) #0onlyifall u;, uj, ..., u; belong to the same space
U;. Hence A and, analogously, B’ decompose into the direct sums of n-dimensional matrices:
AO’ZAT@...@A?” BazB‘f@"'@Bf, (25)

in which every A7 has size d; X - -+ x d; and every B has size dim V; x - -+ x dim V;.

We prove (21) using induction in 7.
Base of induction: n = 3. The three-dimensional matrices A° and B° can be given by the
sequences of m-by-m matrices

A(lr = [a?/']]?;lj:] RN A;In = [aigjm]?’lj:] )

By = [b;’]-l]ff’jzl, ..., By = [bl‘-’jm Tj:l;
we call these matrices the layers of A® and B°. The equality (23) takes the form:

FO(x1, x2,x3) = [x1] (A x13 + - + A xm3)[x2] (26)
for all x1, x», x3 € U and their coordinate vectors [x;] = (xy;, ..., xm,-)T inthebasisuy, ..., uy,.
Put

HY :=Afci1 + -+ Ajcmi,

(27)

HYZ = ATC]m + -+ Afncmm
By (24)

m
b;r/j/k/ = Z (a?le]k/ +--- a?jmcmk/)cii/cjj/
i,j=1
and so
BY =CTHYC,..., BS=CTHSC. (28)
Partition {1, ..., m} into the subsets

Jr={1,...,d1}, Fp={di+1,...,di+dr},... 29)

(see (17)). By (25), if k € .#, for some ¢, then the kth layer of A? has the form
0 =04, @ @0 ®AT D04, & &0 (30)

in which Zg is dy-by-d,. So by (27) and since all diagonal blocks of the matrix (20) are the
identity matrices, we have

Hf =Y Acyu® @ Y Alcu@®AT@ Y Alcy@ @Yy Alcy. (1)
ied i€dy—1 €541 =
‘We may suppose that

Z i rank AY > Z i rank By ; (32)

geSz i=1 geS3 i=1
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otherwise we interchange the direct sums in (15). By (30) and (28),

m m
Z Zrank K;’ > Z Zrank H?. (33)

oeSy i=1 oeS;y i=1
Let us fix distinct p and ¢ and prove that Cp; = 0 in (20). Due to (31), (33), and (30),
Vke sy Y Afcy =0. (34)
ies)

Replacing in this sum each A by the basis vector u;, we define

ui= Z uicik € Up. (35)
iesy

Since

] =(0,....0,Cap1ks - Catdpks 0. O, di=di+ ... +dpy

by (26) and (34) we have FF° (x, y, u) = Oforallx, y € U,. This equality holds for all substitutions
o € 83, hence

Fu,x,y)=F(x,u,y) = F(x,y,u) =0, (36)
and so F|ul{ is a zero direct summand of F, = F|U,. Since F), is indecomposable, u = 0; that
IS,Cqt1 k== Cd+dyk = 0. These equalities hold for all k € .#, hence C,,; = 0. This proves
(21) forn = 3.

Induction step. Let n > 4 and assume that (21) holds for all (n — 1)-linear forms.
The n-dimensional matrices A° and B can be given by the sequences of (n — 1)-dimensional
matrices

o __ o m o _ o m
Al = [ai,...,jl]i ..... j=1 e Ay =lap jm]i ..... j=1
o __ o m o __ o m
By =1[b; | jl]i ..... j=1 oo By =107 jm]i,..,,jzl'
By (24)

------

(37)

...............

Due to (25) and analogous to (30), each A7 with k € .7 (see (29)) is a direct sum of dj x --- X
di,...,ds x --- X ds; matrices, and only the gth summand ZZ may be nonzero. This implies (31)
for each k and for H;? defined in (27).

For each (n — 1)-linear form G, denote by s(G) the number of nonzero summands in a decom-
position of G into a direct sum of indecomposable forms; this number is uniquely determined by G
due to induction hypothesis. Put s (M) :=s(G) if G is given by an (n — 1)-dimensional matrix M.
By (37), the set of (n — 1)-linear forms given by (n — 1)-dimensional matrices (27) is congruent
to the set of (n — 1)-linear forms given by BY , ..., By,. Hence

s(H{)=s(BY),....s(Hy) = s(B}). (38)
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We suppose that

YD os@AUD =YY B

oeS, k=1 oeS, k=1

otherwise we interchange the direct sums in (15). Then by (38)

DD S@AD = DY s(HY). (39)

oes, k=1 oes, k=1

Let us fix distinct p and ¢ and prove that C},;, = 0 in (20). By (31),

s(HD) =sAD+ > s | Y A%ci

P#q i€s)
for each k € #,. Combining it with (39), we have
Y A=) Alciy =0
ied, ies,
for each k € .#,. Define u by (35). As in (36), we obtain
Fu,x,....y)=Fx,u,...,y)=---=Fx,...,y,u) =0
forall x,...,y € Up and so F|ulK is a zero direct summand of F, = F|U,. Since F), is inde-

composable, u = 0; so Cp,; = 0. This proves (21) forn > 3. 0

Remark 10. Theorem 9(b) does not hold for bilinear forms: for example, the matrix of scalar
product is the identity in each orthonormal basis of a Euclidean space. This distinction between
bilinear and n-linear forms with n > 3 may be explained by the fact that decomposable bilinear
forms are more frequent. Let us consider forms in a two-dimensional vector space. To decompose
a bilinear form, we must make zero two entries in its 2 x 2 matrix. To decompose a trilinear form,
we must make zero six entries in its 2 x 2 x 2 matrix. In both the cases, these zeros are made by
transition matrices, which have four entries.

Corollary 11. Let F : U x --- x U — K be an n-linear form with n > 3 over a field K. If

F=F®  -®Fa0 (40)

and the summands F1, . .., Fs are nonzero and indecomposable, then these summands are deter-
mined by F uniquely up to congruence. Moreover, if U = U1 @ - - - @ U & Uy is the correspond-
ing decomposition of U, then the sequence of subspaces

Ui+ Uy,...,Us+ Uy, Uy (41)
is determined by F uniquely up to permutations of Uy + Uy, ..., Us + Up.
Proof of Theorem 2(b). Forn = 2 this theorem was proved in [4, Section 2.1] (and was extended

to arbitrary systems of forms and linear mappings in [4, Theorem 2]). For n > 3 this theorem
follows from Theorem 3 and Corollary 11. O
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