
Theoretical Computer Science 29 (1984) 185-227
North-Holland

185

HIERARCHIES OF PRIMITIVE RECURSIVE
WORDSEQUENCE IXJNCTIONS:
COMPARISONS AND DECISION PROBLEMS

E. FACHINI and M. NAPOLI

Istituto di Scienze dell ‘lnformazione, Facoltti dl Scienze Matematiche, Fisiche e Naturali, Uniuersitd
di Salerno. 84100 Salerno, ltaly

Communicated by C. Biihrll
Received November 1982
Reviqed June 1983

Abstract. In : his paper we consider wordsequence functions, i.e., functions of the type f : ,V*’ --, E*‘
where Z is a finite alphabet and r a 0. s > 0. By starting with finite sets of basic functions and by
taking the closure with respect to composition, cylindrification and iteration, we give some
characterizations of primitive recursive wordsequence functions. We define some hierarchies of
length ~,a’ of these functions by bounding the number of successive compositions and the depth
of the nested iterations in the definitions of the functions. In such a manner we obtain refinements
of the Axt, Grzegorczyk and Meyer and Ritchie generalized hierarchies of length w of primitive
recursive wordfunctions defined by Von Henke, Indermark and Weihrauch (1972).

We consider LOOP programs on words (see Ausiello and Moscarini (1976)) by allowing more
than one output register. and we prove that the class of functions computed by these programs
coincides with the class of primitive recursive wordsequence functions. The hierarchies of functions
induce some hierarchies of programs.

For the case of functions f : Z*’ + X*, our hierarchies are compared with the Axt et al.
generalized hierarchies.

We also compare our hierarchies with storage hierarchies, and we analyze tne power of the
L.ooP programs as acceptors.

Finally, we state some decidabilitj results for the considered classes.

Introduction

Partial recursive wordfunctions have been defined by Asser in [11. Partial recursive

sequence functions, i.e., partial recursive functions of the type f : N’+ N” have been
studied by Eilenberg and Elgot in [4] and by German0 and Maggiolo-Schettini in

[7]. In this paper we consider wordsequence functions, i.e., functions of the type
. f2 . *’ + c*‘p where C is a finite alphabet and r 2 0, s > 0. ‘These functions provide

quite directly a semantics to programs for register machines. In fact, these last,

ultimately, transform tuples of words into tuples of words.
By starting with finite sets of basic functions and by taking the clloxre with respect

to composition, cylindrification and iteration, we give some characterizations of

03043975/ 84/ $3.00 0 1984, Eisevier Science Publishers B.V. (North-Holland)

1 HiI E. Fachini, M. Napoli

primitive recursive wordsequence functions. The different characterizations arise

from the fact that a word may be read and written both rightwards and leftwards.
We define! some hierarchies of length w’ of these functions by bounding the

number of successive compositions and the depth of the nested iterations in the
definitions of the functions. In such a manner we obtain refinements of the Axt,
<;rzegorczyk and Meyer and Ritchie generalized hierarchies of length w of primitive

recursive wordfunctions defined by Von Henke, Indermark and Weihrauch in [12].

If tlrc cardinality of the alphabet under consideration is 1, the hierarchies coincide

up to an isomorphism with the hierarchy of primitive recursive sequence functions

defined by Fachi,li and Maggiolo-Schettini in [5]. Some properties of the classes of

primitive recursive sequence functions are easily generalized to the corresponding

C~;~WS of primitive recursive wordselquence functions. One of the major differences
u ith rc\pcct to the numerical case is the fact that even classes of wordfunctions of
the type f: ,v* + p with unnested iterations form hierachies.

WC ~ronsidt’r I ow programs on words (see Ausiello and Moscarini [?I) by allowing

milrc than one output register, and we prove that the class of functions computed

11)’ thctSc programs coincides with the class of primitive recursive wordsequence

f met ions. The hierarchies of functions induce some hierarchies of programs.

/‘it the 1~4 of the elementary functions. i.e.. for functions with depth of nested

itc’rations equal tc 2, the hierarchies defined here coincide. Below this level we

carry out ail tJle co.:?lparisons with respect to the set-theoretical relationships among

t tic ~~l;~w~s. k/r the C;W of functions f : 2’:“’ -+ I*;, our hierarchies are compared with

the , nt. ~irz,/;~orc;~yk and !Lleycr and Kitchie generalized hierarchies.

WC &o crainpiirc our- hierarchies with storage hierurchics (gencraliztsd sequential
IIldlhc!,. tw)-way finite state transducers and deterministic push-down transducxsI

xlcf WC‘ analyze the power of the I.OW programs as acceptors.
Finally. we state some dccidability results for the considered classes. As regards

the sxluivalencc problem. the classtx of worclsequence functions behave as the

corre\pondin, 0 classes of functions _/’ : N r + N ’ (SW [5. 61). In fact, if we add an
in\tru&)n of the tvpc I}- “the content of the register is ditkrcnt from the empty
\i (4” I iI1 :x “scqucncC of instructions” t4 sf. “s,cquencc of instructions” to the set
oi txtsic ir:V3tructicxls of 1 (I(11’ pro~ranis on 1!*0rds, WC find that the cquivalcnce
[Ji ddt’fn iI% dccidatdc~ for the class of functions computed 114’ I 001’ programs Gth

uimcWd ii,cjp inWuctions, If t hc set of basic instructic,x2s also contains an instruction

trt ci~kGit~ tk 16t (or the last 1 syr11bo1 of the word contained in a registx the _
~~I~~ILwI hccomcs undccid‘Ne. hlor::rxtx. WC pro\.c that the graph and the r;mgc‘

mfcrsccfim prohiem are unJtxid;tble for the cliiss t.>f wordfunctions computed b>

I (M w programs with just one unncsted loop ir?stri!ction. with cardinalitv of the _
;rl~hithCt grCittc?r than I.

Hierarchies of primitive recursive wordsequence functions c 187

are defined, the behaviour of these classes with respect to some operators is stated,
and the relationship with the corresponding classes ‘of primitive recursive sequence
functions is shown.

In Section 3 we cc-nsider chains of classes of LOOP programs on words and we
prove that the corresponding chains of classes of functions coincide with the chains
of classes of wordsequence functions already defined. We also prove that they form
hierarchies and we study their bchaviour with respect to the computation time
function. Finally, we state the set-theoretical relationships among these classes and
between these crnd the Axt, Grzegorczyk and Meyer and Ritchie classes of wordfunc-

tions.

In Section 4 we recall the definitions of generalized sequential machine, two-way

finite state transducer and deterministic push-down transducer, and we compare

the classes of functions defined by such transducers with our classes. Moreover,

classes of languages accepted by LOOP programs are defined and compared with

the classes of languages of the Chomsky hierarchy.

In Section 5 some decision problems are dealt with.

The complete proofs of some theorems can be found in Appendix A.

1. Primitive recursive wordsequence functions

In this section we introduce a characterization of primitive recursive wordfunctions
from sequences of words to sequences of words on a given finite alphabet, and we

ca!! them primitive recursive wordsequence functions. These functions are the

primitive recursive sequence functions, defined in [S], up to an isomorphism, when

the alphabet contains just one element.

LetX={a,,..., a,,} be the alphabet. Let us consider the following set of wordfunc-
tions cn 2*,

4. = {E = (e), K = AX, y.(x), S, = Ax.(a,~) for 1 s i S n}

where t? is the empty word of C*.

Let US consider the following operators:

(1) the composition operator Af, g.(f 0 g) such that if f: C*’ -+ C*’ and g: C*’ +
L’*‘, then fog : C*’ --, 2”’ and fog(u) = g(f(u)) for u E PI,

(2) the left cylindrification operator AJ(‘f) such that if f :C*r + 2*‘, then
c‘ f .

v;k” 1 .M --) yf:“ and “f (x, II) = x, f(LO,, for s E E* and 14 E 2*r,

(..?I the right cylindrification operator AJ(f’, such that if f: Yr*’ + Z*‘, then
f’: 1‘*‘-’ ~ p”’ and f’< 14, .u) = f(u), .r for u E E*’ and x E I*,

(4) the &iteration operator Af,, . . . , f,J fl, . . . , f,*)'- such that if fi : C*’ + C*’

for 1 s is II, then (f,, . . . ,f,,)'.:E*r'l + *' gnd

cf*v . . ,f,~)"(e,x-,,...,s,)=x-,....,x,,

(fl.. - - l fJ’*(a,x..~,,. . . , s,)=(f,.. . . , fJ.(x, fi(.X,,. . . , XJ)
for 1 s i s rz and x, x1, . . . , x, E C*.

188 E. Fachini, M. Napoli

Definition 1.1. The set VW, of primitive recursive wordsequence functions on X*,

with card(C) = n is defined as the least set of wordsequence functions containing
BL and closed with respect to the composition, the left and right cylindrificatnons
and the e-iteration.

Whenever we are not interested in the cardinality of C, we refer to WS, as WS.

Consider the following functions:

(1) the function 0: : E*’ + Z*’ (r> 1, 1 < i c r) such that

0:(x,, + l l , x,) = xj, Xl, . . . , x;_1, ix;+,, . . . , x,

(21 the function A’:Z*’ + E*“(r> O), such that

X(u)=u,u for uEJF,

(3) the function Ul : Z*’ +4* (r>O, 1 s&r), such that

Lqx,,. . . ,X,)‘Xj,

(4) the function T:, : c*’ + C*’ (r> 1, 1 d i # j s r), such that

(5) the function f, : C* 3 E* (I s is n), such that

P,(u) = ua, for 14 E z‘*.

Propositiom 1.2. The functions 0:. A r3 U:, T:, and Pf belong to WS.

Proof. The proof immediately follows from the definitions.

Consider the following operators:
(1) the Cartesian product Af, g.(f X g) such that if f : Z*’ + X*’ and g : 2*” + Z*‘.

then f X g : ckl*‘*4 -_* z*‘+’ and (fXg)(u, t~)=f(u),g(v) for UE~*~, ZEZ*~,

(2) the juxtaposition operator hf, g.(f^g) such that if f: Z*‘+ :S*P and g: JY*‘+
2%: then f'i:r*'_tz*P" and (f”g)(u)=f(u), g(ld) for UEZ’*‘,

(3) the Gteration operator Af,. . . . , f,,.(f,, . . . , f,$’ such that if fi : E*’ + Z*‘.

I e-L in II, tkn (f,, . . . , f,J“ : J? -+ _I*’ and

(1 Iq. . . .fJ” (4, x,, . . . , x,) = x,, . . . , x,,

if,... ..~,)"(sa,,x,,....x,)=(f,,....f,,)"(.u.f,(x,,...,x,)).

Proposition 1.3. Tltc class WS is closed wit.6 respect to the cartesiarl product, the
juxtaposition and the 3 - iteration.

Proof. ‘I’trc proof immediately follows from the definitions.

Definition 1.4. Let W be the set of primitive recursive wordfunctions defined as

Hierarchies of primitive recursive wordsequence functions 189

the smallest set of functions containing

BL={E =(e), E’=hx.(e),Si=~x.(a~x), 1 Sian,

LJ; 4x1,. . .,x~(xj),r>O,lqQr}

and closed with respect to
(1) the substitution operator Af, g,, . . . , gk.(fo(gI, . . . , gk)), such that if f: 2*k -+

E*and gi:z*‘+E* for ls.isk, thenfo(g, ,..., Xk)(U)=f(g,(U) ,..., g&)) for
u E z*‘,

(2) the primitive recursion defined as follows: if f : T;*k + C* and gi : 2*k*2 + 2%

for 1 d is n, then h:Z*litl + Z* is obtained by primitive recursion from f, g,, . . . , g,,
iff

Mu, 4 =f(u),

Proof. The proof is analogous to the corresponding theorem in the numerica! case

(see PI).
Let NJ be the set of natural numbers.

A function fK :fV+’ -+ N’ is obtained by repetition from f : N’ + F-Y iff

fK(O, u) = 14,

f”(S(x), 14) =f(f”(x, u)) for u E N’ and x E N.

Consider now the composition and the left and right cylindrifications on functions
f :N’+N”.

Definition 1.6. The set S of primitive recursive sequence functions f : IV + N” with

r 2 0, s < 0 is defined a< the sma!llest set of functions containing

A={O=(O), K'=hx,y.(x).S~~x.(x+l)}

and closed with respect to composition, left and right cylindrifications and repetition.

We will use 1.~1 to denote the 1en;;th or number of symbols in the word x E Z*,
and Ix,, . . . , s,I to denote the sequence of lengths of the words xi E .Z*, 1 s i .s r.

Proposition 1.7. There exists a bijective function cfr : S+ WS, such that

t 1) @ml, = IfWl
(2) @(fog) = @p-g,
(3) @(;f) =‘(@f) and @(f’) =(@f)‘,

(4) @p = (pf)‘.

Proof. The proof obviously follows from the definitions.

190 E. Fachini, M. Napoli

2. Classes of primitive recursive wordsequence functions

,In this section we define four chains of classes LGL, L GL, LGR, LbR for i, j* 0, of

primitive recursive wordsequence functions, and we study the behaviour of these
classes with respect to the operators introduced in the previous section. Moreover,
we siate the relationship between each ch<
sequence functions defined in [S].

I
in and the hierarchy of primitive recursive

Let

& ={ E = (e), K = AX, y.(X), Pj = hX*(Xaj) for 1 S i S n}.

Let O=@ and A=A’.
Let Al_ = &u { @, A} and Al, - &u { 0, A) and, for a set X of wordfunctions, let

“C(X) be the closure of X with respect to the composition and left and right

cylindrification and 9’(X) (4;+(X)) the ;liet of functions obtained from X by +-

iteration (e-iteration).

Definition 2.1

L r(,’ = kJ Lr Ii,! for i 3 1.
1 ‘0

Let us use rr’. to denote the class Lz,‘-, for i 2 0.
The class LLF is analogously obtained by considering AK instead of A,_ in the

above definition. The class f_$ (LcjR) is obtained as LcjL (LLjR) by considering the
Aeration instead of the e-iteration.

Whenever we state a property holding for all the classes L$-, L$, L,$ &” we

wi!l express it for L,.,

Lemma 2.2. The foilowi/~g properties hold :

(1) L.,r L,.,, 17 L, c L,, 1,

(2) ‘aa L,)) = L,,,,
(3) VL,)= L,,.zqL,)G L,*, for iao,
(4 if f E L,.,. then f = f;p fp l - - 0.1; with
t 5) if f c L,_!, then ‘f E L,., and f E L ,,,.

ProolF. The proof immediately follows from the definitions.

Lemma 2.3. if f c L,., ard g E L+ the0 f 0s E L.,+ kr f lg E L,.,+ k3 f X ,r: E L,,, I*

Proof. The proof is analogous to the numerical case.

Hierarchies of primitive recursive wordsequence functions 291

Lemma 2.4. VVS = Ui,j~~ Li,j.

Proof. The proof obviously follows from the definitions.

We now give a duality result. _

Lemma 2.5. There exists a bijective function @ : WS + WS such that

(1) @(fi Of21 = @(f&J Wf,),
(2) Wf) =‘WfH and @(f’) =Wf))‘,
(3) @C&l, - l . - g,,)? =(@(gA . . . , @(g,))” and

@((g,7 - - - 9 R,J’7 = W(g,>, l l - , Wg,,))“,
(4) @(LLFj = LGK and @(Lc’-) = Lb’. .

Proof. Let @: WS-, W’S be such that if f: C*r + E*‘, then Q(f) = revof ore; ’

where rev’(e) = e, rev’(aiX) = (rev’oPi)(x) and rev = rev’- l * 0 rev !rimes for r) 1.
It can easily be seen that properties (l), (2) and (3) hold. By induction on i and

j and by the previous properties (l), (2) and (3), property (4) can be easily proved.

Let us now recall the definition of the hierarchy of primitke recursive sequence

functions given in [5].

Definition 2.6

I o.o= %(A u{ON=Ax, y.(y, x), A’=A.x.(x, .u)}j,

li,j+ I ={f =fIofz(fl E li,i and f2~ C%(!i<l)} for i,jaO,

/i,()= U /j-1.j for ia 1.
J--o

Let US denote the class ii.0 by /i for i 2 0.

Lemma 2.7. (1) For every i, j 2 0 it holds that for every f : N’ -+ N” E /i,j there exists an
f’: z*r + -&“S E L, J such that f(lul) = If’(u)1 for every u E E*‘.

(2) For every i - ‘=4 andj 3 0 it holds that for every f’ : C*r + T*’ E Li,j there exists
a nondecreasing function f : W *WE /i,j such that If’(u)/Sf(lul) for every UE~*'.

Proof. (1) The proof is straightforward by induction on the structure of li,j.

Suppose that the claim holds for f E 1i.p If a function f E li,j+ I, then f = f, ofi where

f, E i’i,i and fi = gR with g E li. By induction hypothesis there exists an f f E L,,j and

g‘ E Li such that fl(lul> = If: (u)I and g(lul) = Ig”(u)l. Then

f(l4) = WgKN14i =gYfi(14)) = gYlff’ WI) = Kg?, . . . , g3Y f$ WI

=If~o(g~,...,g~)‘(u)l

192 E. Fachini, M. Napoli

where g” = gf = l - l = g$ Therefore, f” = ff’ o(gf, . .
2-r

l 9iZn) E !jqi+l is the wanted

function.
(2) This claim can easily be proved by induction on the :<tructure of Li,: Suppose ,

it holds for Li., and consider a function f” E Li,i+l where f’ :=ff o(gt, . . . , gi)’ with
ff : p’ + x*‘-’ E L,,i and gr:Z*‘+Z*‘ E L, for 1 s k 6 n. By inductive hypothesis

there exist nondecreasing functions fi E /i,j and g,, . . . , g,, E Ii such that Iff (u)\ e

fAl4) and l&u)l s g&4>, 1 s k 5 n.
Let

g=hx, ,... rX,. (i g,(x ,,..., x,) > for x,,...,x,EN
/8=I

where xl,. . . , x, +yl,. . . , y, =x1 +yl,. . . , x, + ys. The function g E li and it holds

that]g&)I s gt[uJ) for 1 s k s n; then the function f = f, o,qR E /,,j+l is the wanted

function. In fact

If’(u,l = ((gf.. . . ‘) gl)Yff (UHI s gK(lf,(u)I) s (fPgK)(IuI).

Proposition 2.8. There exists a bijective function Qi : S + WS; such that @(I;.,) = Li,+

Proof. The proof follows by Proposition 1.7 and by the definition of the classes.

From now on we will identify the functions of S with the functions of WS on an
alphabet of cardinality one.

3. LOOP programs computing wordsequence functions

Primitive recursive wordsequence functions give a semantics to the language of

root* Iprograms on words defined by Ausiello and Moscarini in [Z].
In this section we prove that the chains of classes Lc’-, LcjR. LcjR and L$‘- are

hierarchies of functions. Note that the strictness of the containment of Lt,.i in Lo,,, 1

holds also if we consider the subclasses of L I)., containing only functions of type

f
v*-C* for card(&) v 2 2. In the numerical case. instead. the subclass of /(),,

cbnltaining only functions of type f : NY--) N is contained in /f),r, I, for every j (see [9]).

We will state some results in comparing the classes L,:,’ , L;,K, LiiK and Ly,‘. The

hierarchies coincide for i - 4 2 and j 20; moreover, the classes L,‘,‘-, L;IR, L,:,’ and
L;.,’ turn out to be complexity classes for i 2 2 and j 3 0, like the numerical cast.

Some weaker results about the computing time function are obtained for the classes

L ,*.: . L; .y. L,:y and L$ j 2 0.

Let us define the LOOP programs on words on E = (a,. . . . , a,,) (see [2]). Let X, Y

be names for registers which can contain an arbitrary word on E*.

Let us consider the following instruction:

fit) .Y + Y, the clear instruction,

193 Hierarchies of primitive recnrsi’ve wordstiqurnce functions

(b) X+ Y, the copy instruction,
(C) XC- Xai, the R-append instruction, l for ai E C,

and the following loop control structures:

(d) LOOP+ X the F-loop instruction,

1. I,;
.
.
.

n. I,;

END

where I,, . . . , I, are lists of instructions of type (a), (b), (c) or (d).

(d’) LOOP* X the ~-loop instruction,

1. I,;
.
.
.

fl. I,,;

END

where I,,... , I,, are lists of instructions of type (a), (b), (c) or (d’).
The loop control structures (d) [(d’)] are interpreted by the following informal

program:

Step I. Transfer the content of X in. the register CONTROL.
Step 2. while CONTROL # e execute Zi if the leftmost (rightmost) character of

CONTROL is a;; erase the leftmost (rightmost) character of CONTROL.

Definition 3.1. An R&‘-LOOP program (Rz-LOOP program) on an alphabet C =

(a I*..., a,} has the following form:

IN S; &,;. . . ;I,,,; OUT t,

where s is a possibly empty list of names of registers, Zi, for 0 s js m, m 2 0 is an
instruction of type (a), (b), (c) or (d) [(a), (b), (c) or (d’)] and t is a nonempty list

of names of registers either occurring in the input list or introduced in the program
by an instruction of type (a).

Consider now the instruction

(c’) X t- a,X, the L-append instruction, for ai E C.

The L&I_OOP and L+LOOP programs are defined as the R&LOOP and R*-LOOP

programs by considering (c’) instead of cc) wherever (c) appears in the above
definitions.

We will

programs.

refer to LOOP programs for L~LOOP, LPLOOP, RP-LOOP, RPLOOP

Definition 3.2. A function f : 3”’ + 2”’ E INS is computed by a LOOP program P

with input register list s and output register list t if before the execution the input

194 E. Fachini, M. Napoli

registers of P contain x1, . . . , x,, E C* (and ahe other registers are empty) and after

the execution the output registers of P contain the sequence f(xl, . . . , XJ E 2*‘.

Definition 3.3. Let &loop(1) be a loop instruction LOOP* X 1. Pa ; . . . ; n. P, ; END
where each Pi is a list of clear, copy and R-append or L-append instructions; let
&loop(i), for i > 1, be a loop instruction LOOP* X 1. P,; . . . ; n. P,; END where each

P, is a list of clear, copy, R-append or L-append and Cloop(i - 1) instructions.

The loop instruction B-loop(i) is defined analogously.

Definition 3.4. Let IWgL be the class of Lc-LOOP programs obtained by using only
clear, copy and L-append instructions. Let McL be the class of LPLOOP programs

obtained by using just i r-loop(i + 1) instructions besides clear, copy, L-append and

t-loop(k) instructions with 1~ k 6 i.

Let us use Ais;‘, to denote the class A&k, i 2 0.
The class ML,” is obtained analogously by replacing L-append with R-append in

the above definition. The class M ;1;’ (M c_”) is obtained as M F;- (M F,”) by consider-

ing I-loop iktead of P-loop instructions.

Theorem 3.5. L$ L$-, LtiK, L,’ are the classes of functions computed by programs
belonging to &I;_~ , M iT,’ , M FiK, M ,y,K respectively, for i, j z 0.

Proof. The proof is tedious but straightforward.

Now we can state that each chain of classes Li., forms a hierarchy.

The proof of the strict containment of Li,, in Li.,+ I for i > 0 exploits properties of
growth of the functions with respect to the lexicographic order on sequences of

lengths of words. The proof is different in the case i = 0 because all the functions

in L, exhibit the same behaviour with respect to the growth.

Consider the function c” : .T* + C” with card(E) > 2 and k > 2 such that ch =

AA-.(xk j for s E I*. For every L.OCW program computing ck, by scanning sequentially

the program. WC can construct a representation of it in form of binary tree:

l Initializatiorz’: create a node labelled s;
‘Step’: for the next loop instruction giving as a result the concatenation of I+ E {x}*

and v, E {x}* for 1 =G i d p and such that nodes)I, and FIIi labelled II, and t‘,

have been created do
I. if ni # mi and I+ and nz, have not a father then create a new node cli

having n, as left son and m, as right son and label it u,v,;

7 _. if tl, z nr, and rzi (or m,) has a father then create a new tree having a new

node n; (or 172;) as root, with label 14, (or ~7,). isomorphic and with the
same labels as the subtree of root TV, (or nz,). Moreover, create a new

node 4, having nj and 112, (or n, and VII;, or ni and ml) as left son and

right son respectively, and label qj with I+v,;

Hierarchies of primitive recursive wordsequence functions 195

3. if nj = mj then create a new subtree having a new node ni, with label

% = vj, as root, isomorphic and with the same labels as the subtree whose
root is nh Moreover, if nj has not a father then create a node qi having
ni and ni as sons and labelled tijZ)i, otherwise apply rule 2. of Step.

Definition 3.6. The tree corresponding to a program P computing ck is a tree
obtained from P by initialization and by repeating the step until all the program
has been scanned and its root is labelled xk.

Example 3.7. Consider the following program computing c” and the corresponding
tree:

IN x;

LOOP_ x;

1. X+-Xa,;
. . .

n. X f Xa,, ;

END

LOOP-, xr

1. X+-Xa,; . . .
n. X + Xa,, ;
END

LOOP + x ;

1. x+-x0,;

X X X X x x x X

n. X+Xa,;

END

OUT x

Lemma 3.8. For every program computing ck the corresponding tree has k leaves.

Proof. For every program P we can state that at every step of the construction of

the corresponding tree the j subtrees already obtained have roots labelled x”‘r for

1 6 i d j and tIZj leaves. The trees obtained by initialization and one execution of

the step of the construction satisfy the claim trivially. Suppose the claim holds for

the trees obtained by p repetitions of the step of the construction. In the (p+ 1)st

execution of the step we possibly create new trees isomorphic to and equally labelled

as the already created subtrees and the claim holds trivially for these new trees.

Then, in the same step, we create new nodes such that each one of these nodes has

sons which are labelled ~“‘1 and x “‘1 respectively and are roots of subtrees having

m, and mi leaves respectively. Thus the new trees obtained havl: roots labelled

s “‘~+“*~ and have fnj + m, leaves.

Lemma 3.9. For every program P computing ck the number 1 of loop instructions
occurring in P is greater than or eq~ 7: * ’ +o the height h of the corresponding tree.

196 E. Fachini, M. Nap&

proof. For every program P we can state that at every step of the construction of

the corresponding tree the j trees already obtained by init%zaticln and one execution

of the step of the construction satisfy the claim trivially. Suppose the claim is true

for the trees obtained by p executions of the step. Let h be the maximum height
of such trees. The (p+ 1)st execution of the step provides trees having height at

most h + 1 and then the claim holds.

Lemma 3.10. The function c” belongs to L,,,, - Lo.k.- I for every h 2 1.

Proof, It is easy to see that the function ?I E Lo-k for every k 3 1. Let PE Ad,,., be

a program computing Pk. The corresponding tree has 2k leaves, by Lemma 3.8,

and height h 2 k. By Lemma 3.9. q 2 h, then c%! Lo,L I.

Theorem 3.11. L ,,., 5 L ,,,, + I fbr ecery j 2 0.

Proof. The containment immediately follows from the definition of the claws. The

strictness follows by Lemma 3. IO for card(z‘) 2 2. For card(E) = 1 the result has

hccn proved in [5],

a 2.7(2) there exists a function f~ I,,
exists an HZ E N such that f ([ldl) d
x/x i = ll41.

Hierarchies of primitive recursive wordsequence functions 197

Now we are able to prove the following theorem.

Theorem 3.13. For every i 2 1, j 2 0, L,j 5 L;,j+l.

Proof. The containment holds by the definition of the classes.
Let & = A# (x, x). By Lemma 3.12, for every f : C* + C* E Li,j with i 2 1, j 2 0

there exists a w &* such that If (x)1 s Fj (w, x). Then for every x such that Ixl>-‘I WI,
If(x)ldij(x) as Fi is a strictly increasing function with respect to the length of
its arguments. And then Hj E Li,j+I - L,j for every i3 1, ja0.

Let us now state a simultaneity result.

Theorem 3.14. For i 2 1 and j Z= 0, Li.i is closed with respect to the juxtaposition
operator. ?

Proof. For card(Z) = 1 the proof has been given in [6]; for card(Z) 2 2 the proof

is analogous Consider a function h =f ^g, with f : 2*’ + C*’ and g : 2Y*r + 4X*’

belonging to Li.i. By definition it holds that f and g can be computed by programs

consisting of j successive loop instructions of depth of nesting i. Let XI, . . . , Xi,
Y,,..., Yj be the control registers of the loops. To compute h we can construct a
program consisting of j successive loop instructions of depth of nesting i and
controlled by 2, =coNc(X,, Y,), . . . , 2, = CONC(X~, Y,). As the concatenation of

words is a function belonging to L1, the function h =f Ag belongs to L,,i.

Let us now introduce the computing time function.

Definition 3.15. Let P be an L&r_oou program IN X1, . . . , X, ; I ; OUT Y, , . . . , Y,.,
let &. . . . , Zp be the list of new register names introduced by I and let q = p+ r.
Then t13 : C* ’ + 2” the computing time function of P is “E K’E 0 l l l 0 ‘“E 0 to U$ f
where f : x*’ l ’ + z*” ’ is the stepcounter function of I defined as follows:

- if I is the empty sequence then z = I/:+’ A. l l *U$,

- if 1 = X, + ai_!$‘, then t z” ‘SF” ““)oC“Sl,

- if] c ,yi+e then t=“’ ‘(El)“” ""'oc4S,, :

- if I -= X, + .Xj then i = T$’ ’ oC9S1,

- if I = I, ; I2 and t, is the stepcounter function of I, then t = tl OL,

-if I=mop+ Xl 1. Ii ; . . . ; n. I:, ; E:NII and bi is the stepcounter function for the

list of instructions I/’ then

t=Jc’~(tl~“‘(S~), , , , , t,,~““(s;‘))“ o’“(S~) if i= 1

198 E. Fachini, M. Napoli

and

t =
C’ -1

A” “+“o@:+’ o(t,oCq(S;), . . . , r,,o”(s~))“~“‘(s:) if i> 1.

If P is an LB, Rt’, RPLOOP program, then the computing time function is defined

analogously.

Proposition 3.16. If P E Mi,jy then tp E Li,b

Proof. The proof immediately follows from the definitions.

We will also write fr for tP if f is the function computed by program I?

The hierarchies are compared in the following lemmata. Some results are stated

for two of the four hierarchies and by Lemma 2.5 they hold for the two dual
hierarchies.

Lemma 3.17. LI;‘. 2 = Lk”.

Proof. The proof obviously follows from the definition.

Lemma 3.18. L,,; 2 L$,.

Proof. lf the function f : 2“sr” -+ 2”” E L,$ then f = f;)of, o . . . c f, where

and p,+ I + 1 = s.
Then f = fr,orev”“’ of; ore8”o - - - 0 revC”‘of,l where f’i = (g’, , . I . , &)” E

.Y’-(L,; ” 1. As revE Lii.r, by Lemma 2.3 it holds that ftz LA]:. As rev E Lh::” - L,1:.: for

every j, the strictness of the containment holds.

Proof. Consider f: 2?’ -+ 2‘*’ c L,:- and the function Cp: WS + WS, defined in
Lemma 25 Then f = revr c @(f))orev” : as Q(f) E L,yF and rev” E L;C,:; for [I 2 1, then
f ‘.. L.:,.;. , , \.

Lemma 3.20. 1;” 5 L; ‘.

Proof. By Lemma 3.18 (see also [?I).

Hierarchies of primitive recursive wordsequence functiotls 199

Proof* Letf:T;*‘-,~*‘EL~~;thenf=~,o(g,,...,g,)’-wheref,,g,,...,g,,EL;R.

By Lemma 3.20, fi, gl,. l l , g,, E. LrR. As f=fiorevCso(g,, . . . , g,*)‘+ and f,orevc’e
L TR, we have f~ L$. The inductive step is proved analogously.

Proof. If f : 2”’ -) 2*s E L$, then the computing tim%function tf E LLF. Ry Lemma

3.12 there exists a w E C* such that, for every u = x1,. . . , x,, Iq(u)l < Ff (w, xk)

where lxkl = Ilull. W e can write a loop program PE M 17p computing a function

g : C* + 2*’ such that f(x,, . . . , x,) = g(F: (w, $(x1, . . . , x,))) where pr : iPr -+ C*

is the function such that $(x1,. . . , x,) = x1 . . . X, As hx.F: (w, X) E L,,j and pr E L,,

we have f E L<,K, l.
The strict containment of the class LF.r in L$ 1 is proved by considering the

function HI E LIei+, -L,,?

Lemma 3.23. L<,” = LEr for j 2 I).

Proof. The proof follows by induction on j.

For i = 0, the claim holds by Lemma 3.19 and its dual result (see also [2]).
Let Ly_f- = LT.: and f : 2*’ + 2”’ E L$). By definition. f = f, 0 (g,, . . . , grr)’ * where

fl E Ly.\- and g,, E LTLa for 1 d h d n. By induction hypothesis, fl E Lrr and gkl E LF”.

As f=florevCSo(gI,. . . ,g,,)‘-. f,orev% LT.“, we have f~ LT.:+]. The inverse

inclusion is proved analogously.

Theorem 3.24. LyK = LzK = Lsl~ = Lr’~.

Proof. The proof follows from Lemmas 3.21, 3.22 and 3.23 (see also [2]).

The diagram, pictured in Fig. 1, summarizes the results of Lemmas 3.17-3.23.

In Fig. 1, A + B means that class A is strictly enclosed in class B, A ---- B

means that class A is enclosed in class B.

Theorem 3.25. The glasses L,%j with i a 2, j 2 0 are closed with respect to the computing

time _function.

Proof. By Proposition 3.16 we only have to prove that if t, E Li.,, then f~ Li.p Let
us prove the thesis for L,‘. Let f: 6*” + z’“‘. If tf : E*’ + .E* E L,K, then there exists
a \VCI2“ such that, for every u = x,, . . . , x, belonging to 2%‘) I+(u)l < Fi (w, xk)

where 1.~ I = Ilull. W e can give a program P computing g: C* + Z*’ E L$ such that

fc XI, * l -, x,) = g(Fi(W, xk)). As hx.Fj(w, xk) E LcjR and i 5: 2, we have f~ Lr,‘.

Theorem 3.26. Letf : P’ -+ C*’ E L;lf\K, k 3 0. If there exists a j < k such thct t, E L;lr,

then f E L$,.

200 E. Fachini, M. Nap&

‘i’ QL_.~ ,.-R

. I = il

+I. L2 = r;'- = LFR = ry

Fig. I .

Proof. If t, : 2’*’ --) 6* E L$ then there exists a w E I?* such that. for every II =

XI,. . , , x, E P’,]rr(LI)(-c F: (w, xk) where lxkl = !hll. Then Itl(lc)l < F,’ (w. p’(u)). It

holds that f(II) = g(F,! (w, p’(u))) where g: E* -+ L*’ is the funct‘ion computed by

the program P E ML: defined in the previous theorem. As hu.(‘p’o F:)(W, u) E L,:,

then f E L$ I.

T’heorem 3.27. Letf : E*’ + Z*’ E Ly& k 2 0. If there exists Q j < k such that t, E L1::.
then fE L<T-+2.

Proof. Let f: ,V*’ -+ I*’ E Lc,y and tf E L,+: with j < k. By Lemma 3.2 1, f E f.;.: and

I, E: L;.:‘. By Theorem 3.26, f c L;::$, and by Lemma 3.22, f E L$z.

We now report some results obtained by comparing the loop hierarchies of
functions f : 2”’ + I* with Axt and Grzegorczyk hierarchies defined in [I 21.

Let us recall the definitions of these hierarchies.
Let

B’-(S; =hx.(qx), 1 d ii II. E”=(e), E’ =hx.(e),

rl; =A_~,. . . . J,(x,) c= 1, 1 i jsr).

Hierarchies of primitive recursive wordsequence functions 201

Definition 3.28. The Axt hierarchy Ri (jz 0) is defined by induction: R0 is the
smallest class containing B’ and closed with respect to substitution; .Rj+, is the
smallest class closed with respect to substitution, containing Ri and the functions
obtained by one application of primitive recursion on RF

We recall the definition of the generalized Ackermann functions Aj : Z*’ -+ C*

belonging to W for every ja 0:

Aok y) = S,(y), 4,(x, e) =x, &(x7 e) = e,

A,(x,e)=q for+3 and

Ai+ I(X, aiy) = A,(x, ,4j+ , (X, y)) for j 2 0 and 1 s i s n.

Definition 3.29. The Grzegorczyk hierarchy E, (ja 0) is defined as follows: E, is
the smallest class of primitive recursive wordfunctions containing B’ u (Ai} and
closed with respect to substitution and the limited recursion operator, where a

function f is said to be obtained by limited recursion from g, ?I, and d if f is obtained

from g and h, by primitive recursion and If(cd ji 6 ~d(,rr)l.

Let L:_., be the subclass of L,, containing only wordsequence functions f : 2*’ + T*.

Note that for the loop hierarchy Lj (js 0) defined in [121 it holds that L, = L,“*

for every jz 0.

Proof. For the proof, see [_ 11, 12, 151.

Proof. For the proof ,. see [21.

We can now improve the result E2 5; Li+‘. of Theorem 3.30.

Theorem 3.32. E2 s i$.

Proof. It is easy to see that a loop program P simulating a deterministic Turing

machinr with r input tapes, nz storage tapes and one output tape can be given in

M$ (see also [12]). Let f: Z* -+ C* E E,, the computing time function of a Turing

machine computing f is bounded by hu.A,(p’(u), w) for a suitable w E c*. As
hu.AJp’(u), w) E L’&k a loop program computing f can be given in Mr.>. Then
E2 E L’,r,‘-. As there does not exist a w E C such that]FI(x, y)(I= IA3(p’(X, y), w>I for
every x, y E E*, we have F, & E, and the claim holds.

202 E. Fachini, M. Nap&

4. LOOP programs, automata and transducers

In this section we deal with the power of LOOP programs as transducers and as
acceptors.

We show that the functions’defined by generalized sequential machines are in
L,,., and that the functions defined by push-down transducers are in L,,,. In both
cases we show that the reverse does not hold. Note that Indermark [14] proved
that the functions defined by generalized sequential machines and push-down
transducers are in E,. Besides, every function in L, can be defined by a two-way
finite state transducer.

As regard4 the power of LOOP programs as acceptors, it holds that the class of
regular languages coincides with the class of languages

.Yf ={x]f(x) # e andfE Lo.,)

and that the class of deterministic context free languages is strictly enclosed in the

class

Definition 4.1. A language YE C* is said to be accepted by a program P if and

only if Y= {x If&> f e} where fr,: z“* + C’, with 2’ 2 E, is the function computed

by f?

Let us now consider the augmented LOOP programs on words defined by Chytil

and Jakl [S].

The loop control structure is interpreted in a slightly different way: The register

CONIXOI., where the content of the control register of the loop instruction is stored,

is supposed to be accessible for inspecting, without changing it, through a window

moving backwards and forwards.

The set of basic statement is augmented by the instructions
- I HT. which causes a leftward move of the control register window,

- RLH I _ which causes a rightward move of the control register window.

The set of control statement is augmented by conditional instructions:

11. x f 4 l’fIl:N s, ;. . . ; s, I.L.SlI s,, , ; , . . ; s, 1.1

which causes the execution of the sequence of statements S, ; . . . ; Sr if the register

X is not empty and the execution of the statements S,, , ; . . . ; 5, otherwise,

11 x 3r: 4 .llfl.N s, : . . . ;s, f-1

\thich c~scs the cxccutiorl of the statements SI ; . . . ; S, if the register X is not empty.

Hierarchies of primitive recursive wordsequence funuions 203

Moreover, the loop control structure

LOOPX

1. I,;

n. I,, ;
END

(where n is the cardinality of the considered alphabet) is interpreted as follows:

- the content w of X is stored in the register CONTROL and the control window is

set to the leftmost symbol of the word w,

- while the window displays a symbol of w execute Ii if the displayed symbol is Qi

(possible occurrences of LEFT and RIGHT within Ii do not influence the running
execution of I,).

Definition 4.2. Let MT” be the class of augmented LOOP programs IN

&...,x,;&;...;&,,;OL:TY,,..., y, where Ij (1 s j s m) is a clear, copy, R-

append, LEFT, RIGHT instruction or a conditional instruction or a loop instruction

LOOP X 1. I’,;...; n. 1;; END where Il, (0 s k s n) is a list of copy, clear, R-

append, LEFT. RIGHT or conditional instructions. Let PL;“’ be the class of partial

functions computed by programs in A4FK.

Definition 4.3. A deterministic two-way finite state transducer is a 7-tuple J& =

(K. C, A, S, qo, $, $) where K, C and d are the finite sets of states, input symbols

and output symbols respectively; qoc K is : the initial state and $ and $ are

endmarkers; 6:K X(zu{$. $})+K xd*x{--l,+l).

Definition 4.4. An instantaneous description of Y2 is a couple belonging to I-if c

(Eu{$. $})*K(~w{~,~})*~A?

A binary relation t- is defined on I! such that

(xqax’. y) I--- (xnq’x’, yy’) iff fi(q, a) = (q’, $7 + I),

(xuqdx. y) I- (xq’un’x’, yy’) iff S(y, a’) = cq’, _A -11,

where x, X’ c (14‘~ {$. $})*, u, a’ E z’ u (4, $}, q, q’ E K and ,v, y’ E A*.

L.et t-* be the reflexive and transitive closure of I--.

Definitim 4.5. A function .f : C* -+ C* is said to be defined by Y2 iff

if there exists q E K such that (q&% e)+*(xq, yL

&) = indefined otherwise . .

If f : p’ + ye. then f(: (2~ {$‘}I* + (2 u I$‘})* is the function such that

Jj.q, . . , :ir) = yl,. . . , yT iff 5 (x,4’ - - Q 4” ‘xr) = y,$’ . l . 5” ‘y,.

204 E. Fachini, h4. Napoli

Theorem 4.6. A function f E PLT’ iff there exists a tuo-way finite state transducer
*which defines fc.

Proof. For the proof, see [S].

Now we consider TLF’, rhe class of total functions belonging to PL;‘“.

Theorem 4.7. LrK c_ TLT’.

Proof. Note that reve TLFR. Let f: Jii*r + E*’ E LyR and PE MFR be a program

computing fi A program P’E MFK can be obtained from P by replacing every

instruction LooPc X 1. I, ; . , . ; n. Ir, ; END by the following sequence of instructions:

7. f,, ; KI::rfi’r;

I.NI)

x +- rir+i’X)

where X +- f<l LY X) is shorthand for a program in Ad;-+ which computes the function
rt’v.

Proof. Let Y 2 2‘:‘: be a regular language; let d = (K, 2’ 6, qo, F) be the cvmplcte

deterministic automata accepting .Y’, where K = {q,,, . . . , q,.}, A = IL;.. . . . : u,,}, fi : K X

2’9 K and F=(~j,,+, . . . y,,} c K. Tht; function f: 2‘* + 2‘ such that

Hierarchies of primitive recursive wordsequence functions 20s

By Theorem 3.5, fe r$-.
Each register corresponding to a final state is set to al and the register X is read

leftwards. If ai is the scanned symbol, then, corresponding to each rule S(qj, ai) = qh,
the content of Qh is transferred to Q. Hence if X contains x = ai, . . . Uik, then QO
is set to al iff there exist ql, . . . , qk such that 8(qi, ui,,,) = qi+r and qk E E

Consider a program P’ obtained from P by replacing the instructions Qii + ui Qi,
with Qij + Qijul for 1 Q Jo Z. Program P' computes the same function as P; thus,
f E Lot,: as well.

Let 2’ be a regular language; let 2 = {y 1 y = rev(x) and x E 2). As 2? is a regular
?anguage there exists a function f E Lo.1 cL n Lc.7 such that 2 = {y If< y) # e}. By Lemma
: 3 the function @(f) E L$ n Lgy and

Vice versa, by Theorems 4.6 and 4.7 the languages accepted by programs in M1
are regular languages.

Ddinition 4.9. A generalized sequential machine (gsm) is a 6-tuple Y’=
(K, 2, d, S, A, qo) where K is a finite set of states, C and A are the input and output
alphabet respectively, qoe K is the initial state, S and h are functions such that
~:iu~(~u{~})-,KandA:IC~(~u{~})~A*where~isanendmarkerandS(q,~)=
q for every q E K.

Let us denote by S and A the extensions i;f 8 and A to the domain K X (2* u {e}),
as usually.

Let J, : C* + A* be the function such that j, (x) = A@, x).

Let G = {f 1 there exists a gsm Y such that f = J/}.

Theorem 4.10. G 5 f-z,\.

Proof. Let Y = (K, C, C, 6, A, qo) be a gsm with K = {qo. . . . , qs} and z ==

(a,, l ’ - 1 a,,).

The following program computes fir:

END

C)UT Qo

206 E. Fachini, M. Napoli

where an instruction A t- a;, . . . a;,A is a short form for the list of instructions

A c- a,,A ; . . . ;A*ai,A. Then f~ L$.

The register X is read leftwards. If ai is the scanned symbol, then, corresponding
to each rule s(qi, ai) = qh, the content of 01, is transferred to Qi and A(qj, ai) is
concatenated to Qi on the left. If 9~ = ai, . . . aik and A (40, X) = yl . . . yk, then Q. will

contain yI . . . yk at the end of the execution of the loopjnstruction.
Let us consider the function f: C*+ Z* such that f = Ax.&).
As f~ L,$-, but there does not exist a gsm 9 such that f =&, we have f E Lkt - G.

Theorem 4.11. The class of langrcages accepted by programs in 44, ,, strictly contains
the class of c’eterministic context free languages.

Proof. Let Y c 27 be a deterministic context free language; let .d =
(0.2’. /: 6, q,,, Z,,, F} be the deterministic push-down automaton accepting .Y with

2‘=(a,, . . . , a,,), I’= LZ,, . . . , Z,), Q = {qt,, . . . , q,h F = {q,, w . . , qJ md S : Q x

Cu(p}> x I’-, Qx I’* be the function such that S(qi, a, 2,) = (qk,.,, k’k,,,) with 0 f js
*$?-- s, and 0 5 i, k,., 5 r 6 r,.

Let 2”={cI. c’,,,(I,,,~ ,..., c,,,~.+,), where Ci=ti, for lsii~rz and c.,~~,+~=Z__

for 0 --- j 5 s. We can give a IA)OP program on E’* in M, ,I which computes the

characteristic function of .Y by simulating the behaviour of the automata.
As regards the strictness of the containment, let us consider the function f’: z‘* --) E*

such that /(s) = a, if x = a;laTal: and f(s) = 4 otherwise. As .f can be computed by

a program in M, _I. the claim holds.

Definition 4.1 2. A deterministic push-dawn transducer is a X-tuple 3 =

(2, J. I’. 0, &9,,.2,,. F) where C, A, I’ are the finite alphabets of input symbols,

output symbols and stack symbols resp., Q is the tinite set of states, 9,) E Q. 2,) E 1: F c
0 and c‘i is a partial function such that 6: Q X (2 A { e}) X IT-+ Q X A’ X 1“ and if
fil y, t’, %I is defined, then fi(y, N,, Z) is undefined for every 9 E 0. (1, E 2’, Z E 1: ,

<
a

I’heorem 4, I1 3. 5 P5 j‘ 5 L , ., .

Proof. The proof is analogous to that of the Theorem 3.1 1.

For the strictness of the containment nott’ that the function f: 2’* + S* such that
t7 .x 1 = ti ,’ I1 \ (1 ; brlongs to L, but cannot be defined by any deterministic push-down
t r;tnsduwr.

Hierarchies of primitive recursive wordsequence functions 207

5. Decision problems

In this section the decidability of the equivalence problem for L, is stated by
exploiting Gurari’s result in [lo] on decidability of the equivalence problem for
two-way finite state transducers. In the same manner we prove the decidability of
the equivalence problem for the class LT of the wordfunctions computed by programs
in MI which use also an if-then-else instruction testing the empty word. Note that
the same result when the cardinality of C is one has been proved in [5] and [133.
But the equivalence problem turns out to be undecidable for the class LciT of
wordfunctions computed by programs in M o,l with a deleting-a-symbol instruction
as a further basic instruction for card(X) 2 1.

The graph and the range intersection problems are undecidable even for L,,,, but
only when the cardinality of C is greater than one; in fact, the two problems have

been shown to be decidable for Ly when the cardinality of 2 is one in [5].

Theorem 5.1. The equivalence problem is decidable for PL’i,+“.

Proof. The proof follows from [3, IO].

Let L;:,’ . “(i, j 2: 0) be the class of functions defined as the class L,:,‘- starting with

4. =A+{t = Ax, y, z.(if x = 0 then y else z)}

instead of Al,.
The classes LT’..“, LITI’-*’ , LF!“T ’ are defined analogously, let L:, stand for one of

the above classes.

Theorem 5.2. The equivalence problem is decidable for L, and L ‘/‘.

Proof. The proof of Theorem 4.7 can immediately be extended to prove L: c TL;*K

so the claim follows from Theorem 5.1.

Let D:Lr* + 2* be the function such that D(e) = e and D(xa) = x, and let &,l*. ‘J

be the class of functions defined as the class L,:’ starting with A;‘_ = AI u(D).

The classes L;,’ * ‘*I’, L;rK7”‘, L ,yjR31*” are defined analogously. Let Ll;‘, srand for

one of the above classes.

Theorem 5.3. The equivalence problem is undecidable for ! I:_:’ for card(2) 2 1.

Proof. The halting problem for register machines can be reduced to the equivalence

problem for LLf:’ with card(2) = 1.

Let a register machine be defined inductively as follows:
(i) I?,+&-1

(ii) Rj+ Ri+l

208 E. Fachini, M. Napoli

(iii) stop
(iv) if M and N are register machines then M; N is a register machine
(v) if A4 is a register machine then (AI), is a register machine (M is executed

until R, = 0)
assuming that the stop instruction occurs just once.

A register machine halts on input x1, . . . , x, iff it starts with the registers RI, . . . , R,
containing x1, . . . , x, and the other possible registers containing 0, and reaches the
stop instruction.

Given a giidelization of register machines, it holds that it is undecidable if a
register machine (r.m.) with Giidel number g, Mg, halts on input g.

We consider a LOOP program computing a function f: N -j N E Lzy such that
f(x) = 1 if the r.m. M, halts on input g in x: steps and f(x) = 0 otherwise. The
function f is equal to the constant function C:, = AX.(O) kl Mg does not halt on
input g.

Given a register machine n/3R, suppose that every instruction of type (i), (ii), (iii)

and every open and closed bracket are labelled by 1,. . . , p, and that s s p is the
label of the stop instruction. Consider the following L.OOP program:

IN T

if c!,. = 1 then f,,,

t.NI)

c,lrI 0,

where

(1) if j is the label of an instruction of the type R, + R,’ 1 or R, +-R, + 1. then

I,=R,tR,-I;(5,c-O;~,,.l~~ ,.,, +l;

I, = I., + R, + I ; 0; + 0 ; C&.+ I +- o,, 1,

i 2) if j is the label of the stop instruction, then I, is empty,

! 3) if j is the label of the open bracket and / + k is the label of the corresponding

dwd brxket, indexed by i, then

I,=ifX,=Othen~,~~+,t-3,,,+,+l;~,t();

else O,+ I 4,,.,+l;QItO;

I l’k = o,,, 4;+- i.J,+ 1:

Hierarchies of primitive recursive wordsequence functions 209

Theorem 5.4. The graph and the range intersection problems for functions in L(,,, are
undecidable for card(Z) > 1.

Proof. In [2], Ausiello and Moscarini proved this claim for L,. But the programs

that they give are in kI~j,,, thus the claim holds.

Appendix A

In this appendix we give extended proofs of Theorems 3.5, 3.14, 3.25, 4.11 and
4.13 and Lemma 3.22. Below, some obvious abbreviations are used in the programs

and comments are inserted between quotes.

Proof of Theorem 35 Let us prove the claim for L&l-, as the proof is analogous

for the other classes. The result is slated by induction on i and j.

Consider Lc”. The function Si = hx.(a,x) is computed by P : IN X ; X + aiX ; 01JT X
and PE MgL ; the function E = (e) is computed by P : IN X ; X + e ; CXJT X ar&i

PE Mfi ; the function K = Ax, y.(x) is computed by P: IN X, Y ; OUI- Y and PE Ad:;.

Let fly f+ G,

P,:INX ,,..., Xr;I,;ourY ,,..., Y,$,

P2 : IN z, , . . . , & ; I2 ; <~LJ’T T, , . . . , Tq

such that P,, P2 E Ad;‘*, they have disjoint sets of names for registers aEd compute
f,, f2 resp. Then the program

PXNX,...., Xr;I,;Z,te;...;Zste;Z,CY,;...;Z,,tY,;I~;

OUT T1, . . . , TCl

computes the function f = f, of2 E L:; I-.
Vice versa, if PE #[I-, then one of the following cases holds:

Cuse 1. PI IN Xl,. . . , X,; OUT Xi,, . . . , Xi, computes the function if=
q A* - l ?I:, where i+{l,.. . ,r} for lsjaq.

Cuse 2. P: IN X1.. . . . Xr ;Xi + e ; OUT Xi,, . . . , Xi, computes the function f =:
c’ ‘(El)” “-q u:, A. . . ?.I:,) if 1 s is r and the function f = ‘rEo(U:,’ ’ *- - 9 ̂ Uy ’)

otherwise.

Case 3. P:‘IN XI, . . . , s-~,;x,,+-x~ ; WTX,I,. . . , XI, computes the function f =
TILL o(q *..* *U\) where 1 s h, k 5 r.

Case 4. P: IN Xl,..., X,; Xl, + aiXjl; OUI- X,,, . . . , Xl‘, computes the function

f = “’ ‘S:’ h O (u:, *. . . A urq) where 1 G h s r and 1 < is n. As Ur, T;l,k, E’ E LL’+,

WC have f E L(T ‘*.
C’ase5. IfP:1NX~,...,~~~;~~;“‘;~~;OU~rXi,,...,Xi~,where~iisaclear,copy

or L-append instruction, consider the programs Pi : IN Si ; I, ;OUT ti for 1 s i d k with

St = s and Si = S, s:__~ for 1 < i I k where s:_, is the list of new registers introduced

210 E. Fachini, M. Nap&

by L-r Ii-1 and fi=Si+l for 1s i-C k and tk = Z. As by induction hypothesis the

functions fi computed by the programs Pi belong to LzL, we have that the function
f=f,o***o fk, computed by P, belongs to LGL.

For the inductive step we prove the following two assertions.
(a) Letf=(g, ,..., g,)“;ifg, ,..., g,arecomputedbyP, ,..., P,cMfL,then

a program P computing f belongs to McIM.

Infact,ifPiistheprogramrNx~,...,X~;&;OUTY~,..., Yl, forlsisn,then

PE ML; is obtained as follows:

IN&,...&+,

1. x; +x2;. . . ;x; +xsy+,;. . . &X2+ Y: ;. . . ;Xs+,t Y,’ ;
.
.

n. X+X,;.. . ;x,” +X,+,;I,;X+ Yf’ ;. . . ;xs+,+ Y; ;
I,!; ,: 2

011’1’ x2, . . . , x,+ ,

(b) If
program

In fact

then the

f = flo fi and fi and fi are computed by PI E MTjL and P2 E M$ then a
P computing f belongs to M$.

if PI and P2 are the programs

INX,,..., XJ, ;Cx..JT Y,, . . . , Y,n

and IN2 ,,..., Z,;&;OUTT ,,..., &,

program PC IQ!;, is obtained as follows:

P:IN x,,. . . , X,;I,;Z,+e;.. . ;Z,,,+e;Z,+ Y,;...;

Z,,,+ x,,; &; OUT T,, . . , rl?\-.

Vice versa, consider the following two assertions.

(a’1 Let PII : IN Xt, . _ . , X!’ ; I!, ; OLJT Y :‘, . . . , Y f be a program computing gh E

Ly I. for 1 d h s n. Then the program P, obtained from P,, . . . , P,, as in assertion

(a), computes a function f E L;:..
In fact. P computes f = (gl,. . . , g,,)“ which belongs to Lr:- by definition.

ib’) Let

PIx~ X1,. . . , X,; I, ;WT I’,, . . . , Y,,, and

&:IN&. . . , Z,,, ; 1: ; OUT T,. . . . , T,

be programs computing f, E L;j’ and f2 E L;l-; then the program P obtaintid from

Y, and P2 as in assertion (b) computes f e L$,,.
In fact. P computes f = f, 0 f2 which belongs to L$,, by Lemma 2.3.

Proof of Theorem 3.14. Let us prove the thesis for L$ Consider a function h = f Ag
with f : z*’ --, I*’ and g : x*’ --, z*’ belonging to L,T,! By definition it holds that

Hierarchies of primitive recursive wordsequence functions 211

f =fo”fio l
l -fi and g=g,og,o

l l l ogj with fo,goE LTR and fi,. . . ,fi,g,,. . . ,giE
9-(LTR). Then J g can be computed by the follQwing programs P and R respectively:

IN&,...,& IN &,..., Y,

P 0;

LOOP-, x,

1. P: ;

n. Pt, ;
END

LOOP-- xj

1. P’, ;
.
.

n. P’, ;
END

CUT xl,, . . .

R 0;

LOOP- P,

1. R;;

.

n. RL ;

END

LOOP-, Fj

1. R’, ;

n. R', ;
END

3:. CUT Y;, . . . , Y;

where

PO, LOOP-x1 1. Pf;...;n. PA;END ,..., LOCP*Xj1.P{;...;n.P~;END,

1 Ro, LOOP-’ Y1 1. R,;. . .;n. R,‘,;END ,..., LcCP+~~ l.R{;...;n.R~,; END,

with a

&I, g, 7 a
Now

proper specification of input and output registers, compute

* l , gi respectively. Suppose that P and R use different names

consider the following program P:

IN A,, . . . , A,

ii0 ;

PO : R,, ;

n. s f,
END;

PI;...;F!,;

ff 07 11 * l l 9 f j,
for registers.

Wi + X; ; Ti * CONC(Xj, Vi) ;

212 . E. Fachini, M. Napoli

LOOP* Tj

1. s(;

n. s;, ;
END;

Fi * =j 19**-9 l p,;

OUTXi, l l - , x:, Y;, . . .) r;

where SF, for 1 s h s j, 1 d is n, is the following sequence of instructions:

sf : LOOP-+ w,

1. BF+e;Af’+Q;

n. BF+e;Af’+Q;

END

LOOP- B; ;

1. i’:;.. . ;pk;Cf,l3: ,..., C:, Bit-e;

n. X+X;

END

LOOPY cf
1. R:‘, . . . , Rj: ;

where e, provides the assignment of the input data to the input registers of P
and R, I?,h and I’: provide to the assignment of the content of the registers
occurring in the sequence of instructions RI’ and Pf’ resp. to new registers and l’?F

Hierarchies of primitive recursive wordsequence functions 213

and Pi” provide to the restoration of the values stored in these new registers in
those occurring in R b and P” resp. Moreover, T + co~c(X, Y) is shorthand for a
list of instructions whose effect is to store the concatenation of the content of X
and Y, in the order, in T and W+ DELL(W) is shorthand for the following list of
instructions, which has the effect of deleting the !ast symbol (If the word contained
in the register W:

W’+e;

LOOP-, w

1. W+ W’; W’+ W’a,;

Il. w+ W’; W’+ W’a,;

END

The proof for the .other hierarchies is obtained in a similar manner taking in

account that we might delete the first symbol instead of the last one because Wh is

only a counter.

Proof of Lemma 3.22. If f: C*’ -j 2*’ E Lcf, then the computing time function ?f E
L $ By Lemma 3.1.2 there exists a w E C* such that, for every ~3 = xl,. . . , x,

1 tf (u: I< pf (w, xk) where Ixk I= 11 u 11. We can write a loop program P E M cr cornput-

ing a function g : 2” --) 2”’ such that

fb,, * * * ,d = g@f (w, p’k, l l . , x,)))

where pr : E*I + Z * is a function such that $(x,, . . . , x,) = xl . . . x, As hx.F: (w, X) E

L,,j and J/E L1, we have f e LT.:+,.
Let the followirig program P’ compute f:

IN& ,..., x,;z,,;z~;...;z~:6,‘;. .;~;;c,UTY, ,,.., y,,

where

1: = LOOP+- 7-4

i. I ;,k ;

END

END

for 1 S k S j, 1 d i, i” S n, 0 S 1 S Si,k, where Si,i,k, is the number of LOOP instructions

214 E, Fachini, M. Napoli

occurring in the ith branch of the instruction I:.

rl, = LOOP+ v,

END

for MI&q, lsisn,and

instructions.
ZO9 I:kr Izi,i*9 I:, are lists of clear, copy and K-append

The program P computing g is the following:

IN T

Zte;ZtZa,;M,tZ;Z,cZ;R,,. . . , R,+j+e;

LcmP+ T

1. 5,; “&) simulates the execution of ;O”

I -0 .
1 7

.

.

i; ;
“r! simulates the execution of 1:: for 1 s h s q”

.

.

r’: ;

“r)(simulates the execution of 1; for 1 s k s j”

2. X&Y
.
.

where

& = LOOP+ Ml

1. I(,;M, +e;

2. x+-,x;

n. x+x

-0 h = e, + LAS-I-(V,) ; V, + DEL.L.(VI) ; R, + 2, ;
I.OC)P-’ v,

i. I:‘_, ;Rp-e;

Hierarchies of primitive recursive wordsequence functions 215

n. X6X;

END

+LAST(&);VI, +DELL(V;,); R,,+Z/,;

LOOP-+ V&

1. I:,h ;Rpe;
.
.

n. I:,,, ;Rpe;

END

-1 L =LOOP+ Ry+k_l

1. CkCTk;Zl+li_lC-e;Z,,kcZ;
. . .

n. X f X ;

END

Ak+-~~~~(Ck);Ck+-~~~~(Ck);Rq+k+Zq+k;
.
.

l<k+

“If Ak contains ai, then the simulation of the ith branch is
prepared.”

LOOP-, B:
1. Z:,k;Cf,ktN:,k;B::te;R,+,t-e;Z:kte;Z:,kfZ;Gk”Z:

,
2. x*x;

n. x c- x ;
FND

END

216 E. Fachini, M. Napoli

. /’ .

n. X*X;

n. If;.,, ;
END

LOOP+ c;,,

1. M:.k +-e;Rq+k+--e;
.

n. X*X;
END

‘If the first nested loop has been executed, the simulation of the

second one starts”

Hierarchies of primitive remrsive wordsequence functions 217

2. X+Y;
.
. D

n. X+X;

END

“The content of the control register of the instruction I: is restored in Ck so that

a new symbol can be scanned*’

Proof OP Tkorem 3.25. By Proposition 3.16 we have only to prove that if tf E Li,+
then f E Li,i. Let us prove the claim for L$ Let f : z*’ + 2”‘. If tf : z’*’ + C* E LGR,
then there exists a w E C* such that, for every u = x1, . . . , x, belonging to z*‘,
I?+)~<~~(w,x~) where Ix,J= liull. We can give a program P computing g:z*+
z*’ E L$ such that f(x, , . . . , x,) = g(Fj(w, xk).

As hxF; (w, xk) E L;R and i 2 2, we have f~ LrjR. Let P’ E ME, with h 2 i or
k 3 j be a program computing fi Suppose that every clear, copy and R-append
instructions and every keywords LOOP, END of P’ are labelled and let II,. . . , f,,, be
the list of such labels.

The following program P has to simulate the execution of P’ = IN X,,
. . .) X,;I;OUTYI,...,Ys.

We will use some obvious shcrt forms: we will write Z,, . . . , Z,, * e for 2, +
e;... ;Z,+e; and 2, ,..., Z,+Zi ,..., Zi, for Zp-Zi ;...;Z,c-Zb; for every
pa2.

P=lN T

B1 ,..., &,,A, ,... ,A,,+-e;

BP-la,;

LOOP’- T;

1. Al ,..., A,,,+B ,,..., &,;&;...;I,,,;
2. X+X;

n. X+-X;

END

OUT Y,,..., r,

The list of instructions [, is defined as follows:
(1) If fq is a label oi a clear, copy or R-append instruction Zq, then

1;! = LOOP- A,

1. Aq’e;B,ce;L3,+,cB,,,a,;1,,;
2. x+x;

. .

n. x + x ;
END

“If A, is not empty, Zq is executed and Bq+, is set to al to prepare the next step of
the simulation.”

218 E. Fachini, M. Napoli

(2) Let fq be the label of a word LOOP Xq, let Z,+P,+...+,,,_I + 1, l . . , lq+Pl+...+p,,
1 s t s n, be the labels inside the branch corresponding to ~1, in the loop instruction,

let &+P,+...+Pn + 1 be the label of the word END. Let us write pi for pl + l 9 l +p,. Then

n. Xc- X;

END

qi set fsq+&+ 1 to ai to prepare the exit from the loop”

T,,-.,T,,c-B~+~;, Bq+~;,;

LOOP- Ti

1. C'c-S;B4+r,;~e;7;te;B,,,~+1 +&+P;r+la~;
2. x+-x;

“If T, is not empty, then the simulation of the instructions of the ith branch has been
executed and the content of the control register Xq is restored in U to test 3 new
symbol.”

“If Z contains u,, 1 - c is II, the simulation k)f the ith branch starts”

i 3) If k(is a label of a keyword END, then

Hierarchies of primitive recursive wordsequence functions 2119

Proof of Theorem 4.11. Let .ZC C* be a deterministic context free language; let
cd = { Q, &I’, S, qtl, Zo, F} be the deterministic push-cll?wn automaton accepting 2

with z={al, n . l , a,,), r={&, . . r Z,), Q={qo, l . - ,qr,}, F={qj,, . l . ,qj,} and
S : Q X (2 u {e}) X r + Q X r* be the function such that 6(q, a, Zi> = (qk,,,, I$,,) with
Ogjss<s, andO<i,kiisrcr,.

We will suppose that s2Q goes through the input word rightwards and the top of
the push-down stack be the leftmost symbol.

Let

h=max(l\‘~,,lIStgira,Z,)=(qk ,.,. &,,,) for some aEEu{e},

qi, qk, , E Q. 2, E I’}.

The maximum number of steps of the push-down automaton A’ on the input x

is t II + 1)(21x1 + 1) (see [8]). Let us prove the claim for LF,i+.

Let us consider the following program on C’* with 2’ =(q, . . . , c’,,, cnil, . . . ,

c,,, ,+]}. where c; =a; for 1=-&n and c,,,,+,=Z, for (KISS:

IN x’ ;

Hc-e;
L.<mP~- x

1. H*a,H;H+a,H;

~1. Hc-.a,H;H+a,H;

nfl. H-H;

tr+s+i. Hc-H;

1. H+a,H;...;H+-a,H;

I1

11. H+a,H;...;H+-a,H;
--w

i1

n+l. I-Q+-H;

bb H cor,tains n :‘Z+ I)’ ‘IX;+ 1) ~’

T, Yt W, V, V’, U, X’ +-- 4 ;

Q ,,,.., Q,.,A ,,.. ,A,,A; ,..., A:,B,....,8,-;

220 E. Fachini, M. Napoli

1. Y+FIRST(W); W+DELF(W); b-a, V;

I* *I* q()9***9 t&r’

“W contains the word in the stack. I& will test whether Qi is nonempty (i.e., whether
qi is the current state or not) : if Qi # e, then the top symbol of the stack is put in the
register Ai)”

V’+a,V’;I>, ;...;I>,;

“I:\, updates Wand the suitable Qk in accordance to S(qi, e, 2) for the current value
of 2”. If S(qi, e, 2) is undefined for every i, then V’ # e”

LOOPI- V’ ;

1. u+-x;
.
.
.

n+s+l. x+x;

f:N!) ;

x’ 6 FfRST(u) ; I/ +- DELF(u) ;

“The current input symbol is put in X’ iff V’ f e, that is if no e-move has been
executed.”

f .ooP* V’ ;

, 1. Xc-U;U+e;V’+-e;
.

n+s+l. X+X;

t..NfI ;

I_()OP+- X’

1. Bf,. . . ,B! +-A,,. . . ,A,;A,,. . . ,A,+-e;

II. By.. . . , By *A,,. . . .Ar;A,,. . . .A,+-e:
.

n+s+ 1.x+-x;

“If the current symbol is ai and the current state is q,, then B{# e and I;! nmdifies
the suitable Qk and W in accordance to S(q, ai, Z).”

f .oor-- v ;

1. W+e;Q,....,Q,+e;

n+s+l. X+-X;

f .!uf,;

Hiemrchies of primitive recursive wordsequence functions 221

“If no move has been executed, then W and every Qi must be deleted.”

2. X+X;

n+s+l.X+X;
END ;

LOOP+ Qi, ;

1. T+a,T;

n+s+l. X+X;

END
.

LOOP+ Qj, :

1. T+a,T;
.

n+s+ 1. X+-X;

END

“If a register among Qi,, . . . , Qj,, corresponding to the final states qj,, q . l , qj,t is

nonempty, T is set to a1 .”

where

I 41 = LOOP Qj ;

1. A,+ Y;Q,+e;Yc-e;V+-e;
.
.

n-t-s-i-1. X+X:

END;

CI, = LOOP- A, ;

1. X+-X;

alQk ,,,” I; V+-e;A,, . . . , A,+e;

n+s+l. X+X;

where

6(qie, Z,,,) = (qk ,.,,,, t)k ,.,,,) and W + Z-i,, W for Zi, . . . Zi,., E f*

is used instead of Wt-Zi, W; . . . ; W+ ZipW.

222 E. Fachini, M. Napoli

I j = LOOP- sj

1. xc-x;

n+l. V+a,V;

M-H-1. V+a,V;

where Nq,, a,, 2,) isundefinedand 6(qi, a,, Z,,,) = (gk, .,,,, ukI .,,, > for 0~ is rand 1 ~js
n, 0 S I f m i s.

As regards the strictness of the containment let us consider the function f : C* + C*

such thar f(x) =a, if x = aTu;a I: and f(x) = e otherwise. The following program

computes f:

L-

IN x;
A, A’, C, X’, Y', Y, Y,,Z,Z,,Z2.Z.q, 7-+--e:

X’+X;C+X;A’+a,A’, T+-a,T;A+-A’;

I ww+ x

1. c’w,r;

1. Y’+-S,(Y');M;Z+- m:I.F~(z); Yp- utw(Y,);Z,~IEI.F(ZJ;
.

2.7. +- DEI_F:(2,) ; A + A’ ;

3 Y’+S,(Y’);M;Z, *. t- rx-x.r--(2%) ; A +- -4’ ;

3. Y’+SJ Y’);M;Z, + I>EI_F(Z,) ; Y + DEW(Y) ; A + .4’ :

3. 7-t-P:

0. h-e;

t Yf?:

“Where Y’+ S,(Y’) is a shorthand for a list of instructions whose effect is to

concatenate a, on the right end of the word in Y’. The first loop instruction stores

in C‘ the concatenation of X with itselk. In the second loop after the first IX1 steps

of computation in I” is stored tilt reverse word of X. M is a list of instructions whose

ctfcct is to copy the content of Y’ in 2, Z,. Z2 and Z3 and the content of A’ in Y and
I’, , but only at the (1 X(+ I)st step of computation.”

Hierarchies of primitive recursive wordsequence functions

LOOP+- Y

1. X+X;

2. X+X;

3. Tee;

n. X+X;

END;

LOdP_ z

1. Tee;

n. X+X;
END;

LOOP+- Yl

1. X+X;

2. X+X;

3. T+-e;
4. X+X;

n. X*X;

END;

LOOP-- z,

1. Tee;

2. X+-X;

n. X+X;

END;

LooPt z,

1. T+e;

2. x+-x;

n. X+X;

END ;

L.OOPI- 23

1. x+-x;

2. T+et

3. X+X;

223

n. X+X;

END ;

OUT T

224 E. Fachini, M. Napoli

where

M = x’ + DELF(x’) ;

LOOP+ X’

1. Ace;

n. Ate;

END;

LOOP+ A

1. Z+X;Z,+X;Z,+X;Z,+X; Ye Y’; Y,+ Y’;A’+e;

X’+X;

n. X+X;

END;

In order to convince ourself that P really computes f let us consider the situation

of the registers Y, Y,, Z, Z,, Z,, Z, after the execution of the loop instruction with

control register C: Let X f a~~&:’ and let us denote the number of the occurrences

of a, in x by n,. We have the following five cases:

(1) nl < n2, a, occurs in Z3 or q occurs in Z, I
(2) n+ n!, a, occurs in Z,

(3) n, > nJr Z1 contains a,

(4) fl, d n.+ YI contains a3 I
(3 tq = n, = n3, (a) x = wa,ay’ or x = wu,ay’ with rrt < n2,

Y contains a-+

(b) x= a;“a2w or x = aya,w with nz < IZ,,

Z contains q.

In all these cases the program puts e in T. Moreover, if x contains an occurrence

of a, with j# 1,2 ,3, then e is put in T as well. At the end T contains cr, if and
onfy if x =u),ldjal: for nH.

The proof tar the class M y,y follows by the closure of the class of deterministic

context-free languages with respect to the reversal and by Lemma 2.5(4).

Proof of Theorem 4.13. The proof is analogous to that of Theorem 3.11, but wit
suppose now that the top of the stack of the push-down transducer to be considered.
is the rightmost symbol. Let us consider the following program PE A4 :7: on th#:

$arnc alphabet as the program of Theorem 4.1 1:

Hierarchies of primitive recursive wordsequence functions 225

LOOP x

1. H+Ha,+l;H+Ha,+l;

n. Hc-Ha,,+r;H+Ha,+,;
M-1. B+Ba,;

nfs+l. B+Ba,;

END;

H+Ha,+,;

LOOP H
1. H+Ha,,+r;...; HeHa,+,;

-e
h

n. HeHa,,+,; . . .;H+Ha,,,g __ - _.-s/
h

M-l. X+X:

n+s+l. X+X;

END;

LOOP‘- B

1. H+-e;

2. x+-x;

n+s+l. X+X;

ENI‘);

“H contains .xa!,$“‘2x”’ if XE{C,, . . . , c,,} and e otherwise.”

CA,, WA’, R’,S+-e;Q,,+-Q,,a,; W+- W&;
L.ooP+ H

1. o-S,(C);

n. c+ S,,K) ;

n+l. I;

n+2. x c- x ;

n+s+l. x+-x;

END;

n--v;

LaC)CIP+ Qj,

1. T’+T;

226 E. Fachini, M. Napoli

2. X*X;

n-4-s-l-l. X+X;

END;
.
.

LOOP-* Qj,

1. T’+ T;

2. X+X;

n-l-s-+-l. X+X;

END ;
OUT T'

where I is a list of instructions similar to those of the first branch of the loop on

H in the program of Theorem 4.11, with these differences: C is used instead of X,

C’ and W are scanned leftward, using the LAST and DELL lists of instructions, suitable

outputs are written in T by I 2, and Ii (0 s i =G s, 1 =G j s n) and, obviously, R-append

and a-iteration replace L-append and e-iteration.
An equivalent program PC ML:- can easily be written.
As regards the strictness of the containment note that the function f : X* + E*

such that f(x) = &‘a~‘~~~ belongs to LTK but it cannot be defined by any determinis-

tic push-down transducer

Acknowledgment

The authors would like to thank Prof. A. Maggiolo-Schettini for his careful reading

of the manuscript and many interesting discussions.

References

C;. Asser, Kckursive wortfunktionen. Zcitsdrr.f.math. Logik trod Gntrtd. d.,~hth. 6 i 1960) 258-278.
G. Ausiello and M. Moscarini, On the complexity of decision problems for classes of simple programs
on \trrngs, GI-h .luhr~stagun,g. ft~fornzutik Fachherichte 5 (Springer, Berlin, 1976) pp. 148-163.
.%f.P. C’hytil and V. Jakf, Serial composition of 2--way finite-state transducers and simple programs
on strings. Proc. ICAI,PCm_fI in Tttrku, Lecture Notes in Comput. Sci. 52 (Springer, Berlin, 1977)
pp. a 35-147.
S. Eilenberg and C.C. Efgot, Kecrrrsiceness (Academic Press, New York, 1974)).
t. Fachini and A. Maggiolo-Schettini, A hierarchy of primitive recursive sequence functions.
RAIRO Inform. Thdor. 13 (1979) 49-67.
L;.. Fachini and A. Maggiolo-Schettini, Comparing hierarchies of primitive recursive sequence
functions. i3itschr.f. math. Logik und Grundl.d.Math. 28 (5) (1982) 43 1-435.
Ci. Germano and A. Maggiolo-Schettini, Quelques caractdrisation des fonctions’recursives partielles,
C:K..~\ccd.Sci. I’tJri.s 276 (197?) 1325-1327.

1’

Hierarchies of primitive recursive wordsequence functions 227

[S] S. Ginsburg and S.A. Greibach, Deterministic context-free languages, Inform. Control 9 (1966)
620-648.

[9] B. Goetze and W. Nehrlich, The number of loops necessary and sufficient for computing simple
functions, EIektr. Inform. Kybernet., to appear.

[lo] E.M.Gurari, The equivalence problem for deterministic two-way sequential transducers is decidable,
SIAM J. Comput. 11 (1982) 448-452.

[111 F.W. Von Henke, K. Indermark, G. Rose and K. Weihrauch, On primitive recursive wordfunctions,
Comput. 15 (1975) 217-234.

[121 F.W. v. Henke, K. Indermark and K. Weihrauch, Hierarchies of primitive recursive wordfunctions
and transductions defined by automata, in: M. Nivat, ed., Automata, Languages and Programming
(North-Holland, Amsterdam, 1972) pp. 549-562.

[131 H. Huwig and V. Claus, Das Aquivalenz problem fur Spezielle Klassen von LOOP Programmen,
Theoret. Comput. Sci. 3rd GI Conf., Lecture Notes in Comput. Sci. 48 (Springer, Berlin, 1977) pp.
73-82.

[141 K. Indermark, Push-down transductions as primitive recursive wordfunctions, Proc. ZRIA Sern..
1972.

[15] G. Rose and K. Weihrauch, Eine Charakterisierung der Klassen I!., und I?, primitive rekursiver
Wortfunktionen, GMD Bericht 63 (1973).

