Theoretical Computer Science 29 (1984) 185-227 185
North-Holland

HIERARCHIES OF PRIMITIVE RECURSIVE
WORDSEQUENCE I'UNCTIONS:
COMPARISONS AND DECISION PROBLEMS

E. FACHINI and M. NAPOLI

Istituto di Scienze dell’Informazione, Facolta di Scienze Matematiche, Fisiche e Naturali, Universita
di Salerno, 84100 Salerno, Italy

Communicated by C. Bonm
Received November 1982
Revised June 1983

Abstract. In his paper we consider wordsequence functions, i.e., functions of the type f : 3*" —» 3%’
where X is a finite alphabet and r=0. s> 0. By starting with finite sets of basic functions and by
taking the closure with respect to composition, cylindrification and iteration, we give some
characterizations of primitive recursive wordsequence functions. We define some hierarchies of
length o2 of these functions by bounding the number of successive compositions and the depth
of the nested iterations in the definitions of the functions. In such a manner we obtain refinements
of the Axt, Grzegorczyk and Meyer and Ritchie generalized hierarchies of length w of primitive
recursive wordfunctions defined by Von Henke, Indermark and Weihrauch (1972).

We consider LOOP programs on words (see Ausiello and Moscarini (1976)) by allowing more
than one output register, and we prove that the class of functions computed by these programs
coincides with the class of primitive recursive wordsequence functions. The hierarchies of functions
induce some hierarchies of programs.

For the case of functions f:X* - 3* our hierarchies are compared with the Axt et al.
generalized hierarchies.

We also compare our hierarchies with storage hierarchies, and we analyze tne power of the
LOOP programs as acceptors.

Finally, we state some decidability results for the considered classes.

Introduction

Partial recursive wordfunctions have been defined by Asser in[1]. Partial recursive
sequence functions, i.e., partial recursive functions of the type f: N> N* have been
studied by Eilenberg and Elgot in [4] and by Germano and Maggiolo-Schettini in
[7]. In this paper we consider wordsequence functions, i.e., functions of the type
f:3* > 3* where I is a finite alphabet and r=0, s> (. These functions provide
quite directly a semantics to programs for register machines. In fact, these last,
ultimately, transform tuples of words into tuples of words.

By starting with finite sets of basic functions and by taking the clos. re with respect
to composition, cylindrification and iteration, we give some characterizations of

0304-3975/84/%$3.00 © 1984, Elsevier Science Publishers B.V. (North-Holland)

186 E. Fachini, M. Napoli

primitive recursive wordsequence functions. The different characterizations arise
from the fact that a word may be read and written both rightwards and leftwards.

We define some hierarchies of length o of these functions by bounding the
number of successive compositions and the depth of the nested iterations in the
definitions of the functions. In such a manner we obtain refinements of the Axt,
Grzegorczyk and Meyer and Ritchie generalized hierarchies of length w of primitive
recursive wordfunctions defined by Von Henke, Indermark and Weihrauch in [12].
If the cardinality of the alphabet under consideration is 1, the hierarchies coincide
up to an isomorphism with the hierarchy of primitive recursive sequence functions
defined by Fachiai and Maggiolo-Schettini in [5]. Some properties of the classes of
primitive recursive sequence functions are easily generalized to the corresponding
classes of primitive recursive wordseguence functions. One of the major differences
with respect to the numerical case is the fact that even classes of wordfunctions of
the type f: 3% > X* with unnested iterations form hierachies.

We consider 1 0op programs on words (sce Ausiello and Moscarini[2]) by allowing
more than one output register, and we prove that the class of functions computed
by these programs coincides with the class of primitive recursive wordsequence
functions. The hierarchies of functions induce some hierarchies of programs.

At the fevel of the elementary functions. i.e.. for functions with depth of nested
iterations cqual tc 2, the hierarchies defined here coincide. Below this level we
carry out all the comparisons with respect to the set-theoretical relationships among
the classes. F’(}vr the case of functions f: X* — X*_ our hierarchies are compared with
the axt, Grzigorezyk and Meyer and Ritchie generalized hierarchies.

We also cempare our hierarchies with storage hierarchies (gencralized sequential
machines. two-way finite state transducers and deterministic push-down transducers)
and we analyze the power of the 1.oop programs as acceptors.

Finally, we state some decidability results for the considered classes. As regards
the equivalence problem. the classes of wordsequence functions behave as the
corresponding classes of functions f:N"= N* (see [5.6]). In fact, if we add an
instruction of the type 1+ “the content of the register is different from the empty
word™ 111 N Usequence of instructions” ELsE Usequence of instructions’ to the set
of bisic instructions of 1oop programs on words, we find that the equivalence
pioblem is decidable for the class of functions computed by 1 oop programs with
unnested loop instructions., If the set of basic instructions also contains an instruction
of deleting thie nist (or the last) symbol of the word contained in a register. the
problem becomes undecidable. Moreover, we prove that the graph and the range
intersection problems are undecidable for the class of wordfunctions computed by
1oop programs with just one unnested loop instruction. with cardinality of the
alphabet greater than 1.

In Scction 1. primitive recursive wordsequence functions are introduced and the
refationships with primitive recursive wordfunctions and primitive recursive
sequence functions are shown. '

In Scction 2. the chains of classes of primitive recursive wordsequence functions

Hierarchies of primitive recursive wordsequence functions * 187

are defined, the behaviour of these classes with respect to some operators is stated,
and the relationship with the corresponding classes of primitive recursive sequence
functions is shown.

In Section 3 we ccnsider chains of classes of LooP programs on words and we
prove that the corresponding chains of classes of functions coincide with the chains
of classes of wordsequence functions already defined. We also prove that they form
hierarchies and we study their behaviour with respect to the computation time
function. Finally, we state the set-theoretical relationships among these classes and
between these and the Axt, Grzegorczyk and Meyer and Ritchie classes of wordfunc-
tions. '

In Section 4 we recall the definitions of generalized sequential machine, two-way
finite state transducer and deterministic push-down transducer, and we compare
the classes of functions defined by such transducers with our classes. Moreover,
classes of languages accepted by LooP programs are defined and compared with
the classes of languages of the Chomsky hierarchy.

In Section 5 some decision problems are dealt with.

The complete proofs of some theorems can be found in Appendix A.

1. Primitive recursive wordsequence functions

In this section we introduce a characterization of primitive recursive wordfunctions
from sequences of words to sequences of words on a given finite alphabet, and we
call them primitive recursive wordsequence functions. These functions are the
primitive recursive sequence functions, defined in [5], up to an isomorphism, when
the alphabet contains just one element.

LetX={a,,...,a,}bethealphabet. Let us consider the following set of wordfunc-
tions cn 3%,

B, ={E =(e), K =Ax, y.(x), Si=Ax.(a;x) for 1 =i<n}

where e is the empty word of 3*,

Let us consider the following operators:

(1) the composition operator Af, g.(f < g) such that if f: 3* > 3* and g: 3* -
3* then fog:X* - 3* and fog(u)=g(f(u)) for ue I*,

(2) the left cylindrification operator Af.(‘f) such that if f:3* - X*' then
Fr3*¥7 5 3% and “f(x,u)=x, f(u): for xe 3* and ue IV,

(3) the right cylindrification operator Af(f) such that if f:3* - 3* then
X S 3 und f(u, x) = f(u), x for ue 3* and xe 3*,

(4) the ¢-iteration operator Af,....,f.(fi,....f.)" such that if f:3* - 3%
for I<i<n, then (fi.....f)' :3* " >* and

. N L
(fioeo o) (e Xy X)) =X, ..., X,

(fl """" fn‘)lﬁ(ai"n R ST '!xr):(.fl"--vfn)l$(x7fl(,xla- . 'vxr})

forl<sisnand x,x,,...,x,e3%

188 E. Fachini, M. Napoli

Definition 1.1. The set WS, of primitive recursive wordsequence functions on £,

with card(3) = »n ic defined ag the leact sat of wordseauence functiong containine
VY RRER ‘u'u\-’ 7% 3D WBwillivwW U0 Lilw Awvlaor Jwl vvauu\t\-luv AW AWEIWLAVEED WwWUrLlivisasia ..6

B, and closed with respect to the composition, the left and right cylmdnﬁcatmns
and the ¢-iteration.
Whenever we are not interested in the cardinality of X, we refer to WS, as WS.
Consider the following functions:
(1) the function @ :3* > 3* (r>1, 1<i<r) such that

O (Xpye ooy X)) = Xy Xia ooy Xicts Xiks e v v » X

(2) the function 4": 3* - 3*"(r>0), such that
A(u)=u,u for ue3I*,

(3) the function U’ :3* - 3* (r>0, 1<i=<r), such that
Ui(xy,....x)=x;

(4) the function T}, :3* - 3* (r>1, 1<i#j<r), such that
T, (X X)) =X X Xy Xy e e Xy

{5) the function P,:3* - 3* (1 <i=<n), such that

P(u)=ua; for uel*.
Proposition 1.2. The functions @], A", U], T;, and P; belong to WS.
Proof. The proof immediately follows from the definitions.

Consider the following operators:

(1) the cartesian product Af, g.(f X g) such that if f: I* - 3*" and g: I*" > 3%,
then fXxg: 5% > 3% and (fxg)(u, v)=f(u), g(v) for ue I*, ve I*,

(2) the juxtaposition operator Af, g.(f’g) such that if f:3* - :3*" and g: 3* -
3* then f'g:3* - 3* " and (f @) (u)=f(u), g(u) for ue I*,

(3) the »-iteration operator Af,....f.(fi.....f,)" such that if f: 3% - 3%
I=<i<n then (f... ., f,) 3% 5 5% and

(frao. ..) (e x,..... X)) =X, ..., X

(froo ...) (xa, x,. ..., X)=(fie oo S (X, LX),

Proposition 1.3. The class WS is closed with respect to the cartesian product, the
juxtaposition and the :-iteration.

Proof. The proof immediately follows rom the definitions.

Definition 1.4. Let W be the set of primitive recursive wordfunctions defined as

Hierarchies of primitive recursive wordsequence functions 189

the smallest set of functions containing
B, ={E=(e),E'=Ax.(¢),S;=Ax.(ax), 1 <i<n,
Ui =Axy, ..., x.(x), r>0,1<j=<r}

and closed with respect to

(1) the substitution operator Af, g, ..., g.(fo(g1, ..., g)), such that if f: 3* >
3*and g;: 3* > 3* for 1<i<k, then fo(g,,..., 2)(u)=f(g,(u),...,g(u)) for
ueI*,

(2) the primitive recursion defined as follows: if f:3* - 3* and g;: 3* 7 > 3*
for | <i<n,then h:3*"' > 3*is obtained by primitive recursion from f, g,,.... g,

iff
h(u, e)=f(u),

h(u, ax) = gi(u, x, h(u, x)) for ue 3*, xeX* 1<j=n
Theorem 1.5. WS={f=f,"--- f|f:3* > 3*c W, r=0, s >0}.

Proof. The proof is analogous to the corresponding thecorem in the numerica! case
(see [5]).

Let N be the set of natural numbers.

A function fR:N""' >N’ is obtained by repetition from f:N"-N" iff

R0, u)=un,
R(S(x), u)=f(ff(x.u)) for ueN and xeN.
Consider now the composition and the left and right cylindrifications on functions
f:N"> N
Definition 1.6. The set S of primitive recursive sequence functions f:N"-»>N* with
r=0, s<0 is defined as the smallest set of functions containing
A={0=(0), K'=Ax, y.(x). S=Ax.(x+1)}
and closed with respect to composition, left and right cylindrifications and repetition.

We will use |x| to denote the length or number of symbols in the word x ¢ 3*,
and [x,,.. ., v,| to denote the sequence of lengths of the words x;€ 2*, 1<i=<r.

Proposition 1.7. There exists a bijective function ®:S—-» WS, such that
(1) ®f(jul) =|f(u)l,
(2) ®(fog)=Pfo g,
(3) @(Cf)=(Pf) and D(f°)=(Df)",
(4) ofF=(2f).

Proof. The proof obviously follows from the definitions.

190 E. Fachini, M. Napoli
2. Classes of primitive recursive wordsequence functions

In this section we define four chains of classes Lij", Ly, L%, Li® for i j=0, of
primitive recursive wordsequence functions, and we study the behaviour of these
classes with respect to the operators introduced in the previous section. Moreover,
we siate the relationship between each cha}in and the hierarchy of primitive recursive
sequer:ce functions defined in [5].

Let

By, ={E =(e), K =Ax, y.(x), P,= Ax.(xa;) for 1<i<n}.

Let =03 and A=4".

Let A, =B, u{0, 4} and Ay = By u {0, A} and, for a set X of wordfunctions, let
€(X) be the closure of X with respect to the composition and left and right
cylindrification and #7(X) (#7(X)) the set of functions obtained from X by 2-
iteration (¢ -iteration).

Definition 2.1
L,;=%(A,),
L:,lil ={f=fif-lfic L:il‘v f:efh(’-:(:')} for i,j=0,

Lo=ULY, fori=1.

J 0

Let us use L)' to denote the class L}, for i =0.

The class L, X is analogously obtained by considering Ay instead of A, in the
above definition. The class L;;" (L) is obtained as L;;" (L;%) by considering the
2-iteration instead of the ¢ -iteration.

Whenever we state a property holding for all the classes L, L', L, L} we
will express it for L, ;.

Lemma 2.2. The following properties hold:
() L,cL,.,, L<L,,,
(2) €(F(L))=L,.,.
(3) €(L)=L, % (L)< L, fori=0,
(4) iffel,.then f=fiofie---of with fie L, f,.... fe (L),
(5) iffel,, then “fel,;and fel,,

Proof. The proof immediately follows from the definitions.
Lemma 2.3. Iffel ,and ge L. then fege L, .\, f g€ L .. fXg€L, i

Proof. The proof is analogous to the numerical case.

Hierarchies of primitive recursive wordsequence functions 191
Lemma 2.4. WS=J,;-, L,
Proof. The proof obviously follows from the definitiors.
We now give a duality result. .

Lemma 2.5. There exists a bijective function & : WS - WS such that

(1) D(fiofr)=@(f)oP(f>),

(2) D(°f)=(D(f)) and O(f°)=(P(f))",

(3) P((g1r-... 8")=(P(g)), ..., P(g,)"” and

(D((gh LR gn)l—’) =((D(gl)’ sy (p(gn))h_,

(4) (LM =L} and B(L7H) = LR,
Proof. Let @: WS- WS be such that if f:3* > 3* then @(f)=rev ofore:*
where rev'(e) =e, rev'(a;x) = (rev'cP,)(x) and rev’' =rev'o- - -orev! ;.. for r>1.

It can easily be seen that properties (1), (2) and (3) hold. By induction on i and
J and by the previous properties (1), (2) and (3), property (4) can be easily proved.

Let us now reca!l the definition of the hierarchy of primitive recursive sequence
functions given in [5].
Definition 2.6
lio=€(AU{O=2Ax, y.(y, x), AV=Ax.(x x)}),
Linn={f=fiofolfi€l; and f€e R(/4)} fori j=0,

I,"():U ’,'Vl‘]' fori=1.

j=0
Let us denote the class /;, by /; for i=0.

Lemma 2.7. (1) For every i, j =0 it holds that for every f :N" >N* € I, there exists an
f5:3% > ¥ e L, such that f(Jul) =|f*(u)| for every ue I*.

(2) For every i=1 and j=0 it holds that for every f*:3* - 3* ¢ L, ; there exists
a nondecreasing function f :N" >N’ € I,; such that |f*(u)|< f(|u|) for every ue T*'.

Proof. (1) The proof is straightforward by induction on the structure of /;;.
Suppose that the claim holds for f € /;;. If a function f € /;;,,, then f = f,.o f> where
fiel,; and f,=g® with ge /. By induction hypothesis there exists an fi el and
g~ € L; such that f,(Jul) =|f7 ()| and g(|ul) =|g*(u)|. Then
fllu=(fog"™)(uh)=g"(fr(luD) =g"(fT (W) =i(g7,. .., &) (fi (W)l

=|fi (81, ... 8n) (u)|

192 E. Fachini, M. Napoli

where g~ =gt =---=g=. Therefore, f*=f; °(g7....,3x) €+ is the wanted
function.

(2) This claim can easily be proved by induction on the structure of L;,: Suppose
it holds for L;; and consider a function f* € L, ., where f* = f7 o(g7,..., &) with
fi:3*¥ >3* " el;;and gi :3* > 3* e, for 1< k= n. By inductive hypothesis
there exist nondecreasing functions f,€/;; and g;,..., 8, € /; such that IfE (u)| <
fillul) and |gi (w)]| < g(lu), 1<k<n.

Let

g=)\x,,...,xs.(Y gk(xl,...,xs)) for x,,...,x,eN
k=1

where xy,.... X, +yi,..., =X, +Yy,..., X+, The function g € /; and it holds
that |g(u)| < g\|ul) for 1<k < n; then the function f =f,egRe /., is the wanted
function. In fact

IF* (ol =1(gr.. .., &) (fT)< g"(fi(w)) = (fiog")]ul.

Proposition 2.8. There exists a bijective function @ : S -» WS, such that ®(/;)=L;;
Proof. The proof follows by Proposition 1.7 and by the definition of the classes.

From now on we will identify the functions of S with the functions of WS on an
alphabet of cardinality one.

3. Loor programs computing wordsequence functions

Primitive recursive wordsequence functions give a semantics to the language of
1.00P programs on words defined by Ausiello and Moscarini in [2].

In this section we prove that the chains of classes L', Li, L and L} are
hierarchies of functions. Note that the strictness of the containment of L, ; in Ly .,
holds also if we consider the subclasses of L, ; containing only functions of type
f:32*->3* for card(¥)=2. In the numerical case, instead, the subclass of 1/,
containing only functions of type f:N’ N is contained in /, ., for every j (see [9]).

We will state some results in comparing the classes L)', L%, L;;¥ and L' The
hierarchies coincide for i =2 and j=0; moreover, the classes L ", L7, L)} and
L;! turn out to be complexity classes for i=2 and j=0, like the numerical casc.
Some weaker results about the computing time function are obtained for the classes
Lt Lifo L and Y, j=0.

Let us define the LoOOP programs on words on X ={a,,....a,} (see[2]).Let X, Y
be names for registers which can contain an arbitrary word on I*,

Let us consider the following instruction:

(a) X «e¢, the clear instruction,

Hierarchies of primitive recursive wordsequence functions 193

(b) Xe<Y, the copy instruction,
(c) X « Xa;, the R-append instruction, - for g, € 3,
and the following loop control structures:

(d) roor” X the ¢-loop instruction,
1. I;;

n I,
END

where I,,..., I, are lists of instructions of type (a), (b), (¢) or (d).

(d') roop”™ X the :-loop instruction,
1. I;

n I,
END

where I, ..., I, are lists of instructions of type (a), (b), (c) or (d').
The loop control structures (d) [(d')] are interpreted by the following informal
program:
Sten 1. Transfer the content of X in the register CONTROL.
Step 2. while coNTROL # ¢ execute I; if the leftmost (rightmost) character of
CONTROL is a;; erase the leftmost (rightmost) character of CONTROL.

Definition 3.1. An Ré-Loop program (R:-Loop program) on an alphabet 3 =
{a,....,a,} has the following form:

[]
INs; Iy;...;1,;0uTd,

where s is a possibly empty list of names of registers, I, for 0<j<m, m=0is an
instruction of type (a), (b), (c) or (d) [(a), (b), (c) or (d’)] and ¢ is a nonempty list
of names of registers either occurring in the input list or introduced in the program
by an instruction of type (a).

Consider now the instruction

(') XeaX, the L-append instruction, for a; € X.

The L¢-Loop and L:-LooP programs are defined as the R€-Loop and R2-LooP
programs by considering (c’) instead of (c) wherever (c) appears in the above
definitions.

We will refer to Loop programs for L¢-Loop, L:-Loop, R€-Loop, Re-LOOP
programs.

Definition 3.2. A function f:3*" - 3X*' € WS is computed by a Loopr program P
with input register list s and output register list 7 if before the execution the input

194 E. Fachini, M. Napoli

registers of P contain x,,. .., x,€ 2* (and the other registers are empty) and after
the execution the output registers of P contain the sequence f(x;,...,x,)€ 3*

Definition 3.3. Let ¢-loop(1) be a loop instruction Loop™ X 1. Py;...; n. P,; END
where each P, is a list of clear, copy and R-append or L-append instructions; let
¢-loop(i), for i > 1, be a loop instruction Loor™ X 1. Py; ... n P,; enD where each
P, is a list of clear, copy, R-append or L-append and ¢-loop(i— 1) instructions.

The loop instruction 2-loop(i) is defined analogously.

Definition 3.4. Let M;" be the class of Lz-Loop programs obtained by using only
clear, copy and L-append instructions. Let M;;" be the class of L2-LooP programs
obtained by using just j r-loop(i+ 1) instructions besides clear, copy, L-append and
r-loop(k) instructions with 1 <k <.

Let us use M " to denote the class My, i =0.

The class M is obtained analogously by replacing L-append with R-append in
the above definition. The class M (M ") is obtained as M;" (M) by consider-
ing z-loop instead of ¢ -loop instructions.

Theorem 3.5. L\, L7\, LiR, L} are the classes of functions computed by programs
belonging 10 M; ", M}, MR, M} respectively, for i, j=0.

Proof. The proof is tedious but straightforward.

Now we can state that each chain of classes L;; forms a hierarchy.

The proof of the strict containment of L;; in L;;,, for i >0 exploits properties of
growth of the functions with respect to the lexicographic order on sequences of
lengths of words. The proof is different in the case i =0 because all the functions
in L, exhibit the same behaviour with respect to the growth.

Consider the function ¢*:3*-> 3* with card(2)>2 and k>2 such that ¢* =
Ax.(x*) for x ¢ I* For every LOOP program computing c*, by scanning sequentially
the program. we can construct a representation of it in form of binary tree:

“Initialization’: create a node labelled x;

“Step’: for the next loop instruction giving as a result the concatenation of u; e {x}*
and v, € {x}* for 1 <j=<p and such that nodes n; and m; labelled u, and v,
have been created do
1. if n;# m; and n; and m; have not a father then create a new node g,

having n; as left son and m; as right son and label it u;v;;

2. if n,# m, and n; (or m;) has a father then create a new tree having a new
node n; (or mj) as root, with label u; (or v;). isomorphic and with the
same labels as the subtree of root n, (or m;). Moreover, create a new
node g, having n; and m; (or n; and mj, or n; and m;) as left son and
right son respectively, and label g; with u;v;;

Hierarchies of primitive recursive wordsequence functions 195

3. if n;=m; then create a new subtree having a new node n, with label
u; = v, as root, isomorphic and with the same labels as the subtree whose
root is n;. Moreover, if n; has not a father then create a node g; having
n; and n; as sons and labelled u;v;, otherwise apply rule 2. of Step.

Definition 3.6. The tree corresponding to a program P computing c* is a tree
obtained from P by initialization and by repeating the step until all the program
has been scanned and its root is labelled x*.

Example 3.7. Consider the following program computing c¢® and the corresponding
tree:

IN X
Loor” X;
1. X<« Xay;

n XeXa,;
END

Loor” X;

1. X<« Xay,

n XeXa,;
END

Loor” X;

1. X<« Xa;

n X<« Xa,;
END
out X

Lemma 3.8. For every program computing c* the corresponding tree has k leaves.

Proof. For every program P we can state that at every step of the construction of
the corresponding tree the j subtrees already obtained have roots labelled x™ for
1 <i=<jand m; leaves. The trees obtained by initialization and one execution of
the step of the construction satisfy the claim trivially. Suppose the claim holds for
the trees obtained by p repetitions of the step of the construction. In the (p+1)st
execution of the step we possibly create new trees isomorphic to and equally labelled
as the already created subtrees and the claim holds trivially for these new trees.
Then, in the same step, we create new nodes such that each one of these nodes has
sons which are labelled x™ and x" respectively and are roots of subtrees having
m, and m; leaves respectively. Thus the new trees obtained have roots labelled
x™*™ and have m;+ m; leaves.

Lemma 3.9. For every program P computing c* the number | of loop instructions
occurring in P is greater than or equ=! ‘o the height h of the corresponding tree.

196 E. Fachini, M. Napoli

Proof. For every program P we can state that at every step ol the construction of
the corresponding tree the j trees already obtained by initalizaticn and one execution
of the step of the construction satisfy the claim trivially. Suppose the claim is true
for the trees obtained by p executions of the step. Let h be the maximum height
of such trees. The (p+ 1)st execution of the step provides trees having height at
most h+1 and then the claim holds.

Lemma 3.10. The function ¢ belongs to Ly, — L, . for every k = 1.

Proof. It is easy to see that the function c*" € Ly, for every k=1. Let Pe M, , be
. ak - k

a program computing ¢~ . The corresponding trkee has 2" leaves, by Lemma 3.8,

and height h=k. By Lemma 3.9, g=h, then ¢* ¢ L, .

Theorem 3.11. L, , < L,,,, for every j=(.

Proof. The containment immediately follows from the definition of the classes. The
strictness follows by Lemma 3.10 for card(2) = 2. For card(X) =1 the result has
been proved in [5].

Let us define the following strictly increasing functions F! :N* >N for i = | and
J=0:
Fl=hy=th=Sich =Ax. v(27Q2v+1)) if hy = Ax(2x),
Fi=F [=A<hf for j=1.
Let oy =axFtx) fori=1:
Fi=h“(hos)oh® fori=1,
Fi=F, cdch} fori=1andj=1.

Let H, =Ax.F(x,x) fori=] and j=0.

It has been stated in [5] that F) e /., and H, € /,,,, for every i = 1, j=0.

Let now Fi:3* 5 3% pe the function such that F!(x, v)=F!(|x].|v]) for i= 1.
j -0, It results that F e L. .

Hu=x,..... v, then we use [luf to denote max{|x,].. ... [x i}

Lemma 3.12. For every wordfunction ©: X% > X¥ ¢ L with i=1 and j=0, there
exists a we X* such that |f(w)|< F;(w, x;) for every u=x,,...,x, where x, is a
word such that | x| = ||u|).

Proof. Let f~c L,, with i=1, j=0. By Lemma 2.7(2) there exists a function f €/,
such that If*(u)| =< f(Ju]) and by [5] there exists an meN such that f(lu])<
From). Then |f*(u)|= F](a}", x,) where |x,|=|ul.

Hierarchies of primitive recursive wordsequence functions 197

Now we are able to prove the following theorem.
Theorem 3.13. For everyi=1, j=0, L;;s L.,

Proof. The containment holds by the definition of the classes.

Let Hj = Ax.F}(x, x). By Lemma 3.12, for every f: 3* > 3*e L,; with i=1, j=0
there exists a w e 3* such that |f(x)| < F} (w, x). Then for every x such that |x|=|w|,
If(x)|<Hj(x) as F; is a strictly increasing function with respect to the length of
its arguments. And then Hj eL;;,,—L;; for every i=1, j=0.

Let us now state a simultaneity result.

Theorem 3.14. For i=1 and j=0, L;; is closed with respect to the juxtaposition
operator. ’

Proof. For card(X) =1 the proof has been given in [6]; for card(X) =2 the proof
is analogous. Consider a function h=f"g, with f:3* »3* and g:3* -»3*
belonging to L;; By definition it holds that f and g can be computed by programs
consisting of j successive loop instructions of depth of nesting i. Let X,..., X,
Y,...., Y] be the control registers of the loops. To compute h we can construct a
program consisting of j successive loop instructions of depth of nesting i and
controlled by Z, =conc(X,, Y)),...,Z;=conc(X,, Y;). As the concatenation of
words is a function belonging to L,, the function h = f “g belongs to L, ,.

Let us now introduce the computing time function.

Definition 3.15. Let P be an L¢-Loop program IN X,..., X,;I;ouTt Y,,..., Y,
let Z,....,Z, be the list of new register names introduced by I and let g=p+r.
Then 1p: 3*" > 3* the computing time function of Pis “Ec Eo---o“EotoeUl}]
where 1:3*"' 5 3**" is the stepcounter function of I defined as follows:

-if I is the empty sequence then t=U?"" * .. "Ud7],

v
o¢ S“

G ety

-if I=X,<aX then 1="""S¢
-if I = X, < e then =< '(El)c" “"'ocwsh

-if I=X,< X; then i = T{;' =S,

-if I =1,;1, and ¢, is the stepcounter function of I, then t=1¢,°1,,

-if I=roor” X; 1. I} ;...; n I, ; eND and g is the stepcounter function for the
list of instructions /; then

r=A4%0(1,°(81), ... 4,0 (ST (ST ifi=1

198 E. Fachini, M. Napoli

and

E= A @I o (105 (S, o (S T(SD) i i1,

If Pisan L2, R€, R2-LOOP program, then the computing time function is defined
analogously.

Proposition 3.16. If Pc M, ;, then tpc L, ;.
Proof. The proof immediately follows from the definitions.

We will also write t; for tp if f is the function computed by program P.

The hierarchies are compared in the following lemmata. Some results are stated
for two of the four hierarchies and by Lemma 2.5 they hold for the two dual
hierarchies.

Lemma 3.17. L' o< ;"
Proof. The proof obviously follows from the definition.

Lemma 3.18. L, c L35,

Proof. If the function f:3* " = 3* ¢ [;® then f=fyof,o - < f, where

-1

> P gt ol g g R
fi=(g..... g X S ME e g (L))

and p,+|+l =3

Then f=fyorevofiorev™ o orevofl where f!=(gi.. . g e
FUL™). Asreve L3}, by Lemma 2.3 it holds that fe Ly®. As reve Ly~ LR for
every J, the strictness of the containment holds.
Lemma 3.19. If f:3* > X* c L7} then fe LR ...
Proof. Consider f:3* - X* ¢ L7} and the function ®: WS- WS, defined in
Lemma 2.5. Then f =rev' e @(f))orev':as ®(f)e Ly andrev' e L) for n> 1, then
f L L;'_:(' rtose
Lemma 3.20. L "¢ Lj®

Proof. By Lemma 3.18 (see also [2]).

Lemma 3.21. L; R c L} for every j=1.

Hierarchies of primitive recursive wordsequence functions 199

Proof. Letf:3* > 3* e L7} thenf=fo(g,...,g,)" wheref,, g.,...,8. €L~
By Lemma 3.20, f,, g., v BnE LR As f=fiorevio(gy,...,g:)" and fierevee
L7R, we have fe L7}. The inductive step is proved analogously.

Lemma 3.22. L7} g L7, for every i=0.

Proof. If f: 3* > 3* € L[K, then the computing time function # € L;}. By Lemma
3.12 there exists a we Z* such that, for every u=x,,...,x, |t,(u)|<F}(w, Xx)
where |x|=|lul. We can write a loop program Pe M} computing a function
g:2*>3* such that f(x,,...,x)=g(F!(w,p"(x,,...,x))) where p":3* > 3*
is the function such that p"(x,,...,x)=x,...x. As Ax.F|(w,x)e L, ;and p" € L,,
we have fe LR R

The strict containment of the class L‘,“f in L,‘ﬁ, is proved by considering the
function H} €L, ., —L,,

Lemma 3.23. L7} =Ly} forj=0.

Proof. The proof follows by induction on j.

For j=0, the claim holds by Lemma 3.19 and its dual result (see also [2]).

Let Ly} =L7} andf 3* 5 3% e L7L | By definition, f = f,0(g,,. .., g,)' where
fiely) and g eL7" for 1< h < n. By mduction hypothesis, f, € L7} and g, e LT
As f=fiorevio(gy,....g.)" . fierevi eLiR, we have fe L7R,. The inverse
inclusion is proved analogously.

Theorem 3.24. LyR=L3R=L17"=L5"
Proof. The proof follows from Lemmas 3.21, 3.22 and 3.23 (see also [2]).

The diagram, pictured in Fig. 1, summarizes the results of Lemmas 3.17-3.23.
In Fig. 1, A-> B means that class A is strictly enclosed in class B, A——— B
means that class A is enclosed in class B.

Theorem 3.25. The classes L;; withi= 2, j= 0 are closed with respect to the computing
time function.

Proof. By Proposition 3.16 we only have to prove that if ;€ L;;, then fe L, Let

“us prove the thesis for L;*. Let f:3* - 3* If t,: 3* > $*¢ L[}, then there exists
a we X7 such that, for every u=x,,...,x belonging to % lt,(u)l<ﬁ“i(w Xy)
where | x| =|lull. We can give a program P computmg g:3%->3* e L} such that
f(x,...,x,)= g(F,(w, xi)). As Ax.F}(w, x)els; Rand i=2, we have fe L.‘.j .

Theorem 3.26. Letf:3* > 3* e LT R, k=0. If there exists a j <k such that t; € L]},
then fe LTV ,.

200 E. Fachini, M. Napoli

<L _ g~L «R __ R
LO - LO LO - LO

L | o
L&,‘\l l/l.g,,‘.*

"\ 7_ s

-1 -OL - g
sr=Lt=13R =L7"
Fig. 1.

Proof. If 1,:3* > 3*c L7}, then there exists a we =* such that, for every u=
Xpvooas x, € 3% |t (u)] < F} (w, x,) where |x.| =!"ul. Then [t;(u)] < F}(w.p"(u)). It
holds that f(u)=g(F](w, p'(u))) where g:X*-> X* is the function computed by
the program Pe M7} defined in the previous theorem. As Au.(p"° F})(w, u) € L7},
then fe L7},

Theorem 3.27. Letf:3* > 3* ¢ LR k=0. If there exists a j < k such thatt; € L'}
then f L,_,.,g.

Proof. Let f:3% 5> 3* ¢ L7¥ and t,€ L]} with j< k. By Lemma 3.21, fe Lj} and
,eL,j. By Theorem 3.26, feL,,” and by Lemma 3.22, fe L,,,a

We now report some results obtained by comparing the loop hierarchies of
functions f: 3* - 3* with Axt and Grzegorczyk hierarchies defined in [12).

Let us recall the definitions of these hierarchies.

Let

B'={S,=Ax(ax).1<i<n E'"=(e), E'=Ax(e).

Ul =ax,.....xx) r= 1 1<sj=r}

Hierarchies of primitive recursive wordsequence functions 201

Nallnittan LI Tha Avt hincarchy D N ic dafinad ndiiatiane tha
AFCIINIBAVEL JeaUe LIIC AAL lucnau.uy nj \]/U) iS5 Glnnea uy uluuuuun u() m Lic

smallest class containing B' and closed with respect to substitution; R, is the
smallest class closed with respect to substitution, containing R; and the functions
obtained by one application of primitive recursion on R;.

We recall the definition of the generalized Ackermann functions A;: 3** > 3*
belonging to W for every j=0:

A £ Y= C 1) A+ 5\ e o A (v 2\ = o
ANAX Y)—N\Y), A A, €] A,y M A, €] — €,
Alx,e)=a, forj=3

A,‘+ 1(_x, a‘*y) = A,‘(x, ‘4,‘+‘(x, y)) for]2 Qandli<isn

Definition 3.29. The Grzegorczyk hierarchy E; (j=0) is defined as follows: E; is
the smallest class of primitive recursive wordfunctions containing B' U{A,} and
closed with respect to substitution and the limited recursion operator, where a
function f is said to be obtained by limited recursion from g, h; and d if f is obtained
from g and h; by primitive recursion and |f(u)|=<|d(u)|.

Let L!, be the subclass of L;; containing only wordsequence functions f: 3* - I*,

Note that for the loop hlerarchy L; (j=0) defined in [12] it holds that L; = L*'
for every j=0.

Theorem 3.30. L;"=R,cE,. R,c Ly "cE, R ><Encly" Eagly .L b=
R,=E,, for every j=2

Proof. For the proof, see [11, 12, 15].

Theorem 3.31. L,"">c £, L G E,.

Proof. For the proof, see [2].

We can now improve the result £; ¢ L'{" of Theorem 3.30.
Theorem 3.32. E,c L7}

Proof. It is easy to see that a loop program P simulating a deterministic Turing
machine with r input tapes, m storage tapes and one output tape can be given in
M7! (see also [12]). Let f: 3* > X*¢€ E,, the computing time function of a Turing
machine computing f is bounded by Au.A;(p"(u), w) for a suitable we I*. As
AuAL(p'(u), wye L. a loop program computing f can be given in M7%. Then
E,< L5k As there does not exist a w e 3 such that |Fy(x, y)|<|As(p*(x, y), w)| for
every x, y€ 3*, we have F, £ E, and the claim holds.

202 E. Fachini, M. Napoli
4. LooP programs, automata and transducers

In this section we deal with the power of LooOP programs as transducers and as
acceptors.

We show that the functions defined by generalized sequential machines are in
L,, and that the functions defined by push-down transducers are in L, ;. In both
cases we show that the reverse does not hold. Note that Indermark [14] proved
that the functions defined by generalized sequential machines and push-down
transducers are in E,. Besides, every function in £, can be defined by a two-way
finite state transducer.

As regards the power of LOOP programs as acceptors, it holds that the class of
regular languages coincides with the class of languages

Fr={x|f(x)#eand fe Ly,}

and that the class of deterministic context free languages is strictly enclosed in the
class

Fr={x|f(x)#eand fel, }.
Definition 4.1. A language .¥' < X* is said to be accepted by a program P if and

only if ¥ ={x|fp(x)# e} where f,: 2% > X' with X' 2 X, is the function computed
by P.

Let us now consider the augmented 1.oOP programs on words defined by Chytil
and Jakl [5].

The loop control structure is interpreted in a slightly different way: The register
CONTROL, where the content of the control register of the loop instruction is stored,
is supposed to be accessible for inspecting, without changing it, through a window
moving backwards and forwards.

The set of basic statement is augmented by the instructions
- 11-+T1, which causes a leftward move of the control register window,

- RiGHT, which causes a rightward move of the control register window.

The set of control statement is augmented by conditional instructions:

- X#e THEN 80 .08, bLsE S, 0. .08, EI

which causes the execution of the sequence of statements S, ... ;S, if the register
X is not empty and the execution of the statements S,, :...:S, otherwise,

which causes the execution of the statements Sy ;. .. ; S, if the register X is not empty.

Hierarchies of primitive recursive wordsequence funciions 203

Moreover, the loop control structure

(where n is the cardinality of the considered alphabet) is interpreted as follows:

- the content w of X is stored in the register CONTROL and the control window is
set to the leftmost symbol of the word w,

- while the window displays a symbol of w execute I; if the displayed symbol is a;
(possible occurrences of LEFT and RIGHT within I; do not influence the running
execution of I,).

Definition 4.2. Let M{"™ be the class of augmented LOOP programs IN
Xy, X5 L. 51, 0uTt Yy, .., Y, where I; (1<j=<m) is a clear, copy, R-
append, LEFT, RIGHT instruction or a conditional instruction or a loop instruction
roop X 1. Ii;...; n I,; END where I} (0= k=n) is a list of copy, clear, R-
append, LEFT. RIGHT or conditional instructions. Let PL;™™ be the class of partial
functions computed by programs in MK,

Definition 4.3. A deterministic two-way finite state transducer is a 7-tuple %, =
(K. 2, 4,8, 4 ¢ $) where K, £ and A are the finite sets of states, input symbols
and output symbols respectively; g,€ K is the initial state and ¢ and $ are
endmarkers; 6: K X(Xu{¢. $}) > K xA*x{—-1, +1}.

Definition 4.4. An instantaneous description of & is a couple belonging to H <
SU{E. SHE*K(Tu{e, SH*xAa*
A binary relation + is defined on H such that
(xqax'.y) + (xaq'x', yy') iff 8(g.a)=(q', v, +1),
(xaqa'x. y) + (xq'aa’x', yy") iff 8(g,a)=tq',y,-1),
where x, x' e (Y U{¢. $)*, a.a’'e 2 U{¢. 8}, ¢. g’ € K and y, y' € A™.

Let +-* be the reflexive and transitive closure of .

Definitioa 4.5. A function f: £*-> X* is said to be defined by ¥, iff

) y if there exists g € K such that (g,¢¥$., e)="(¢x3q, y).
fx)= {undeﬁned otherwise.

If f:3¥ >25% then f :(XC{¢'D*>(Zu{$'H* is the function such that
Fxi k) =vi Lon it f(xg ¢ lx,)-—‘y.$' o8y,

204 E. Fachini, M. Napoli

Theorem 4.6. A function f = PLT"® iff there exists a two-way finite state transducer
which defines f..

Proof. For the proof, see [5].

Now we consider TL;"R, the lass of total functions belonging to PL"R.
Theorem 4.7. Ly Rc TL7R,

Proof. Note that reve TLTR. Let f:3*¥ - 3* ¢ LT® and Pe M7® be a program
computing f A program P'e M}"® can be obtained from P by replacing every

instruction Loor” X 1. I;;...; n. I,; END by the following sequence of instructions:
X ereviX);
Loor X
1. I, RIGHT:

2. 1, RICGIHT:
IND
X« RrEVIX)

where X « reveX) is shorthand for a program in M}” - which computes the function
rev.

Theorem 4.8. The languages accepted by progra s computing functions in L,,, are
exactly the regular languages.

Proof. Let 7' 3% be a regular language; let «/ ={K, Y 8, q,. F} be the complete
deterministic automata accepting ., where K ={q,,.... ¢}, > =tu-.....a,}, 6 : K X
Y-Kand F=lg,..... q,} < K. The function f: X* > X such that
. a, iHxcl
flxy= ‘[' .
| e otherwise,

is computed by the following program:

N X

O, O.F,. F,«e¢

Q... O,,"‘axo a.0),

1oopr” X

{‘ I‘.]‘,(PP Els = Oll O\- Ol). Y O.\ « F‘N‘hl-“r" e F‘mq,.u,l ‘
PND

Hierarchies of primitive recursive wordsequence functions 205

By Theorem 3.5, fe L5 7}.

Each register corresponding to a final state is set to g; and the regi

wRE s WS SR8V A3 3%t W2 B QA L2

leftwards. If ; is the scanned symbol, then, correspondmg to each rul (qp a,) = G,
the content of Q, is transferred to Q; Hence if X contains x=a; ... a;, then Q,
is set to a, iff there exist gy, ..., g, such that 8(qg;, a;.,,) =q;+, and g, € F.

Consider a program P’ obtained from P by replacing the instructions Q, < a,Q;
with Q; «< Q,a, for 1<j<t Program P’ computes the same function as P; thus,
felyy as well

Let £ be a regular language; let P= {yI y =rev(x) and x € £ As Pisa regular
'anguage there exists a functlon f e L5t A LG Y such that F= {y|f(y) # e}. By Lemma

.5 the function @(f)e L5\ N L and

£ ={x|rev(x)e £} ={x|f(rev(x)) # e} ={x|rev(f(rev(x))) # e} ={x| P(f)(x) # e}.

Vice versa, by Theorems 4.6 and 4.7 the languages accepted by programs in M,

are regular languages.

Definition 4.9. A generalized sequential machine (gsm) is a 6-tuple 5=
(K, 2, 4, 8, A, qo) where K is a finite set of states, £ and 4 are the input and output
alphabet respectively, go€ K is the initial state, 8 and A are functions such that

8: X x (X u{¢})» K and A: K X (X u{¢}) » A* where ¢ 1s an endmarker and 8(q, ¢) =
q for every ge K.

Let us denote by 8 and A the extensions of & and A to the domain K X (2* U {¢}),
as usually.

Let f,: 3* > A* be the function such that f, (x) = A(qy, x).
Let G ={f|there exists a gsm & such that f=f,}.

Theorem 4.10. G< ;"

Proof. Let ¥=(K,3, 3,8,A,q,) be a gsm with K={q, ...,q;} and ZX=

{a,,...,a,}.
The following program computes fy:
IN X
O(), s e ey O.\'! Ein" . ,E,)"’e;
Loor” X
j. RI{)’ “ vy Fqs(_ O”, [N OS; O()‘_ A.(q(), a]')Fﬁ(q“,a/) e e
Os <A (qs', a])FS(q_, a) ;

END

ouT Qy

206 E. Fachini, M. Napoli

where an instruction A«a; ...a;,A is a short form for the list of instructions
A<a,A;...;A<a; A Then fe L5y,

The register X is read leftwards. If a; is the scanned symbol, then, corresponding
to each rule 8(g; a;) = q,, the content of Q, is transferred to Q; and A(g;, a;) is
concatenated to Q; on the left. If x=a; ... a; and A(qo, X) =y, ... yi, then Q, will
contain y; ... y. at the end of the execution of the loop instruction.

Let us consider the function f:3* > X* such that f = Ax.(xx).

As fe L}, but there does not exist a gsm & such that f = f,, we have fe L;} — G.

Theorem 4.11. The class of languages accepted by programs in M, ; strictly contains
the class of deterministic context free languages.

Proof. Let #<3* be a deterministic context free language; let &=
{Q.2. 1, 6,q,. Z,. F} be the deterministic push-down automaton accepting ¥ with
Y=la,....,a,}, I'={Zy,.... Z,}, O={q0,....q,}, F={q;,...,q;} and 8:0QX
(Xuie})x I'-» QX I™* be the function such that 8(g;, a, Z;) = (G, Vi) withOsj=
s=syand 0= Lk, ;<r<r,.

Let Y ={c\.....CnCiitr. s Crasar}, Where ¢;=a; for I<i=<n and ¢,.;.,=Z,
for 0= j=<s We can give a Loop program on X'* in M, , which computes the
characteristic function of .¥ by simulating the behaviour of the automata.

As regards the strictness of the containment, let us consider the function f: 3* » 3*
such that f(x)=a, if x=a{a%a’ and f(x) = e otherwise. As f can be computed by
a program in M, . the claim holds.

Definition 4.12. A deterministic push-down transducer is a 8-tuple J =
(X.3.1.0,8,9,. Z,. F) where X, A, 1" are the finite alphabets of input symbols,
output symbols and stack symbols resp., Q is the finite set of states, q,€ Q. Z,e I F <
Q and & is a partial function such that 8§: OX(Zn{e}) X I'> O x A*xXTI'* and if
dlg., e, Z) is defined, then 8(g, a,, Z) is undefined for every ge Q. a,€ X, Ze I

L.et DPDT be the c‘iss of functions computed by deterministic push-down trans-
ducers.,

R AR

Theorem 4.13. DPDI < L, ,.
Proof. The proof is analogous to that of the Theorem 4.11.

For the strictness of the containment note that the function f: 3* - X* such that
ftxy=a, a, a; belongsto L, but cannot be defined by any deterministic push-down
transducer.

Hierarchies of primitive recursive wordsequence functions 207

S. Decision problems

In this section the decidability of the equivalence problem for L, is stated by
exploiting Gurari’s result in [10] on decidability of the equivalence problem for
two-way finite state transducers. In the same manner we prove the decidability of
the equivalence problem for the class L] of the wordfunctions computed by programs
in M, which use also an if-then—-else instruction testing the empty word. Note that
the same result when the cardinality of X is one has been proved in 5] and [13].
But the equivalence problem turns out to be undecidable for the class L{;" of
wordfunctions computed by programs in M, ; with a deleting-a-symbol instruction
as a further basic instruction for card(X)=1.

The graph and the range intersection problems are undecidable even for L, ; but
only when the cardinality of = is greater than one; in fact, the two problems have
been shown to be decidable for L when the cardinality of X is one in [5].

Theorem 5.1. The equivalence problem is decidable for PL;"®

Proof. The proof follows from [3, 10].

Let L7 (i, j=0) be the class of functions defined as the class L, starting with
Ai=A u{r=Ax, y, z(if x =0 then y else z)}

instead of A;.
The classes L%, L7, Li® " are defined analogously, let L/; stand for one of
the above classes.

Theorem 5.2. The equivalence problem is decidable for L, and L.

Proof. The proof of Theorem 4.7 can immediately be extended to prove L} < TLi™®
so the claim follows from Theorem 5.1.
Let D: 3* > 3* be the function such that D(e) = e and D(xa) = x, and let L;;\" """
be the class of functions defined as the class L,f," starting with AY =A| u{D}.
The classes L™ L7870 LRTP are defined analogously. Let L;" stand for
one of the above classes.

Theorem 5.3. The equivalence problem is undecidable for ! j: for card(X)=1.

Proof. The halting problem for register machines can be reduced to the equivalence
problem for L, with card(3) =1.
Let a register machine be defined inductively as follows:
(i) Ri«Ri—1
(i) Ri«<R+1

208 E. Fachini, M. Napoli

(iii) stop

(iv) if M and N are register machines then M; N is a register machine

(v) if M is a register machine then (M); is a register machine (M is executed
until R; =0)
assuming that the stop instruction occurs just once.

A register machine haltson input x,, . . ., x, iff it starts with the registers Ry, .. ., R,
containing x,,. .., X,, and the other possible registers containing 0, and reaches the
stop instruction.

Given a godelization of register machines, it holds that it is undecidable if a
register machine (r.m.) with Godel number g, M,, halts on input g.

We consider a Loop program computing a function f:N - N e L}:P such that
f(x}=1 if the rm. M, halts on input g in x steps and f(x)=0 otherwise. The
function f is equal to the constant function Cl = Ax.(0) iff M, does not halt on
input g.

Given a register machine M,, suppose that every instruction of type (i), (ii), (iii)
and every open and closed bracket are labelled by 1,..., p, and that s<p is the
label of the stop instruction. Consider the following Loopr program:

INT
XcO;XeX+1;...:XeX+1;0,,...,0,<0;0,< 0, +1;
Loor T &

Oi~--~9op<—é|""’oll;
if &, =1 then [;

if .=1then,,
END

ourt Q,

where
(1) if j is the label of an instruction of the type R, < R;~1 or R, « R, +1, then

IIIR.‘("Rz;l;C_),*"O;O—.ﬁl("o—,wl'*']l
Or
IIZI‘I(_R1+1:O-j(_();O—,-él(_On,H]a

{2) if j is the label of the stop instruction, then I, is empty,
(3) if j is the label of the open bracket and ; + k is the label of the corresponding
closed bracket. indexed by i, then

L=ifX =0then Q. ., « 0.1, 1+1:0,<0;
else O, <0, +1:0,<0;
L.,=0,,«0:0,«<0,+1:

Hierarchies of primitive recursive wordsequence functions 209

Theorem 5.4. The graph and the range intersection problems

undecidable for card(X)> 1.

Proof. In [2], Ausiello and Moscarini proved this claim for L,. But the programs
that they give are in M, , thus the claim holds.

Appendix A

In this appendix we give extended proofs of Theorems 3.5, 3.14, 3.25, 4.11 and
4.13 and Lemma 3.22. Below, some obvious abbreviations are used in the programs
and comments are inserted between quotes.

Proof of Theorem 3.5. Lct us prove the claim for L;}", as the proof is analogous
for the other classes. The result is szatec by induction on i and J.

Consider L;". The function S; = Ax.(a;x) iscomputed by P : IN X ; X « a. X ;out X
and Pe M- ; the function E =(e) is computed by P:in X ;X «e;ouT X and
P M} ; the function K = Ax, y.(x) is computed by P: IN X, Y ;ouT Y and Pe My,
Let f,, f:€ Lg,

P:inX,,....X,;I;;ourY,..., Y,
P,:iNZ,,....Z;;LourTy,..., T,

such that P, P,e M", they have disjoint sets of names for registers ard compute
fi. f> resp. Then the program

P:iNnX,... . X,;1,:Z,«e;,...;Z2,«e;Z,<Y,;.... 2, < Yl;
outrT,,..., T,

q

computes the function f=f,of,e Ly".

Vice versa, if Pe M", then one of the following cases holds:

Case 1. P: N X,,...,X,; ouT X,...,X, computes the function f=
Ui *--"U; where jef{l,....r}for 1<j<gq.

Case 2. P.INX,,.... X, Xj«e,our X,..., Xiq computes the function f=
CNEYe(U; - "Uy) if 1<j<r and the function f="Eo(U;'" - "UM")
otherwise.

Case 3. PrinX,,.... X,; X« Xi;ouT X,,..., X, computes the function f=
T« (Ui ™ --"Uj) where 1<h, k=<r.

Case 4. P: IN X,.....X,; X« aX,; our X,..., X, computes the function
f=<""8"°o(U; *--"U;) where 1<h<rand 1<i<n As U], Ths, E'e Li",
we have fe Lo".

CaseS. f P:INX,,.... X, 15 ;L ;ouTr X, ..., X, where I; is a clear, copy
or L-append instruction, consider the programs P;: in s;; [;;ouT L forI<is k, with
s;=sand s;=s, s\, for 1 <i<k where s/_, is the list of new registers introduced

210 E. Fachini, M. Napoli

by I,,...,I_, and t;=s;,, for 1<i<k and 4 =t As by induction hypothesis the
functions f; computed by the programs P; belong to Lg", we have that the function
f=fio- o f.. computed by P, belongs to Ly".

For the inductive step we prove the following two assertions.

(a) Let f=(gy,...,8:)";if g1,...,8& are computed by P,,..., P,e M;", then
a program P computing f belongs to M.

In fact, if P; is the program IN X, ... , X! :IL;outrY),..., Y. for l<i=<n,then
Pe M;} is obtained as follows:

lNX],...,Xs+|
Xice;r 3 X{ «e;
Loor” X,

1 . . 1 . . . 1, . | N

L X' e«Xor X e Xt I Xae Y 3 X e Y
. . . . n,
noXTeXys XM e X Ly Xoe Y5 X e YT,

our X,, ..., X4y

(b) If f=f,°f, and f, and f, are computed by P,e M;}* and P,e M;;" then a
program P computing f belongs to M }5,.
In fact if P, and P, are the programs

NX,,....X,;],;ourY,,..., Y,
and NwZ,,...,Z,;L;ouTrT,,..., T,

-

then the program Pe M is obtained as follows:

P:anX,,....X,;1,;Z,«<e;,...;Z,«e;Z,<Y,,...;

Zp<Y,; Lyour T,,. ., T.

Vice versa, consider the following two assertions.

(a’) Let P,aiN XY,..., X" ;L0uT YT, .., Y" be a program computing g, €
L;" for 1<h<n. Then the program P, obtained from P,,.... P, as in assertion
(a), computes a function fe L7 ".

In fact, P computes f=(g,...., g,)'" which belongs to L} by definition.

(b") Let

PooNnXy, ..., X.:l,;ourY,, ..., Y, and
P.oinZy..... 2, 1,;ourT,...., T,

be programs computing f, € L]} and f,e L;;; then the program P obtaincd from
P, and P; as in assertion (b) computes f € ijl;,,.
In fact, P computes f = f,°f, which belongs to L; %, by Lemma 2.3.

Proof of Theorem 3.14. Let us prove the thesis for L,-f,R. Consider a function h=f “g
with f:3* - 3* and g:3* - 3* belonging to L;®. By definition it holds that

Hierarchies of primitive recursive wordsequence functions 211

f=foofie: - of; and g=goog o+ - - og; with f5,goe L7® and fi,...,f,81,..., 8¢
F”(L7®). Then f, g can be computed by the follawing progranis Pand R respectively:

INX],...,X, INY],...,Y,.

Py; Ro;
Loor” X, LoorP” Y,
1. P} ; 1. R};

i‘vl . kl .
h r,,; h R, ;
END END
Loor” X; Loor” Y,
1. P}; 1. R} ;
n P ; n. Ri;
END END

out Xi,..., X} our Yy,..., Y,

where

Py, Loor”™ X, 1. Pi;...;n. PLEND,...,LooP” X; 1. P};...; n Pi;END,

Ry, Loor”™ Y, 1. Ry;...;n. R, END,...,Lo0P” Y; 1. R{;...; n. R}; END,

with a proper specification of input and output registers, compute fy, fi,..., f;
8o, 81> - - - » 8 respectively. Suppose that P and R use different names for registers.
Now consider the following program P:

INA,,..., A,

ﬁuQ

Py: Ry,

Al B}, Ci,...,A,,B,,Cl, «e;
Ci«Clay,...,Ch«Cha;;0<Cy;
Bl«Ci;...;B,«Cl;

W,« X,; T, <conc(X,, Y));

Loor” T,

1. S}

n S,

END;

D . . pl.
Pl,...,P,,,

W« X,; Ty« conc(X, Y));

212 . E. Fachini, M. Napoli

Loor” T;

1. §;

n S ;

END;
R A

ourXy,..., X, Yy,...,Y!
where S}, for I<sh<j, 1<i<n, is the following sequence of instructions:

St :Loop™ W,
l. Bl «<e;Al'«Q;

n. Bl «e;Al«Q;

END

Loor” B!

. PY;...;P,CILB,....,C" B"ce:

n XeX;

END

Loop” C!

1. R},...,R";

n XeX;

END

R!';P!; W, «pELL(W,):
Loor” W,

I. Al«e;Cl,....C" ce:

4
nAlece;Ct. ... C'ee:;
END
Loop” Al
nh . .ph.Bh. .Dh. h . . h .
I. P{;....P, R, iRy Cl ee; . i C) e

l; [l li
Bi,....By<e;AM<e;

n X« X:
END

where P, provides the assignment of the input data to the input registers of P
and R, R} and P! provide to the assignment of the content of the registers
occurring in the sequence of instructions R ' and P! resp. to new registers and R

Hierarchies of primitive recursive wordsequence functions 213

and P! provide to the restoration of the values stored in these new registers in
those occurring in R and P} resp. Moreover, T < conc(X, Y) is shorthand for a
list of instructions whose effect is to store the concatenatior: of the content of X
and Y, in the order, in T and W « DELL(W) is shorthand for the following list of
instructions, which has the effect of deleting the last symbol of the word contained
in the register W:

Wiee;

roopr” W

1. We W, WeWoa,,

n WeW ;WeWa,,
END

The proof for the -other hierarchies is obtained in a similar manner taking in
account that we might delete the first symbol instead of the last one because W, is
only a counter.

Proof of Lemma 3.22. If f: 3* > 3* € L{ ¥, then the computing time function ¢ €
LR, By Lemma 3.12 there exists a we X* such that, for every u=x,,... s X
[t;(u] < F}(w, x;) where |x,| = || u||. We can write a loop program P e M} comput-
ing a function g:3* - 3* such that

f(xl’ e ,xr)::g(ﬁ} (W$ p'(xla cery xr)))

where p’: 3* > Z*isafunction such that p"(xy,...,X,) =X, ... x. AsAx.F} (w, x) €
L,,and p"€L,, we have fe L7},.
Let the following program P’ compute f:

i) 0 1. .yl
INX],...,X,;I();I‘];...;qull,. .,"] ,()UTY],...,YS,
where

I, =Loor" T,

PR
L Ii,ka

: o
roop” U,

g2

l"I;:}(’.x'
END

END

for 1sks<j 1<ii <sn0<l<s,, where s, is the number of LOOP instructions

214 E. Fachini, M. Napoli
occurring in the ith branch of the instruction I.
0 _ «
» =LOOP” V),
i- I(ifh >
END
for Ish<g,1<isn, and I, I};, I}/, I}, are lists of clear, copy and R-append

instructions.
The program P computing g is the following:

inNT
Zee;Z<Zay;My«Z,Z,«Z;R,,...,Ry,j«e;
Loor” T
1. I,; *I, simulates the execution of i,"”
-(l) ;
“I' simulates the execution of I for I<h<gqg”

Iy
Ii;
- “I, simulates the execution of I} for 1<k=<;”
I;

2. XX

n XeX

END

where

I,=100P" M,
1. I;; M, «e;
2. X< X,

n X<X
END

IV =V,erast(V,); V, « DELL(V):Ri«Z,;
Loopr” V,
i. 1Y, :R,«e;
n Is iR <e;
END

Hierarchies of primitive recursive wordsequence functions 215

I} =Lo0P” R,_, 2<h<gq
. VeV, 2, 1«e:2,«Z,

n XeX;

END

VieLasT(V},); Vi, «DELL(V}); R, « Z);
Loor” V,;

1. I‘,’,,, iR, «e;

n. Inh ’Rh(—e;
END "

I, =LOOP™ R,y 1
1. Ci«T, ;Zq+k~1 “e;Zq+k «Z;

M
w-
M

n X<X;
END
Ay < LAST(Cy) ; G < DELL(Cy) iRk« Zq+k H

] ! s k .
GkaCLlan,ka-- Cnl:’ nl’B ...,B,,“e,
Loor” A,

k . 1 1, . s s .

1. Bl (-Z,N]_k eUl.k ”'"’-‘Nlikk(—Ul{i(k N

nB"<—Z Nic<«Uli:. . ;N eUn
END

nl’

“If A, contains a;, then the simulation of the ith branch is
prepared.”

Loop” B
1 . 1 1 . k . .
L Li;CieeNiw;Bi«e;Ruee;Z e, 2} «Z;G«2Z;
2. XX,
XeX;
END

Loopr” B¥

k . . 1 . 1 . .
1. !nk ,an(_Nnk ’Bn(—eaRq+k<—eszn,k(—e,ZrLk<_'Z5Gk(_Zv
2. Xe X

n XeX;
END

216 E. Fachini, M. Napoli

Loor” G,
1. D,«C,;Ciee;Gy<e;
2. XX,

n Xe<X;
END

Al <LAST(Cl); Cly « DELL(C ik); My < es My « Ziy
Loor” Alg

1. I:Zkll s

n I

END

Loor” C!,

1. Miy <e;R <€

n M. <e;Rs i <e;

END

Loor” M},

1. Civ« Nl Zivwe;Ziv<e; 2« Z;
2. X<« X,

n X< X;

END

‘If the first nested loop has been executed, the simulation of the
second one starts”

Alp < LasT(C)5 Ol « DELL(C) 5
M «e ;MM <« Z0
i YATTK Lk °
Loor™ Ak
1. ¥k -

ikl *

RSP
. Ii.k.ltl 4
END
- S'.‘\
Loor” C ¥

. M «e R, «e;

n Mi<e Ry «<e.
END
Mok

Loop” My
I. Cg“l)k ‘ Z:': «< e,

Hierarchies of primitive recursive wordsequence functions 217
2. XX,

n X<X;
END
“The content of the control register of the instruction I} is restored in C so that

a new \ymhnl can be scanned”

Proof of Theorem 3.25. By Proposition 3.16 we have only to prove that if ;¢ L, ,
then fe L;; Let us prove the claim for Li;*. Let f: 3% > 3* If t,: 3* > 3*¢ L:",“,
then there exists a we 3* such that, for every u=x,,...,x, belonging to 3*’,
|tf(u)!<F (w, x,) where |x.|= |ju|. We can give a program P computing g: 3* >
I* e L7} such that f(x,,...,x)=g(Fi(w,x,).

<R . . «R AR , . P
As A}.F,(w x)el;;” and i=2, we have fel;;". Let P'e M}, with h=i or

k=j be a program computing f. Suppose thai every clear, copy and R-append
instructions and every keywords LOOP. END of P’ are labelled and let /,,. .., I, be
the list of such labels.
The following program P has to simulate the execution of P'=INX,,
LXI;ourY,,..., Y.
We will use some obvious shert forms: we will write Z,,...,Z,< e for Z,«
Zpeesand Zy,...,Z,«Z,,...,Z, for Z,« Z;;...;Z,« Z]; for every
p=2. '
P=INT
B,,....B,,A,,..., A, <e;
B, < B, a;
Loopr” T;
1. A,...,A,«B,,....B,;I,;...;I,;
2. X« X;

n X<X;
END
ourY,...., Y,

The list of instructions Tq is defined as follows:
(1) If [, is a label of a clear, copy or R-append instruction I, then

I,=Lo0P" A,
l~ Aq(—e;Bqé'e;Bq+l<'Bq+lal;Iq;
2. X« X,;

n XeX,;

END
“If A, is not empty, I, is executed and B,., is set to a, to prepare the next step of
the simulation.”

218 E. Fachini, M. Napoli

(2) Let [, be the label of a word LoOP X, let Lpipvovp, + ..., L. ,,l; oyt
1 < 1< n, be the labels inside the branch corresponding to a, in the loop instruction,
et L4 p,+-.-+p, + 1 be the label of the word END. Let us write p; for p;+- - -+ p. Then

I,=roor” A,
1. Aq(-e;Bq(-e;Bqﬂ-p;,-«}-l(— q+p;,+lal;U‘-Xq;
2. X< X;

n X<X,;
END

“T, set By, .+, to a, to prepare the exit from the loop™
Ty.oos T Bpopise oo s Bpo

roor” T;
1. U« S;Bq+p', «ée,; :rt(_ e;Bq+p;,+l « Bq+p;,+]a1 5
2. X< X;

n XeX;
END “Isi<sn”

“If T, is not empty, then the simulation of the instructions of the ith branch has been

executed and the content of the control register X, is restored in U to test 2 new
symbol.” '

Ze1asT(U);
Uebpertfl/);
C,<U;
U<e;

Loor” Z

. Q .
L B«;+[;, ,11(’_841*[1, ,+lalsZ(_e Bq+p +1 e.squa

END

~If Z contains a,, 1 < i< n, the simulation of the ith branch starts”’
(3) If I, is a label of a keyword £ND, then

I, =Loor” A,
I. Ay«~e;B,«<e;B,,,«< B, a,;
XeX:

g%

n. :X4—X;

END

Hierarchies of primitive recursive wordsequence functions 219

Proof of Theorem 4.11. Let #< 3* be a deterministic context free language; let
oA ={Q. 2, I, §, qy, Zy, F} be the deterministic push-down automaton accepting &
with 2={a,,...,a,}, I'={Z,,...,Z,}, Q={qs,...,9,}, F={q,,...,q;} and
8:0x(Zu{e}) XI'>QXxTI™* be the function such thut 8(q;, a, Z;) = (g, Vi,,) with
O<sjssssjand 0<ik;<r=<r,.

We will suppose that & goes through the input word rightwards and the top of
the push-down stack be the leftmost symbol.

Let

h=max{|V, ||8(q; a, Z,)=(qs Vi) for some ae X u{e},

4> 9x, , € O, Zel}.

The maximum number of steps of the push-down automaton & on the input x
is (h+1)(2]|x]|+1) (see [8]). Let us prove the claim for Ly].

Let us consider the following program on £'* with 3" ={c,,...,Cp» Cpi1s. ..+
Cavse1}. Where ¢;=a; for 1<i<nand c,.,, =Z;for0sj=<s:

IN X ;
He<e;
Loor” X
1. HeaH:H<a,H;

it HeaHH<a H;
n+l. H«H,

n+s+i. He H;
END
H<a H;
Loor” H
l. HeaH....;H<a,H;

\—-—v——/
h

n HeaH....;H<aH,;

N | o’

h
n+l. H«H;

n+s+1. H(—-H, :

END
“H contains a!"*"HxT
LYW V.V, UX «<e;

Ol*"-!OnAlv--'QAn A;,--.,A:, B|,..-,B,(_€;

220 E. Fachini, M. Napoli

Q< a,Qp; We2Z,W;
Loor” H
1. YeFRRST(W);, WepELF(W); Vea, V;
Ly, .51, |
*“ W contains the word in the stack. I, will test whether Q; is nonempty (i.e., whether

g; is the current state or not) :if Q; # e, then the top symbol of the stack is put in the
register A;)”

Viea, Vi1, 5...514 ;
“I‘y, updates W and the suitable Q, in accordance to 8(g;, e, Z) for the current value
of Z”. If 6(q;, e, Z) is undefined for every i, then V'# e

Loop” V';
1. U« X;

n+s+1. X< X;
END;
X' «FRsT(U); U « pELF(U);

“The current input symbol is put in X' iff V'# e, that is if no e-move has been
executed.”

rLoor” V';
1. X«U;Ue«e;V'<«e;

n+s+1. X« X
END;
rLoopr” X'
1. Bl,....Bl«<A,,...,A A,A<e;

n BY,....Bl <A,A ;AA «e;

n+s+l..X<-~X;

END

“If the current symbol is a; and the current state is qi, then B!# e and I’ modifies
the suitable Q, and W in accordance to 6(q, a, 2)."

Loop” V;
I. Wee;0,,...,0,«e¢;

n+s+l. X« X;
EENDY S

Hierarchies of primitive recursive wordsequence functions
“If no move has been executed, then W and every Q; must be deleted.”
2. XeX;

nt+s+1.X<X;
END;
Loopr” Q;;

1. Tea T,

n+s+1l. XeX;
END
roor” Q, ;

1. T«a, T,

n+s+1. X« X;
END

“If a register among Q;,..., Q,, corresponding to the final states g ,. ..

nonempty, T is set to a;.”
where

I, =roor OQ;;
. A« Y;Qi«e;Yee;Vee,

n+s+1. X< X:
END; O=sisr
4, =LOOP™ A;;
1. XX,
n+m Qee;Wei, W;0

Lm

n+s+1. X< X;
END;
where

P —

m

221

’ qjl’ iS

«a,Qy, ;Vee A, .. Aee;

5(qe, Zn)=(qi,, 0n,) and We<Z ... ZW forZ,...Z ¢ r*

is used instead of WeZ, W, ... ;W< Z W

222 E. Fachini, M. Napoli

I' =1L0oP” B!
1. X«X,;

n+l. Vea,V;

I .
W;Ok "‘alok ;B],...,B"é-e,

.m .m im r

n+m+1. Q«e;Wei,

n+s+i. Vea,V;
END;

where 8(q,, a, Z,) isundefined and 6(q, a,, Z,,) =(qs,,, b,) forOsisrandl<j=<
niOsl#m<s.

As regards the strictness of the containment let us consider the function f: $* > 3*
such that f(x)=a, if x=ala3a5 and f(x)=e otherwise. The following program
computes f:

N X
AACX.\Y.Y.Y.Z2Z,,2,.Z,,T<e:
X eX;Ce X AcaA', Tea,T;A< A",
1oop” X

1. C«a,C,

n Ce<a,(;

END;

roop” C

L Y <«S(Y) M, Z<pur(2); Y, < el Y,); Zi« DELE(Z,)
" ZieDELF(Z3) ;A< A’

2. Y «SAY):M;Z,<pELE(Z)) ;A< A

Y eSAY)M Z «prLe(Z); Y« peLF(Y) A« A’

4. Tee:

n Tee:

END

“Where Y’ '« S,(Y’) is a shorthand for a list of instructions whose effect is to
concatenate a; on the right end of the word in Y'. The first loop instruction stores
in C" the concatenation of X with itself. In the second loop after the first | X| steps
of computation in Y is stored the reverse word of X. M is a list of instructions whose
ctlect is to copy the content of Y'in Z, Z,. Z, and Z and the content of X in Y and
Y\, but only at the (| X|+ 1)st step of computation.”

Hierarchies of primitive recursive wordsequence functions

Loor” Y
1. XeX;
2. XeX;
3. Tee;

n XeX;
END;
Loor” Z
1. T<«e;

n X<X;
END;

Loor” Y,
1. X<X;
2. XeX;
3. Tee;
4 XeX;
n Xe<X;
END;

Loor” Z,

1. T«e;
2. Xe X,

n XeX;
END;

LoOP” Z,
l. Tee;
2. X<« X,

n XeX;
END;

LOOP™ Z;
1. XX,
2. Tee;
3. XX,

n X<X;
END;
our T

223

224 E. Fachini, M. Napoli

where

M= X'«pELF(X');
Loor” X'
1. A<«e;

n A<e;

END;

Loor” A

1. Z X, Z,« X, 2, X;Z;<X;Y< Y Y« Y ;A «e;
X'« X;

n X<X;

END;

In order to convince ourself that P really computes f let us consider the situation
of the registers Y, Y,, Z, Z,, Z,, Z, after the execution of the loop instruction with
control register C. Let X # aYa’a? and let us denote the number of the occurrences
of a; in x by n. We have the following five cases:

(1) ny < n,, a, occurs in Z; or a, occurs in Z,

(2) n,<ny, a, occurs in Z, i X = ahatan
. A=Ay asx-asy’,

(3) ny>ny, Z, contains a,

(4) ny< ny, Y, contains a;

n

() n.=n.=n,, (a) x=wa,;ay or x=wa,a’ with m<n,,
Y contains a;,

m

(b) x=al'a,w or x=a{asw with m <n,,
1 2
Z contains 4a,.

In all these cases the program puts e in T. Moreover, if x contains an occurrence
of a, with j#1,2,3, then e is put in T as well. At the end T contains a, if and
only if x=d}a’a3 for n=0.

The proof for the class M} follows by the closure of the class of deterministic
context-free languages with respect to the reversal and by Lemma 2.5(4).

Proof of Theorem 4.13. The proof is analogous to that of Theorem 4.11, but we
suppose now that the top of the stack of the push-down transducer to be considered,
is the rightmost symbol. Let us consider the following progiam Pe M} on the
same alphabet as the program of Theorem 4.11:

IN X

Hee He X Bee Cee;

Hierarchies of primitive recursive wordsequence functions

Loor X
1. H(‘Han+] ;H("Han+l;

n. He Ha ‘He Ha

;e .
a2+l s s 22

n+1. B« Ba,;

n+is

n+s+1. B« Ba,;

END;
H<Hay.,;
Loor H
1. H«<Ha,,;...; H<Ha,,,;
N e ————
h

n. H<Ha,.;...;H< Ha,.,,
N —

h

n+l. X< X:

n+s+1. X< X;
END;
Loor” B
1. Hee;
2. X« X;

n+s+1. XX,
IND;

(h+1)(2x+1)

“*H contains xa, if xe{c,,...,c,} and e otherwise.”

Q. W,A'",R',S«e;Qu«<Qpa,; W« WZ,;
Loor” H
I. C«S,(C);

n CeS,(C);
n+1. I;
n+2. XX,

n+s+1. X< X;
END;
T «e;
L.oopr” Q;,
1. T'«T;

225

226 E. Fachini, M. Napoli
2. XeX;

nt+ts+1. XeX;

END;

Loor” Q;
1. T'«T;
2. X< X;

n+s+1. XeX;
END;
our T’

where [is a list of instructions similar to those of the first branch of the loop on
H in the program of Theorem 4.11, with these differences: C is used instead of X,
C and W are scanned leftward, using the LAST and DELL lists of instructions, suitable
outputs are writtenin T by 1%, and I} (0<i<s, 1 <j<n) and, obviously, R-append
and 2-iteration replace L-append and ¢ -iteration.

An cquivalent program Pe M7 can easily be written.

As regards the strictness of the containment note that the function f:3*-» 3*
such that f(x) = a"'a'Y'a'y belongs to L;® but it cannot be defined by any determinis-
tic push-down transducer.

Acknowledgment

The authors would like to thank Prof. A. Maggiolo-Schettini for his careful reading
of the manuscript and many interesting discussions.

References

{11 G. Asser, Rekursive wortfunktionen, Zeitschr.f.math. Logik und Grundl. d.Math. 6 (1960) 258-278.

{2} G. Ausiello and M. Moscarini, On the complexity of decision problems for classes of simple programs
on strings, GI-6 Jahiestagung, Informatik Fachberichte § (Springer, Berlin, 1976) pp. 148-163.

[3] M.P. Chytil and V. Jakl, Scrial composition of 2-way finite-state transducers and simple programs
on strings, Proc. ICALP Conf. in Turku, Lecture Notes in Comput, Sci. 52 (Springer, Berlin, 1977)
pp. 135-147.

{4] S. Eilenberg and C.C. Elgot, Recursiveness (Academic Press, New York, 1979).

{5] E. Fachini and A. Maggiolo-Schettini. A hierarchy of primitive recursive sequence functions,
RAIRO Inform.Théor. 13 (1979) 49-67.

{6] E. Fachini and A. Maggiolo-Schettini, Comparing hierarchies of primitive recursive sequence
functions. Zeitschr.f.math.Logik und Grundl.d. Math. 28 (5) (1982) 431-445.

[7] G. Germano and A. Maggiolo-Schettini, Quelques caractérisation des fonctions récursives partielles,
C.R. Acad.Sci. Paris 276 (1973) 1325-1327.

Hierarchies of primitive recursive wordsequence functions 227

[8] S. Ginsburg and S.A. Greibach, Deterministic context-free languages, Inform. Control 9 (1966)
620-648.

[9] B. Goetze and W. Nehrlich, The number of loops necessary and sufficient for computing simple
functions, Elektr. Inform. Kybernet., to appear.

[10] E.M.Gurari, The equivalence problem for deterministic two-way sequential transducers is decidable,
SIAM J. Comput. 11 (1982) 448-452.

[11] F.W. Von Henke, K. Indermark, G. Rose and K. Weihrauch, On primitive recursive wordfunctions,
Comput. 15 (1975) 217-234.

[12] F.W. v. Henke, K. Indermark and K. Weihrauch, Hierarchies of primitive recursive wordfunctions
and transductions defined by automata, in: M. Nivat, ed., Automata, Languages and Programming
(North-Holland, Amsterdam, 1972) pp. 549-562.

[13] H. Huwig and V. Claus, Das Aquivalenz problem fiir Spezielle Klassen von LOOP Programmen,
Theoret. Comput. Sci. 3rd GI Conf., Lecture Notes in Comput. Sci. 48 (Springer, Berlin, 1977) pp.
73-82.

[14] K. Indermark, Push-down transductions as primitive recursive wordfunctions, Proc. IRIA Sem..
1972.

[15] G. Rose and K. Weihrauch, Eine Charakterisierung der Klassen L, und R, primitive rekursiver
Wortfunktionen, GMD Bericht 63 (1973).

