RAMSEY'S THEOREM AND SELF-COMPLEMENTARY GRAPHS

V. CHVATAL

McGill University, Montreal, Canada

P. ERDÔS

Hungarian Academy of Science, Budapest, Hungary

Z. HEDRLIN

Charles University, Prague, Czechoslovakia

Received 4 November 1971

Abstract. It is proved that, given any positive integer k, there exists a self-complementary graph with more than $4 \cdot 2^{\frac{1}{4}k}$ vertices which contains no complete subgraph with k+1 vertices. An application of this result to coding theory is mentioned.

A graph will be called *s*-good if it contains neither a complete subgraph with more than *s* vertices nor an independent set of more than *s* vertices. A special case of the celebrated Ramsey's theorem [7] asserts that given any positive integer *s* there is an n = n(s) such that no graph with more than n(s) vertices is *s*-good. Apart from the trivial n(1) = 1, only two exact values of n(s) are known [4]; these are n(2) = 5 and n(3) = 17. Clearly, a graph *G* is *s*-good if and only if its complement \overline{G} is *s*-good. It does not seem unlikely that for any *s*, there is an *s*-good self-complementary graph with n(s) vertices. This is true at least for s = 2 and s = 3 (and in this case, the *s*-good graphs with n(s) vertices are unique [6]). However, it seems quite difficult to prove this conjecture for all *s*. We shall denote by $n^*(s)$ the greatest integer n^* such that there is a self-complementary *s*-good graph with n^* vertices, trivially, $n^*(s) \le n(s)$.

Theorem. $n^*(st) \ge (n^*(s) - 1)n(t)$.

Proof. Let $G_0 = (V_0, E_0)$ be an s-good self-complementary graph with

 $n^*(s)$ vertices, let $f_0: V_0 \to V_0$ be an isomorphism between G and \overline{G} . It is easy to see that the permutation f_0 has at most one fixed point and no odd cycles of length ≥ 3 . Therefore there is an s-good self-complementary graph $G_1 = (V_1, E_1)$ with $n^*(s)$ or $n^*(s) - 1$ vertices and a permutation $f: V_1 \to V_1$ soluting up an isomorphism between G_1 and \overline{G}_1 such that f has cycles of even length only (and no fixed points). Consequently, V_1 can be split into disjoint sets X and Y with f(X) = Y, f(Y) = X.

Let $G_2 = (V_2, E_2)$ be a t-good graph with n(t) vertices. We shall consider the graph $G = (V_1 \times V_2, E)$ where $\{(u, v), (w, z)\}$ belongs to E if and only if either $\{u, w\} \in E_1$ or $u = w \in X$, $\{v, z\} \in E_2$ or finally $u = w \in Y$, $\{v, z\} \notin E_2$. G is self-complementary; indeed, the mapping $F: V_1 \times V_2 \rightarrow V_1 \times V_2$ defined by F(u, v) = (f(u), v) is an isomorphism between G and G.

If $Z \,\subset \, V_1 \,\times \, V_2$ spans a complete subgraph in G then at most s vertices in Z have distinct first coordinates (otherwise G_1 would not be sgood) and at most t vertices in Z have the same first coordinate (otherwise G_2 would not be t-good). Therefore $|Z| \leq st$ and G, being self-complementary, is st-good. Hence $n^*(st) \geq |V_1 \times V_2| \geq (n^*(s)-1)n(t)$ and the proof is finished.

Corollary. $n^*(2t) \ge 4n(t)$.

Our original interest in this area was stimulated by the notion of the capacity of a graph as defined by Shannon [9]. One defines the product $G_1 \times G_2 \times ... \times G_k$ of graphs $G_i = (V_i, E_i), i = 1, 2, ..., k$, as the graph $G = (V_1 \times V_2 \times ... \times V_k, E)$ where two distinct vertices $(u_1, u_2, ..., u_k)$, $(v_1, v_2, ..., v_k)$ of G are adjacent if and only if, for each i = 1, 2, ..., k, either $\{u_i, v_i\} \in E_i$ or else $u_i = v_i$. We denote the largest cardinality of an independent set in G by $\mu(G)$; evidently,

(1)
$$\mu(G_1 \times G_2 \times ... \times G_k) \ge \mu(G_1) \mu(G_2) \dots \mu(G_k).$$

Considering noisy channels in information theory, Shannon [9] was led to the definition of the capacity $\theta(G)$ of a graph G,

$$\theta(G) = \sup_k \left(\mu(G^k)\right)^{1/k} .$$

Obviously, $\theta(G) \ge \mu(G)$. However, one can have $\theta(G) \ge \mu(G)$; for instance, if G is the pentagon then $\mu(G) = 2$, $\mu(G^2) = 5$.

It can be shown that $\mu(G_1) = \mu(G_2) = k$ implies $\mu(G_1 \times G_2) \le n(k)$ and this bound is best possible. Moreover, this inequality generalizes into the case of more graphs G_i with $\mu(G_i)$ not necessarily equal. Apparently Hedrlín [5] was the first to discover this relation between Ramsey numbers and the capacity problems. However, Hedrlín did not publish his result. Unaware of his contribution, Erdös, McEliece and Taylor [3] recently published an independent derivation of the equivalence.

If G = (V, E) is a self-complementary graph with *m* vertices then $\mu(G^2) \ge m$. Indeed, if *f* is an isomorphism between *G* and \overline{G} then the set $\{(u, f(u)) \mid u \in V\}$ is independent in $G^2 = G \times \overline{G}$. Hence $\mu(G^2) \ge m$. Consequently, one has

(2)
$$\theta(G) \ge m^{\frac{1}{2}}$$

for any self-complementary graph G with m vertices. Rosenfeld [8] proved that given any k there is a graph G_k with $\theta(G_k) > k \mu(G_k)$. This proof is based on the inequality

$$(3) \qquad n^*(k) > ck^{\alpha}$$

where $\alpha = \log 5/\log 2$ and c is an absolute positive constant. Rosenfeld's proof of (3) is constructive and has been discovered independently by Abbott [1]. Our Corollary together with the probabilistic lower bound [2]

(4)
$$n(k) > 2^{\frac{1}{2}(k+1)}, \quad k \ge 2$$

yields

$$n^*(k) > 4 \cdot 2^{\frac{1}{4}k}$$

which is better than (3). Rosenfeld's theorem also follows directly from (4) and [3, Theorem 3] which asserts the existence, for any k, of a graph G (with 2n(k) vertices) such that $\mu(G) = k$, $\mu(G^2) = n(k)$.

References

- [1] H.L. Abbott, A note on Ramsey numbers, Discrete Math., to appear.
- [2] P. Erdös, Some remarks on the theory of graphs, Bull. Amer. Math. Soc. 53 (1947) 292-294.
- [3] P. Erdös, R.J. McEliece and H. Taylor, Ramsey bounds for graph products, Pacific J. Math. 37 (1971) 45-46.
- [4] R.E. Greenwood and A.M. Gleason, Combinatorial relations and chromatic graphs, Canad. J. Math. 7 (1955) 1-7.
- [5] Z. Hedrlín, Ramsey's theorem and information theory, Charles University, Prague, 1964.
- [6] J.G. Kalt fleisch, A uniqueness theorem for edge-chromatic graphs, Pacific J. Math. 21 (1967) 57 3-509.
- [7] F.P. Ran sey, On a problem of formal logic, Proc. London Math. Soc. 30 (1930) 264-286.
- [8] M. Rosenfeld, Graphs with a large capacity, Proc. Amer. Math. Soc. 26 (1970) 57-59.
- [9] C.E. Shannon, The zero error capacity of a noisy channel, IRE Trans. Inform. Theory IT-2 (1956) 8-9.