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Abstract. It is proved that, given any positive integer k, there exists a self-complementary graph
with more than 4:27" vertices which contains no complete subgraph with k+1 vertices. An applica-
tion of this result to coding theory is mentioned.

A graph will be called sgocd if it contains neither a complete subgraph
with more than s vertices nor an independent set of more than s vertices.
A special case of the celebrated Ramsey’s theorein [7] asserts that given
any positive integer s there is an # = n(s) such that no graph with more
than n(s) vertices is s-good. Apart from the triviai n(1) = 1, only two
exact values of n(s) are known [4]; these are n(2) =5 and n(3) = 17.
Clearly, a graph G is s-good if and only if its complement G is s-good.

It does not seem unlikely that for any s, there is an s-good self-com-
plementary graph with n(s) vertices. This is true at least for s =2 and

s = 3 (and in this case, the s-grod graphs with n(s) vertices are unique
[6]1). However, it seems quite difficult to prove this conjecture for all
s. We shall denote by n*(s) the greatest integer n* such that there is a
self-complementary s-good grapn with n* vertices, trivially, n*{(s)<n(s).

Theorem. n*(st) = (n*(s)- )n(1).

Proof. Let Gy = (¥}, Ey) be ur s-good self-complementary graph with
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n*(s) vertices, let fy: Vg = ¥, be an isomorphism between G and G. it

is easy to see that the permutation f; has at most one fixed point and

no odd cycles of length > 3. Therefore there is an s-good self-comple-
mentary graph G; = (V., E; ) with n*(s) or n*(s)— 1 vertices and a per-
mutation f: V; - V| satting up an isomorphism between G, and G; such
that f has cycles of esven length only (and no fixed points). Consequently,
¥, can be split into disjoint sets X and Y with f(X) =Y, f(Y) =X

Let G, =(V.,, E,) b: a t-good graph with n(#) vertices. We shall con-
sider the grapk G = (V] X V,, E) where {(u, v), (w, z)} belongs to E
if and only if either {2, w} € E|, oru=wE€ X, {v,z} € E, or finally
u=weY, {vz} €¢E,. G isself-complementary; indeed, the mapping
F: VX V. >V, XV, detined by F(u, v) = (f(x), v) is an isomorphism
between G and .

If ZC V) X V, spanr a complete subgraph in G then at most s ver-
tices in £ have distinct first coordinates {otherwise G; would not be s-
good) ard at most f vertices in Z have tite same first coordinate (other-
wise (7, would not be ¢-gcod). Thereforz |1Z] < st and G, being self-com-
plementary, isst-good. Hence n*(st) = |V X V| = (n*(s)—1)n(¢) and
the proof is finished.

Corollary. n*(2t) = 4n(1).

Our original interest in this area was stimulated by the notion of the
capacity of a graph as lefined by Shannon [9]. One defines the product
Gy X Gy X ... X Gy of graphs G; = (V,, E), i = 1, 2, ..., k, as the graph
G=( X ¥, X ..X ¥V, E) where two distinct vertices (1, u,, .... 4 ),
(v;,v,,...,U;) of G are adjacent if and only if, foreachi= 1,2, ..., k,
either {1, v;} € E; or else u; = v;. We denote the largest cardinality of
an independent set in 7 by u(G); evidently,

(1) Gy X Gy X ... X Gy) = (G u(Gy) ... w(Gy) .

Considering noisy channels in information theory, Shannon [9] was
led to the definition of the capacity 8(G) of a graph G,
)
8(G) = sup (w(GENVE
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Obviously, 8(G) > u(G). However, one can have 6 (G)> u(G);
for instance, if G is the pentagon then u(G) =2, u(G2)=25.

It can be shown that u(G,) = u(G,) = k implies u(G; X G,)<n(k)
and this bound is best possible. Moreover, this inequality generalizes
into the case of more graphs G; with u(G;) not necessarily equal. Ap-
parently Hedrlin [ 5] was the first tc discover this relation between Ram-
sey numbers and the capacity problems. However, Hedrlin did not pub-
lish his result. Unaware of his contribution, Erdds, McEhece and Taylor
[3] recently published an independent derivation of the equivalence.

If G = (V, E) is a self-complementary graph with m vertices then
1(G2) > m. Indeed, if f is an isomorphism between G and G then the
set {(u, f(u)) | u € V} isindependent in G = GX G. Hence u(G2)>m.
Consequently, one has

(2) 8(G) > m?

for any self-complementary graph G with m vertices. Rosenfeld [8]
proved that given any k there is a graph G, with 6(Gy) > k u(Gy). This
proof is based on the inequality

3) n*(k) > ck«

where a = log §/log 2 and c is an absolute positive constant. Rosen-
feld’s proof of (3) is constructive and has been iiscovered independently
by Abbott [1]. Our Corollary together with the probabilistic lower
bound [2]

4 nik)> 2*D k>0
yields
n*k)> 4- 24k
which is be:ter than (3). Rosenfeld’s theorem also follows directly from

(4) and [3, Theorem 3] which asserts the existence, for any k, of a graph
G (with 2n(k) vertices) such that u(G) = k, u(G2) = n(k).
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