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Abstract

We investigate the possibility that the dimension 2 condensateA2
µ has a non zero non-perturbative value in Yang–Mills theory.

We introduce a multiplicatively renormalisable effective potential for this condensate and show through two loop calculations
that a non zero condensate is energetically favoured. 2001 Elsevier Science B.V.

Recently [1] a lot of interest has arisen concerning
the possibility of a condensate in Yang–Mills theory
of mass dimension 2. A candidate operator which im-
mediately comes to mind isA2

µ = AaµAaµ. This op-
erator though, seems not to be allowed since it is
gauge non-invariant and hence cannot play a meaning-
ful physical role. However consider the volume inte-
gral ofA2

µ. Since it is positive and is zero only for pure
vacuum configurations, its minimal value is gauge in-
variant and has some physical significance. In a gen-
eral gauge, this operator is highly non-local but be-
comes local in the Landau gauge since stationarity
with respect to infinitesimal gauge transformations en-
tails ∂µAµ = 0. We will therefore concentrate on the
gauge invariant dimension 2 operator∆ defined as

(1)∆= 1

2

〈min{U }
∫
d4x (AUµ )

2〉
V.T

= 1

2

〈
Ã2
µ

〉
,

whereÃµ =Aµ in the absolute Landau gauge [11]. In
a general gauge,̃Aµ can be expanded in a perturbative
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series as

Ãµ =
(
δµν − ∂µ∂ν✷

)

(2)

×
(
Aν + ig

[
1

✷∂.A,Aν
]

− ig

2

[
1

✷∂.A, ∂ν
1

✷∂.A
]

+ · · ·
)
.

The convergence of this series is related to the phe-
nomenon of Gribov copies. In this Letter, we will ne-
glect this problem and simply work in the perturbative
Landau gauge wherẽAµ =Aµ. There are several phe-
nomenological reasons [2] to believe that the ground-
state of QCD favours a non-perturbative value for∆
different from zero. Theoretically, it was shown in [1]
that monopole condensation in compact QED is re-
lated to a phase transition for this condensate. In this
Letter we would like to give further theoretical evi-
dence that the non-perturbative groundstate of QCD
favours energetically a non-zero value for this conden-
sate. For this, several problems have to be solved.

First of all, there is the question of what we mean
by the non-perturbative value of〈A2

µ〉. Perturbatively,
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this condensate is quadratically divergent and Borel-
non-summable because of the presence of ultravio-
let renormalons [3]. If by non-perturbative, we mean
that part of the condensate that is proportional to the
Λ2-parameter, this is ambiguous because it depends
on an arbitrary summation prescription for the pertur-
bative part [3,4]. A second problem is how to define
a renormalisable effective potential for the local com-
posite operatorA2

µ. Because the composite operator
is local, new divergences are introduced which neces-
sitate new counterterms that spoil an energy interpre-
tation [5]. In this Letter, we will show how a unique
non-perturbative value of the condensate〈A2

µ〉 can be
defined. For this condensate, we will construct a multi-
plicatively renormalisable effective potential which is
unique and whose absolute minimum gives the non-
perturbative groundstate. We will calculate this effec-
tive potential up to two loops and show that up to this
order, the groundstate favours a non zero value for
the non-perturbative condensate〈A2

µ〉. We conclude
with some numerical results for the gluon condensate
αs
π

〈F 2
µν 〉 and some comments.

To define the effective potential for the non-
perturbative condensate〈A2

µ〉 we introduce a massterm
1
2J (A

2
µ) in the SU(N ) Yang–Mills Lagrangian in the

Landau gauge. This term generates new divergences in
the generating functional for connected Greens func-
tionsW(J ). There is a quadratic divergence linear inJ
corresponding to the quadratic divergence of〈A2

µ〉. As
we will show, this divergence drops out of the effective
potential so we do not have to renormalise it. There
is a logarithmic divergence linear inJ corresponding
with multiplicative mass renormalization which can be
cancelled by a counterterm12δZ2JA

2
µ. Finally there

is a logarithmic divergence quadratic inJ which cor-
responds to a new divergence in the Greens function
〈A2
µ(x)A

2
µ(y)〉c whenx → y and which can be can-

celled by a countertermδζJ 2/2. These counterterms
are sufficient to ensure a finite renormalisedW(J ).
The reader might question this on the basis of the com-
mon wisdom that massive Yang–Mills theory is non-
renormalizable [6]. However, the mass term12JA

2
µ is

added to the Lagrangian after gauge fixing. There-
fore, our massive Lagrangian is not the one of mas-
sive Yang–Mills theory. In particular, the vanDam–
Veltman–Zakharov [7] discontinuity theorem is not
valid and we have a smoothJ → 0 limit. A simple

power counting argument can then be used to show
that our new counterterms renormalise the theory. We
will discuss the problem of unitarity at the end of this
Letter.

Let us now try to define a non-perturbative value
of 〈A2

µ〉. Therefore we consider the massive gluon

propagatorG(k2, J ) as a function ofJ . Suppose fur-
thermore thatG is a multivalued function ofJ . This
means that if one starts from the perturbative ground-
state atJ = 0 characterised by a certain value of〈A2

µ〉,
makes a contour in the complexJ -plane around one
or more singularities and then comes back toJ = 0 on
a different Riemann sheet, one can end up in a non-
perturbative groundstate characterised by a different
value of the condensate. This situation is analogous to
λφ4 theory with external field couplingJφ and nega-
tive mass term where〈φ〉(J ) is multivalued. The role
of the negative mass is played by the tachyon pole,
generated by infrared renormalons in theA2

µ channel.
What is different is that in our case, there is no spon-
taneous symmetry breaking and that the perturbation
series around the different vacua are identical. Then
how can we make a distinction between the perturba-
tive and a non-perturbative groundstate? For that, we
need a quantity which is zero to all orders in pertur-
bation theory. As a candidate, we can takeG−1(0,0)
which because of gauge invariance, is zero to all orders
in perturbation theory. Hence we can define the pertur-
bative gluon propagator as the propagator for which
limJ→0G

−1(0, J ) = 0. On the perturbative Riemann
sheet we haveG(k2, J ) = Gp(k2, J ) and the pertur-
bative condensate is then defined through:

1

2

〈
A2
µ

〉= 1

2

∫
d4k

(2π)4
Gp
(
k2,0

)

+ 1

2

∫
d4k

(2π)4
[
G
(
k2, J

)−Gp
(
k2,0

)]
(3)=∆p +∆np(J ).

The perturbative part of the condensate∆p as de-
fined is this way, is not the perturbative series for
1
2〈A2

µ〉 summed in some arbitrary way but the value

of 1
2〈A2

µ〉 for J = 0 on the perturbative sheet. This
perturbative value is well defined after regularization
and contains all the quadratic divergences. The non-
perturbative condensate is only logarithmically diver-
gent and vanishes withJ on the perturbative sheet.
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To construct an effective action for the non-
perturbative condensate∆np , we consider the gener-
ating functionalW(J ) and do a Legendre transform
with respect toJ . The only way thatW(J ) can im-
plicitly depend on∆p is through the linear term inJ
which contains the quadratic divergences. However, in
the Legendre transform the linear terms inJ cancel
so the Legendre transform ofW(J ) is implicitly only
a function of∆np . Gauge invariance plays a very im-
portant role in this. Indeed, because of gauge invari-
ance, quadratic divergences cancel in self-energy sub-
diagrams ofW(J ). So the only possible dependence
of W(J ) on ∆p is through the overall quadratic di-
vergence linear inJ . As a consequence we can for-
get about the perturbative condensate and use a gauge
invariant regularization such as dimensional regular-
ization where∆p is automatically zero. Introducing
counterterms12δZ2JA

2
µ andδζJ 2/2 for the logarith-

mic divergences linear (multiplicative mass renormal-
ization) and quadratic inJ (vacuum energy diver-
gences) we obtain a finite renormalised functional
W(J ) given by:

e−W(J ) =
∫

[dAµ]

(4)

× exp

{
−
∫
dDx

[
1

4
F 2
µν + 1

2
Z2JA

2
µ

− (ζ + δζ )J
2

2
+Lg.f +Lc.t

]}
.

To ensure a homogeneous renormalization group equa-
tion we had to introduce a new independent parame-
ter ζ(µ). Defining the bare quantities

A0
µ =Z1/2

3 Aµ,

J0 = Z2

Z3
J,

g2
0 = µε Zg

Z2
3

g2,

(5)ζ0J
2
0 = µ−ε(ζ + δζ )J 2,

the RGE forW(J ) becomes(
µ
∂

∂µ
+ β(g2) ∂

∂g2 − γ2
(
g2)∫ d4x J

δ

δJ

(6)+ η(g2, ζ
) ∂
∂ζ

)
W = 0,

where

β
(
g2)=µ ∂

∂µ
g2
∣∣∣∣
g0,ε

,

γ2
(
g2)=µ ∂

∂µ
ln
Z2

Z3

∣∣∣∣
g0,ε

,

(7)η
(
g2, ζ

)=µ ∂
∂µ
ζ

∣∣∣∣
g0,ε,ζ0,J0

.

Because of (5) and the single valued relation between
µ andg2(µ), we can considerζ as a function ofg2

and we have:

µ
∂

∂µ
ζ

∣∣∣∣
g0,ε,J0,ζ0

= η(g2, ζ
)

(8)= 2γ2
(
g2)ζ + δ(g2),

where

(9)δ
(
g2)=

(
ε + 2γ2

(
g2)− β(g2) ∂

∂g2

)
δζ

is a finite function ofg2.
In defining a finite value for the energy functional

W(J ) we have introduced two problems. First, since
we had to introduce a new parameterζ , there is a
problem of uniqueness. Secondly, for renormalisation
purposes, we had to introduce a quadratic term in
J in the Lagrangian. Naively, one expects that this
will ruin an energy interpretation for the effective
potential defined via the Legendre transform. In the
case of the Gross–Neveu model [8], both problems
were solved by one of us in [9]. Concerning the first
problem, it is possible to chooseζ to be a unique
meromorphic function ofg2 such that ifg2 runs, ζ
will run according to (8). Indeed, the general solution
of (8) reads

(10)ζ
(
g2)= ζp

(
g2)+ α exp

(
2

g2∫
1

γ2(z)

β(z)
dz

)
,

ζp(g
2) is the particular solution of

(11)β
(
g2) d
dg2 ζ

(
g2)= 2γ2

(
g2)+ δ(g2),

which has a Laurent expansion aroundg2 = 0:

(12)ζp
(
g2)= c−1

g2 + c0h̄+ c1h̄2g2 + · · · ,
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where we have temporarily reintroduced the depen-
dence on̄h. Note that then-loopζp will necessitate the
evaluation of the (n + 1)-loop renormalization group
coefficient functionsβ(g2), γ2(g

2) and δ(g2). If we
put α = 0, we not only eliminate an independent pa-
rameter but the vacuum energy divergences become
multiplicatively renormalizable:

(13)ζ
(
g2)+ δζ (g2, ε

)=Zζ
(
g2, ε

)
ζ
(
g2).

Sinceζ is now a unique function ofg2 which runs
according to the RGE, the energy functionalW(J )
obeys the homogeneous RGE:

(14)

(
µ
∂

∂µ
+ β(g2) ∂

∂g2 − γ2
(
g2)∫ d4x J

δ

δJ

)
W(J )= 0.

Therefore the composite operator

(15)
1

2
Z2A

2
µ −Zζ ζJ

has a finite and multiplicatively renormalizable ex-
pectation value∆R = δW/δJ and two-point function.
For J = 0, ∆R = 0 on the perturbative sheet while
∆R = Z2∆np on the non-perturbative sheet. The ef-
fective action for∆R is defined by

(16)Γ (∆R)=W(J )−
∫
d4x J∆R

and obeys the RGE(
µ
∂

∂µ
+ β(g2) ∂

∂g2
+ γ2

(
g2)∫ d4x ∆R

δ

δ∆R

)
(17)× Γ (∆R)= 0.

To calculateΓ (∆R) one can proceed in a straight-
forward way by calculatingW(J ) and doing the in-
version. This is rather cumbersome though, especially
for spacetime dependentJ . A much more efficient
method which displays explicitly the energy interpre-
tation ofΓ (∆R) uses a Hubbard–Stratonovich trans-
formation

1 =
∫

[dσ ]exp

{
− 1

2Zζ ζ

∫
dDx

[
σ

g
+ 1

2
µε/2Z2A

2
µ

(18)−µ−ε/2Zζ ζJ
]2}

to eliminate the1
2Z2JA

2
µ andZζ ζJ 2 terms from the

Lagrangian. Our energy functional can now be written

as a pathintegral overAµ andσ fields

e−W(J ) =
∫

[dAµ][dσ ]

(19)

× exp

{
−
∫ [

L(Aµ,σ )− σJ

g

]
dDx

}
,

where theσ -field Lagrangian is given by

L(σ,Aµ)= 1

4

(
Faµν

)2 +Lg.f +Lc.t

+ σ 2

2g2Zζ ζ
+ 1

2
µε/2

Z2

g2Zζ ζ
gσAaµA

a
µ

(20)+ 1

8
µε
Z2

2

Zζ ζ

(
AaµA

a
µ

)2
.

In our new expression forW(J ), J appears now as a
linear source term for theσ field so that〈σ 〉 = −g∆R .
The inversion and Legendre transform are therefore
unnecessary and we simply have

(21)Γ (∆R)= Γ1PI(σ = −g∆R),
which can be calculated in perturbation theory using
the background field formalism.

We have obtained a new multiplicatively renormal-
izable LagrangianL(σ,Aµ) which is to all orders in
perturbation theory equivalent to the original Yang–
Mills Lagrangian. If one perturbs aroundσ = 0, one
recovers the original perturbation series with is well-
known problems such a infrared renormalons. If one
expands aroundσ �= 0, one has an effective gluon
mass which incorporates non-perturbative effects sig-
nalled by the infrared renormalons.

To see whether the groundstate favoursσ �= 0, we
have calculated the effective potential forσ up to
two loops. To calculateζ(g2) up to two loops, we
had to calculate the RG functions up to three loops.
The calculations where done in the Landau gauge
in the MS scheme inD = 4 − ε using the tensor
correction method [10] which is a new method for
efficient calculation of multiloop Feynman diagrams.
We calculatedW(J ) up to three loops and found that it
could be renormalised with the counterterm−δζJ 2/2
where

δζ = (N2
c − 1)

16π2

[
−3

ε
+
(
g2Nc

16π2

)(
35

2

1

ε2
− 139

6

1

ε

)
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(22)

+
(
g2Nc

16π2

)2(
−665

6

1

ε3 + 6629

36

1

ε2

−
(

71551

432
+ 231

16
ζ(3)

)
1

ε

)]
.

For mass renormalisation, we found

Z2 = 1−
(
g2Nc

16π2

)
3

2ε
+
(
g2Nc

16π2

)2(53

8

1

ε2 − 95

48

1

ε

)

(23)

+
(
g2Nc

16π2

)3(
−5141

144

1

ε3 + 20717

864

1

ε2

−
(

11713

2592
+ 3ζ(3)

16

)
1

ε

)

and anomalous dimension:

γ2
(
g2)=

(
g2Nc

16π2

)
35

6
+
(
g2Nc

16π2

)2 449

24

(24)+
(
g2Nc

16π2

)3(94363

864
− 9

16
ζ(3)

)
.

For the renormalisation group function of the vacuum
energy, we obtained using (9), (22) and (24):

δ
(
g2)= (N2

c − 1)

16π2

×
[
−3−

(
g2Nc

16π2

)
139

3

(25)

−
(
g2Nc

16π2

)2(71551

144
+ 693

16
ζ(3)

)]
.

Finally we solved (11) with a Laurent expansion ing2

and found up to two loops:

ζ
(
g2)= (N2

c − 1)

16π2

×
[(

16π2

g2Nc

)
9

13
+ 161

52

(26)

+
(
g2Nc

16π2

)(
567343+ 82539ζ(3)

35568

)]
.

From (22) and (26) one can calculateZζ , so we now
have all ingredients to calculateL(σ,Aµ) to two loop
order.

We can read off the effective gluon mass in lowest
order from (20) and (26):

(27)m2
eff = gσ

13

9

Nc

N2
c − 1

.

We define

σ ′ = 13

9

Nc

N2
c − 1

σ

so that the background field method at one loop
gives free gluons propagating with an effective mass
m2

eff = gσ ′. Since at one loop,

Zζ = 1− 13

3

(
g2Nc

16π2

)
1

ε

and using the one loop value ofζ(g2), we have

V1(σ
′)= 9

13

(N2
c − 1)

Nc

σ ′2

2

×
[
1+ 13

3

(
g2Nc

16π2

)
1

ε
− 13

9

161

52

(
g2Nc

16π2

)]

(28)+ 1

2
Tr ln(−✷ + gσ ′),

where the trace goes over color and Lorentz indices.
Because there areN2

c − 1 gluons with 3 massive
polarizations in the Landau gauge, we find in theMS
scheme:

1

2
Tr ln(−✷ + gσ ′)

(29)= 3(N2
c − 1)

64π2
g2σ ′2

[
−2

ε
− 5

6
+ ln

gσ ′

µ̄2

]
.

The divergences cancel and we obtain a finite one loop
effective potential:

V1(σ
′)= 9

13

(N2
c − 1)

Nc

σ ′2

2

+ 3

4

(
N2
c − 1

) (gσ ′)2

16π2

(30)×
[
−5

6
− 161

78
+ ln

gσ ′

µ̄2

]
.

The two loop correction has been calculated in [10]
and reads:

∆V2(σ
′)= (

N2
c − 1

) (gσ ′)2

16π2

(
g2Nc

16π2

)



312 H. Verschelde et al. / Physics Letters B 516 (2001) 307–313

×
[

21

4
ln
gσ ′

µ̄2 − 9

16

(
ln
gσ ′

µ̄2

)2

− 49359

3952

(31)+ 891

32
s2 − ζ(2)

16
− 9171

7904
ζ(3)

]
,

wheres2 = 4
9
√

3
C52(π/3)� 0.2604341. . . .

At one loop as well as at two loops, the perturbative
vacuum σ ′ = 0 is a local maximum and a lower
minimum is obtained forσ ′ �= 0. We can use the
RGE to sum leading logarithms and putµ̄2 = gσ ′.
Introducing the expansion parameter

y = g2Nc

16π2

we find a global minimum forV (σ ′) at one loop for
y1 = 0.19251 and at two loops fory2 = 0.14466, inde-
pendent ofNc . The corresponding coupling constants
are reasonably small: forNc = 3, α ∼ 0.8 (1 loop) or
α ∼ 0.6 (2 loops). Through dimensional transmutation
we obtain non-vanishing effective gluon masses. At
one loop we findm1 = (gσ)1 ≈ 2.05ΛMS ∼ 485 MeV
for Λ̄MS = 237 MeV. At two loops, we find using
the one loopβ-functionm21 ≈ 2.59ΛMS ∼ 614 MeV
and using the two loopβ-function,m22 ≈ 1.96ΛMS ∼
464 MeV. For the non-perturbative vacuum energy
density and forNc = 3 we findε1

vac ≈ −0.335Λ4
MS

at

one loop while at two loops we find,ε21
vac ≈ −1.7Λ4

MS
andε22

vac ≈ −0.567Λ4
MS

. Finally we can calculate the

gluon condensate〈αs
π
F 2〉 by making use of the trace

anomaly:

(32)Θµµ = β(g)

2g

(
Faλσ

)2
.

From the anomaly we deduce forNc = 3 that the gluon
condensate is related to the vacuum energy density as:

(33)

〈
α

π
F 2
〉
= −32

11
εvac.

Using our numerical results forεvac, in one and two
loops (with one and two loopβ-functions) we find for
the gluon condensate:〈
α

π
F 2
〉

1
= 0.0031 GeV4,〈

α

π
F 2
〉

21
= 0.0156 GeV4,

(34)

〈
α

π
F 2
〉

22
= 0.0052 GeV4.

Since εvac in (33) is really the energy difference
between the non-perturbative and the perturbative
groundstate, our definition of the gluon condensate
is in fact 〈 α

π
F 2〉 = 〈 α

π
F 2〉np − 〈 α

π
F 2〉p where the

sufficesp andnp means taking theJ = 0 limit on the
perturbative and non-perturbative sheet, respectively.

In this Letter we have introduced a consistent de-
finition for the non-perturbative value of the local
composite operatorA2

µ and given evidence through
two loop calculations of a multiplicatively renor-
malisable effective potential that the non-perturbative
vacuum favours a non-zero value for this conden-
sate. Our calculations can only be seen as qualita-
tive indications that non-perturbative values forA2

µ

can lower the energy. Our expansion parameter is
y = g2(gσ ′)Nc/16π2 where σ ′ is proportional to
〈A2
µ〉np−〈A2

µ〉p . The reliability of our results depends
on the smallness of this parameter which is determined
selfconsistently. The fact that our two loop calcula-
tions confirm the one loop result, leads us to believe
that it is genuine. Other important non-perturbative ef-
fects such as instantons have been left out in the cal-
culation of the effective potential. What do our re-
sults imply for the OPE of gauge invariant objects?
The minimal value ofA2

µ is a gauge invariant but non-
local operator. Therefore it will not appear explicitly
in the OPE. In the standard view of the OPE, the non-
perturbative effects coming from low momentum inte-
grations go into the matrix elements of local gauge in-
variant operators, while the perturbative contributions
from the high momentum region go into the coeffi-
cient functions. It has been argued [2] thatA2

µ has
a low momentum component which drops out of the
OPE and a high momentum component which encodes
short distance non-perturbative effects and goes be-
yond the OPE. We speculate that these high momen-
tum effects can be absorbed into the coefficient func-
tions of the OPE. In fact, if one calculates the OPE for
gauge invariant objects using theσ -field Lagrangian
(20), one finds that the local operators that appear are
the same as in the usual derivation but the coefficient
functions becomeσ dependent. It remains to be de-
termined what this will imply for the QCD sum rules.
We would like to stress that our calculations do not im-
ply that gauge invariance is spontaneously broken. The
minimalA2

µ is gauge invariant and its non-perturbative
value does not break gauge invariance. Finally there is
the problem of unitarity. A non-zero value for〈A2

µ〉min
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and henceσ �= 0 appears to break perturbative unitar-
ity in the gluon sector. It is known [12], that gauge in-
variance and perturbative unitarity should not always
go together. However, confinement could solve this
and secure non-perturbative unitarity in the zero color
sector.
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