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High frequency brain oscillations are associatedwith numerous cognitive and behavioral processes. Non-invasive
measurements using electro-/magnetoencephalography (EEG/MEG) have revealed that high frequency neural
signals are heritable andmanifest changeswith age aswell as in neuropsychiatric illnesses. Despite the extensive
use of EEG/MEG-measured neural oscillations in basic and clinical research, studies demonstrating test–retest re-
liability of power and frequencymeasures of neural signals remain scarce. Here, we evaluated the test–retest re-
liability of visually induced gamma (30–100 Hz) oscillations derived from sensor and source signals acquired
over twoMEG sessions. The study required participants (N= 13) to detect the randomly occurring stimulus ac-
celeration while viewing amoving concentric grating. Sensor and source MEGmeasures of gamma-band activity
yielded comparably strong reliability (average intraclass correlation, ICC = 0.861). Peak stimulus-induced
gamma frequency (53–72 Hz) yielded the highest measures of stability (ICCSENSOR = 0.940; ICCSOURCE = 0.966)
followed by spectral signal change (ICCSENSOR = 0.890; ICCSOURCE = 0.893) and peak frequency bandwidth
(ICCSENSOR = 0.856; ICCSOURCE = 0.622). Furthermore, source-reconstruction significantly improved signal-to-
noise for spectral amplitude of gamma activity compared to sensor estimates. Our assessments highlight that
both sensor and source derived estimates of visually induced gamma-band oscillations from MEG signals are
characterized byhigh test–retest reliability, with source derived oscillatorymeasures conferring an improvement
in the stability of peak-frequency estimates. Importantly, our finding of high test–retest reliability supports the
feasibility of pharma-MEG studies and longitudinal aging or clinical studies.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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Introduction

Rhythmic activity is ubiquitous in the cortical brain and manifests a
range of frequencies (Buzsaki, 2006; Buzsáki andDraguhn, 2004). These
oscillations are remarkably well preserved across species and different
frequencies have been associated with distinct cognitive-behavioral
states (Buzsáki and Watson, 2012; Buzsáki et al., 2013). In particular,
gamma (30–100 Hz) oscillations are thought to play an important role
in local and large-scale cortical processing (Bastos et al., 2014; Bosman
et al., 2012; Fries, 2009; Roberts et al., 2013), as supported by a range
of studies showing a modulation of gamma-band oscillations with cog-
nitive processes such as perception (e.g. Beauchamp et al., 2012; Gross
et al., 2007; Wyart and Tallon-Baudry, 2008), attention (e.g. Fries
et al., 2001; Ray et al., 2013; Womelsdorf et al., 2006) and memory
(e.g. Carr et al., 2012; Colgin et al., 2009; Sederberg et al., 2007).

Given its potential role in routing informationwithin brain networks
(Fries, 2015) rhythmic activity at gamma frequencies in response to
ngrumay@gmail.com
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visual stimuli has received considerable interest in both invasive and
non-invasive electrophysiology. Specifically, visually induced brain re-
sponses at gamma frequencies have been shown to vary with stimulus
properties (Jia et al., 2013; Perry et al., 2013; see also Box 1 in Tan
et al., 2013) such as contrast (Ray and Maunsell, 2010), stimulus type
(Hermes et al., 2014; Hermes et al., 2015), stimulus velocity (e.g.
Friedman-Hill et al., 2000; Gray et al., 1990; Lima et al., 2011;
Muthukumaraswamy, 2013), and the temporal expectation of reward
(Lima et al., 2011). Moreover, the peak frequency of visually induced
gamma brain oscillations shows high heritability in monozygotic
twins (van Pelt et al., 2012), with concordances comparatively lower
for heterozygotic twins and lowest between non-related individuals.

In addition to their role during normal brain functioning, visually-
induced oscillations have been investigated in several neuropsychiatric
disorders, such as schizophrenia and autism spectrum disorders, as a
means of deriving insights into the underlying circuit dysfunctions
(e.g. Sun et al., 2013; Tan et al., 2013). Collective experimental and the-
oretical studies provide evidence that cortical gamma-band activity is
predominantly generated through rhythmic synaptic inhibition, which
temporally coordinates windows of excitability in principal cells
(Bartos et al., 2007; Buzsáki and Wang, 2012; Wang, 2010;
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Whittington et al., 2000). These recurring frames of excitability provide
an efficient and elegant means of organizing and coordinating func-
tional cell ensembles for neural communication (Akam and Kullmann,
2014; Buzsáki and Watson, 2012; Buzsáki, 2010). Along with mutually
connected (GABA-mediated) inhibitory neurons (Traub et al., 1996;
Wang and Buzsáki, 1996), networks of recurrent (AMPA-mediated)
excitatory-inhibitory neurons also contribute to the genesis of gamma
oscillations (Brunel and Wang, 2003; Tiesinga and Sejnowski, 2009;
Wang, 2010). Importantly, changes in cellular parameters have been
found to affect the coordination of excitatory and inhibitory processes
(Bernard et al., 2000; Hashimoto et al., 2008; Lewis et al., 2005) and
may lead to impairments in generating high-frequency oscillations
(Ben-Ari et al., 2004; Ben-Ari et al., 2012; Gonzalez-Burgos and Lewis,
2008; Schnitzler and Gross, 2005; Uhlhaas and Singer, 2012).

Despite prevalent use of visually-induced gamma-band responses
during normal brain functioning and in neuropsychiatric populations,
evidence for the reliability of EEG/MEG-derived oscillatorymeasures re-
mains scarce. However, for measures of high-frequency neural activity
to be useful neurophysiological “spectral fingerprints” (Siegel et al.,
2012) andpotentially serve as biomarkers or endophenotypes in clinical
research, it is essential that these parameters are highly reliable and ro-
bust. To the best of our knowledge, there are only two studies that sys-
tematically assessed the test–retest reliability of visually induced neural
oscillations from EEG/MEG signals. The study by Muthukumaraswamy
et al. (2010) revealed high intraclass correlation (ICC) values (0.8–
0.98) for spectral measures of visually elicited gamma (40–60 Hz)
band responses to static visual gratings across multiple assessments
for source-derivedMEG-signals. Specifically, they found highest repeat-
ability for peak frequency, followed by its corresponding spectral signal
change and bandwidth. In addition, Fründ et al. (2007) observed that
the magnitude and frequency of participants' EEG responses to large
(vs. small) foveally presented static visual gratings were strongly
(Pearson's) correlated between sessions, highlighting the dependency
of visually induced gamma activity on stimulus properties.

To further examine the test–retest reliability of visually-induced re-
sponses in neuromagnetic data, we employed amodifiedmoving visual
stimulus protocol (van Pelt et al., 2012) developed by Hoogenboom
et al. (2006) that has been shown to yield gamma-band responses
with robust signal-to-noise-ratio (SNR). Specifically, the current study
assessed estimates of peak frequency, spectral modulation and spectral
bandwidth across measurements to comprehensively assess the reli-
ability of visually-induced responses from both sensor and source de-
rived MEG signals. Additionally, we evaluated the SNR for sensor vs.
source estimates of visually-induced high-frequency activity, which is
a question relevant to both basic and applied MEG research.

Methods

The University of Glasgow College of Science and Engineering Ethics
Committee approved the experimental protocol, in which the present
experimentwas part of a battery of sensory processing tasks performed
during each MEG session.

Participants

Fourteen healthy participants (4 Females; mean age (±SD) = 25
(±4) years) took part in our study to assess the test–retest reliability
of visually induced high frequency neural oscillations over two MEG
sessions (range 1–11 days; mean (±SD) = 4 (±3) days apart). Partic-
ipants were recruited from the University of Glasgow School of Psychol-
ogy participant pool, provided informed consent prior to the
experiment and were compensated (at the standard rate of £6/h) for
their time. All participants were right handed (Edinburgh Handedness
Test; Oldfield, 1971), characterized by normal or corrected vision and
had no known neurological disorders.
Prior to each MEG session, scheduled at the same time of the day,
each participant filled in a brief questionnaire which assessed differ-
ences in caffeine intake, smoking habits, alcohol consumption, and
hours of sleep aswell as general well-being prior to eachmeasurement.
As previously reported (Tan et al., 2015) participants' responses did not
differ across sessions. Additionally, female participants took part in the
studywithin thefirst 5–10days during the follicular phase of theirmen-
strual cycle in both MEG sessions to control for potential influence of
hormonal fluctuations (Epperson et al., 2002).

Stimuli and task

We employed a foveally presented moving visual grating stimulus
(Supplementary SFig. 1) that has been observed to induce robust MEG
gamma band response in the human visual cortex (Hoogenboom
et al., 2006). The visual grating was presented at a viewing distance of
186 cm in front of the seated participants. Each trial beganwith the pre-
sentation of a centralfixation spot (Gaussian diameter: 0.5°) for 500ms.
The contrast of the fixation spot is subsequently reduced by 40% for
1500 ms, indicating the upcoming presentation of the moving circular
sinewave gratings. The ensuing concentricmoving grating (2.7 cycles/°;
contrast: 100%; 5° visual angle; velocity: 0.75°/s) contracted towards
the fixation spot and accelerated (velocity: 1.2°/s) randomly between
750–3000ms post grating presentation onset. Participants were tasked
to indicate the detection of this acceleration with a button press within
700ms of its occurrence. Each trial lasted for ~4–6 s long and during the
inter-trial interval (1000ms) participants were providedwith feedback
as to whether the speed of their response was adequate, too fast or too
slow. Rare incidences (10%) in which no acceleration occurred were in-
terspersed within a sequence of 80 trials that made up a block of the vi-
sual task.We provided performance accuracy feedback during the short
break after each of the 3 task blocks.

Neuroimaging acquisition

MEGdatawere acquired using a 248-channelmagnetometer system
(MAGNES® 3600WH, 4D-Neuroimaging, San Diego) while participants
engaged in the task, sitting upright within an electromagnetically
shielded room. For each participant, a suitable MEG seat position was
determined and marked during the first session. Every attempt was
taken to keep this seat position and the MEG system's helmet (housing
the SQUID sensors) in the same configuration prior to each acquisition
so as to minimize the variance of participants' head and sensors' posi-
tioning across runs and sessions. Head position stability was assessed
before and after each acquisition run via five indicator coils attached rel-
ative to the (left, right preauricular and nasion) fiducials, and were co-
digitized with participants' head-shape (FASTRAK®, Polhemus Inc., VT,
USA) for subsequent co-registration with individual MRI (1 mm3 T1-
weighted; 3D MPRAGE). The MEG, touch-pad response (LUMItouch™,
Photon Control Inc., BC, Canada) and eye-tracker (EyeLink 1000; SR Re-
search Ltd., Ontario, Canada) signals were sampled synchronously at
1017.25 Hz, with online 0.1 Hz high-pass filtering.

MEG data processing

All data processing and analyses were performed using Fieldtrip
Toolbox functions (http://fieldtrip.fcdonders.nl; Oostenveld et al.,
2011) and additional scripts developed within MATLAB® (The
MathWorks, Natick, MA). Faulty sensors (mean (±SEM) = 10 ± 2
per session, visually identified) with large signal variance or whose sig-
nals were flat were removed and interpolated using nearest-neighbor
averaging procedure. One MEG-measurement was corrupted by global
noise and technical issues during one of the two acquisition sessions.
Accordingly, this participant was excluded from the analyses reported
here (i.e. N = 13).

http://fieldtrip.fcdonders.nl


Fig. 1. Description of sensor and source space from which neuromagnetic signals were derived. (i) Two-dimensional sensor array layout of the 4D Neuroimaging (San Diego, USA) MEG
system, with visual sensors highlighted in red. (ii) Sources delineated within primary visual brain regions of interest shown in axial, coronal and sagittal views. (iii) Stimulus vs. baseline
source statistics of one participant (S09, session 2) interpolated over participant's MNI-normalized brain shown in axial, coronal and sagittal views. The white cross-marks highlight the
maximally activated voxel (based on FDR-corrected non-parametric T-stats value; p b 0.05). Refer to Methods, Results, and Table 3 for further details.
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RawMEG signals from correctly responded trialswere epoched from
−1500 to+2000ms relative to grating stimulus onset (0ms), with lin-
ear trends removed, power-line (50 Hz) notch-filtered, and ‘de-noised’
relative to reference MEG channel signals. Raw trials were visually
inspected and trials with obvious artifacts (muscle, squid jumps etc.)
were excluded. Subsequently, Independent Component Analysis was
used to isolate and to reject ocular-movement and cardiac components
from the MEG signals, yielding on average (±SEM) 180 (±7) artifact-
free trials for each participant and session.

Time-frequency analysis on sensor and source signals

For sensor level analysis, artifact-free neuromagnetic time series
were transformed to planar gradient signals (Bastiaansen and
Knosche, 2000) prior to time-frequency analyses and subsequently
Fig. 2. Summary of all participants' maximally modulated voxels in response to moving visua
coronal and (iii) sagittal views within ‘glass’ brain volume. Each participant's maximally mo
non-parametric T-stats derived maximum in sessions 1 and 2, respectively. (iv) 3-D brain v
whose signals were incorporated in the time-frequency analyses. Refer to Methods for further
recombined. Similar to previous work (e.g. Hoogenboom et al., 2006;
van Pelt et al., 2012) we focused our sensor-level analysis on the spec-
tral power time-series derived from the 23 parieto-occipital sensors
(‘A135’, ‘A136’, ‘A137’, ‘A138’, ‘A139’, ‘A162’, ‘A163’, ‘A164’, ‘A165’,
‘A166’, ‘A167’, ‘A184’, ‘A185’, ‘A186’, ‘A187’, ‘A188’, ‘A202’, ‘A203’,
‘A204’, ‘A205’, ‘A219’, ‘A220’, ‘A221’) over visual cortex (Fig. 1(i); Supple-
mentary SFig. 3).

At the source level, prior work (Hoogenboom et al., 2006;
Muthukumaraswamy et al., 2010) and preliminary assessment of
source-level data indicated that strongest signals were generated
within the calcarine, visual lingual, and occipital areas. Given that
prior findings have consistently reported visually-induced cortical
sources significantly associatedwith the high frequency oscillations, av-
erage signals from visual cortical regions (bilateral calcarine, cuneus,
lingual, superior, mid and inferior occipital cortical areas) were initially
l grating stimulus for both sessions. Maximally modulated voxels shown in (i) axial, (ii)
dulated voxel is color-coded as in Figs. 4–6 with square and diamond markers denoting
olume view of maximally modulated voxels surrounded by their neighboring 26 voxels
details.
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Table 1
Location, anatomical label(s) and corresponding T-statistics of participants' maximallymodulated visual voxels, determined by non-parametric source-statistics in each MEG session. See
Methods and Results for further details.

Session 1
Euclidean
dist.
(mm)

Session 2

Anatomical label (AAL) SPM coordinates
(mm)

T-stats T-stats SPM coordinates
(mm)

Anatomical label (AAL)

x y z x y z

S1 Right lingual gyrus | right inferior occipital lobule 24 −90 −14 4.953 54 5.090 −30 −90 −8 Left inferior occipital lobule | left middle
occipital lobule

S2 Right calcarine | right lingual gyrus 12 −102 −8 7.258 15 8.578 18 −90 −14 Right lingual gyrus
S4 Right lingual | right cerebellum crus1 18 −96 −26 5.099 6 5.654 18 −96 −20 Right lingual gyrus
S5 Right cuneus | right superior occipital lobule | right

superior parietal lobule
24 −84 46 3.330 12 5.166 12 −84 46 Right cuneus | right superior parietal

lobule | right precuneus
S6 Left lingual gyrus | left inferior occipital lobule −18 −96 −14 6.647 15 7.742 −12 −102 −2 Left calcarine | left middle occipital lobule
S7 Right calcarine | right cuneus 12 −96 4 5.659 27 6.326 −12 −108 4 Left middle occipital lobule
S8 Left calcarine | left middle occipital lobule −6 −108 −2 7.959 6 9.134 −6 −108 4 Left middle occipital lobule
S9 (Right) calcarine 6 −102 −2 6.257 6 6.885 6 −102 −8 Left calcarine
S10 Left middle occipital lobule −18 −96 4 4.882 25 6.275 6 −90 4 (Right) calcarine
S11 Left|right calcarine 0 −102 −2 6.993 12 6.282 12 −102 −2 Right calcarine
S12 Left lingual gyrus −12 −90 −14 5.900 48 5.626 24 −102 16 Right superior occipital lobule
S13 Left calcarine | left cuneus −6 −84 16 8.095 21 8.910 −18 −96 28 Left superior occipital lobule
S14 Left calcarine | left cuneus | left middle occipital

lobule
−6 −102 4 7.006 26 8.930 18 −96 −2 Right calcarine

38 H.-R.M. Tan et al. / NeuroImage 137 (2016) 34–44
derived employing the Anatomical Automatic Labeling atlas
(ROI_MNI_V4.nii; Tzourio-Mazoyer et al., 2002) implemented within
SPM/fieldtrip (see Fig. 1(ii)). However, this led to a loss of signal
power, which suggested source-specificity in the stimulus-induced
modulation (Supplementary SFig. 3(iii), see also SFigs. 5–7). We there-
fore determined the maximally induced voxel for each individual for
each MEG session.

To this end, a 30–100 Hz broadband time-frequency decomposition
(frequency centered at 65 Hz; ±35 Hz taper smoothing; 10 ms tempo-
ral resolution; 50% overlapping with 500 ms time window) was per-
formed on the artifact-free epochs prior to the derivation of common
source spatial filters using the DICS inverse-solution algorithm (Gross
et al., 2001). Subsequently, bootstrap resampling source statistics was
performed (with 1000 Monte Carlo repetitions) between stimulus du-
ration of interest (StimDur) and baseline (500–2000 ms and −1500–
0 ms relative to moving grating onset, respectively) to determine indi-
vidual participants' maximal source statistic (see Fig. 1(iii); Supplemen-
tary SFig. 2). For each participant and session, virtual sensors' signals
were extracted from the maximally modulated source (FDR-corrected,
alpha = 0.05) as well as its corresponding 26 surrounding voxels
using individual MNI-normalized sourcemodel grid (6mm resolution).
Fig. 2 (and Supplementary SFig. 2) provides a summary of all partici-
pants' maximally modulated source location for both sessions.

Derivation of oscillatory parameters and reliability analysis

For both sensor and source derived signals multi-taper fast-fourier
time-frequency decomposition (±2 Hz taper smoothing and 10 ms
temporal resolution; 2 Hz resolution from 30 Hz to 100 Hz) was per-
formed with 50% overlapping 500 ms time window on the artifact-
free epochs. All spectral power time-series were expressed as relative
change to baseline (from−1500ms to 0msprior to visual grating stim-
ulus onset; Supplementary SFig. 4; Fig. 3). Induced sustained spectral
modulations were averaged over the period of 500 ms–2000 ms post
grating stimulus onset (see Supplementary SFig. 4; SFig. 3) for each fre-
quency interval within the 30–100 Hz range; avoiding transient visual
response onset and any preparatory behavioral responses.

A 1st order Gaussian fit was performed on these time-averaged spec-
tral time-series (Campbell et al., 2014;Haegens et al., 2014) to determine
(a) peak response frequency, and the corresponding (b) signal change
Fig. 3. Individual time-frequency plots. Time-frequency plots for signal change for sensor (A)
sessions. Horizontal white lines denote peak frequency derived from Gaussian fits (see Supple
modulation and (c) bandwidth (i.e. by deriving the full-width-at-half-
maximum; FWHM) at this peak frequency (Supplementary SFig. 4). As
in previous research (e.g. Hoogenboom et al., 2006), in cases where a
participant manifested double gamma-band peaks (e.g. S02), the higher
gamma-band peak was selected for subsequent analysis.

Adopting a similar approach to previous reliability assessments
(Muthukumaraswamy et al., 2010; Tan et al., 2015) we calculated the
intraclass correlation (ICC; Shrout and Fleiss, 1979) using Matlab Cen-
tral file-exchange ICC.m function (A. Salarian 2008; implemented with
statistical testing based on McGraw and Wong, 1996a; McGraw and
Wong, 1996b) to assess the degree of consistency of these spectral var-
iables. Defined as the ratio of between-subject variance and the total
variance, ICC assesses the reliability of the repeatedmeasures of an indi-
vidual's oscillatory parameters by comparing the between-measures
variability of each individual to the total variation across all measures
and participants. An ICC value of 1 indicates perfect within subject reli-
ability of neural oscillatory measures derived on differing occasions
from the same participants, while ICC of 0 indicates no reliability. ICCs
were assessed for both sensor and source-derived neuromagnetic pa-
rameters. The distributions of parameters of interestwere similar across
sessions (i.e. insignificant 2-sample Kolmogorov–Smirnov tests), al-
though those of signal change at sensor level and spectral bandwidth
at source level from session 1 were marginally skewed (as determined
by Lilliefors test of normality). For appropriate application, these, to-
gether with their corresponding distributions from session 2, were
square root transformed prior to ICC assessments.

Distributions of peak frequency and signal change within visual cortical
regions

Thederivation of oscillatory parameterswithin each participant's set
of 12 AAL-parceled (calcarine, cuneus, lingual and occipital gyri; ~800
voxels including both hemispheres) visual cortical regions were re-
peated to further assess the distribution of peak frequency and corre-
sponding signal change within visual cortical regions for each session.

Results

Participants demonstrated high response accuracy;mean (±SD): 88
(±5) % and 93 (±4) % for sessions 1 and 2, respectively. On average
and source (B) derived signals in response to the moving visual stimulus for both MEG
mentary SFig. 4). Participant S02 exhibited double peaks.



Fig. 4. Individually derived visually induced response parameters of interest. Individual values
extracted for eachMEG session at sensor (A) and source (B) space. The second peak frequency
both MEG sessions.

Table 2
Summary of participants' oscillatory measures – peak frequency (Hz), spectral signal
change (%), peak frequency bandwidth (Hz) – for each MEG session at sensor and source
levels. Within participant statistical comparisons of sensor vs. source measures highlight
significant differences (p b 0.05). Refer to Results for further details.

Session

Sensor-level Source-level Sensor vs. source

1 2 1 2 1 2

Peak frequency
(Hz)

Mean 61.0 61.7 61.9 61.3 t12 −3.370 −3.306
±SD 4.9 4.5 4.9 4.8 p 0.006 0.006

Spectral signal
change (%)

Mean 68.7 79.8 149.7 199.9 ⁎ t12 −3.391 −3.858
±SD 54.3 48.2 96.9 131.5 p 0.005 0.002

Frequency
bandwidth —
FWHM (Hz)

Mean 23.6 22.2 23.5 22.0 t12 1.250 0.139
±SD 8.7 6.3 7.2 6.2 p 0.235 0.891

⁎ Paired t-test significant difference (p b 0.001).
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(±SD), their response times were 554 ± 71 ms and 536 ± 60 ms, for
sessions 1 and 2, respectively. While response accuracy improved on
the second session (t12 = −4.451; p b 0.001), mean response times
did not differ between sessions (t12 = 1.417; p = 0.182).

Maximally modulated visual voxels from all participants were dis-
tributed predominantly within the primary visual lingual, calcarine,
and occipital areas (Fig. 2). Table 1 lists the SPM coordinates and ana-
tomical labels of each participant's maximum voxels for both sessions.
The locations of participants' maximallymodulated voxels are not iden-
tical between sessions, but are mostly clustered within neighboring
voxels (6 mm resolution voxels). The mean (±SD) intra-participant
spatial variability of maximally modulated voxel location in our partici-
pant dataset is 21 (±15) mm.

Spectral changes during stimulus presentation for both sessions are
shown in Fig. 3 for sensor (A) and source (B) derivedMEG signals for all
participants. For most participants, the induced gamma frequency re-
sponse is sustained from about 350 ms post moving grating stimulus
for (i) peak frequency, corresponding (ii) signal change and (iii) frequency bandwidth are
of participant with observed double peaks (S02) at sensor level is depicted as circles (i) for
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onset until end of stimulus presentation and confined to a frequency
range of 50–80 Hz. The induced visual gamma responses for both ses-
sions from either sensor or source derived signals show good resem-
blance. Spectral responses derived from maximally modulated visual
ROIswere generallymuch stronger, reaching amaximal of ~450% signal
change compared to sensor estimates (~200%). For participants with
stronger spectral change relative to baseline (N40%) at the sensor
level, the source-derived frequency response revealed strongermodula-
tions (100–400%). Participants for whom spectral change was weak at
sensor level (b25%), the induced spectral modulations were similarly
recovered at source level.

For a quantitative measure of repeatability of visually induced
gamma response, we assessed the retest reliability of peak frequency,
the corresponding spectral signal change and response frequency band-
width, as determined by the full-width-at-half-maximum (FWHM) of
the 1st order Gaussian fit (Supplementary SFig. 4; see Methods).
These spectral parameters are summarized in Table 2 and Fig. 4 for
Fig. 5. Summary of individually derived visually induced response parameters. Boxplot summar
(B) derived signals for both MEG sessions. Individual values for each parameter are similarly c
both MEG sessions and their respective grand-average time-frequency
plots for each session (A, B) are shown in Supplementary SFig. 3. Indi-
vidual peak frequencies ranged approximately 53–72Hz for both sensor
and source derived spectral measures (Fig. 4A(i), B(i)) with an average
(±SD) of ~61 (±5) Hz. The signal change ranged between 8–200%
(mean (±SD): 74 (±51) %) and 12–450% (mean (±SD): 175 (±114)
%) for sensor and source derived peak frequencies (Supplementary
SFig. 4A(ii), B(ii)), respectively. The bandwidth of the peak frequency
spanned the range between 12 and 46 Hz for sensor and source derived
peak frequencies (Fig. 4A(iii), B(iii)) were 23 Hz (±7) Hz on average
(±SD).

Sensor aswell as source-derived peak frequency and spectral resolu-
tion did not differ significantly within participants between sessions
(Fig. 5A,B(i; iii)). While within participant powermodulation did not dif-
fer significantly between sessions at the sensor level (Fig. 5A(ii)), corre-
sponding source spectral modulation was significantly larger in the 2nd
compared to the 1st session (t12 = −3.391, p b 0.001), and this
y of individually derived parameters of interest (i–iii) are shown for sensor (A) and source
olor-coded by participants (e.g. Fig. 4A, B).



Table 3
Summary of reliability assessments. Oscillatory variables: peak frequency (Hz), and spec-
tral signal change (%) show comparably high intraclass correlations (ICCs) at sensor and
source levels. Peak frequency bandwidth (Hz) yielded higher reliability with sensor vs.
source derived signals.

Sensor Source

ICC LB UB ICC LB UB

Peak frequency (Hz) r 0.940 0.815 0.981 r 0.966 0.893 0.990
p 3.10E-07 p 1.01E-08

Spectral signal change
(%)

r 0.890 0.681 0.965 r 0.893 0.687 0.966
p 9.81E-06 p 8.72E-06

Frequency bandwidth
— FWHM (Hz)

r 0.856 0.595 0.954 r 0.622 0.133 0.867
p 4.65E-05 p 8.82E-03

Fig. 6. Summary of intraclass correlations (ICCs). Test–retest reliabilitywas assessedwith ICCs an
frequency as well as corresponding (ii) signal change and (iii) frequency bandwidth.
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difference appeared to be driven by a subset of participants (Fig. 5B(ii)).
We observed significantwithin participant sensor vs. source differences
(t12 = −3.370; t12 = −3.306, for sessions 1 and 2 respectively;
p b 0.01) for peak frequency of induced oscillations despite small aver-
age differences. In line with observed spectral responses (Fig. 3),
power modulations corresponding to peak frequencies were signifi-
cantly lower (p b 0.01) at sensor compared to source level
(t12 = −3.391; t12 = −3.858, for sessions 1 and 2 respectively;
Table 2). Finally, there were no significant differences in the corre-
sponding peak frequency bandwidth derived from sensor and source
for each session.

ICC values for peak frequency, corresponding spectral signal change
and peak frequency bandwidth measures indicated overall strong reli-
ability (mean ICC = 0.861; ICC range: 0.622–0.966; p b 0.001; refer to
d the corresponding results are summarized for sensor (A) and source (B) derived (i) peak
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Table 3 and Fig. 6) and comparable sensor- (mean ICC = 0.895) and
source-derived (mean ICC = 0.827) oscillatory measures. ICC values
were highest for peak frequency, followed by corresponding spectral
signal change and frequency bandwidth, for both sensor and source de-
rivedmeasures. Assessment of peak frequency yielded strong reliability
(ICC N 0.90) for both sensor (ICCPEAK-FREQ = 0.940; p b 0.0001) and
source (ICCPEAK-FREQ = 0.966; p b 0.0001) derived peak frequencies
(Fig. 6A(i), B(i)). Similarly, we observed high ICC values for both sensor
(ICCSPECTRAL = 0.890; p b 0.0001) and source (ICCSPECTRAL = 0.893;
p b 0.0001) derived spectral modulations at peak frequencies
(Fig. 6A(ii), B(ii)). The bandwidth of peak frequency (Fig. 6A(iii), B(iii))
yielded higher reliability for sensor (ICCFREQ-RES = 0.856; p b 0.0001)
compared to source derived (ICCFREQ-RES = 0.622; p b 0.01) signals.

Beyond themean cluster signals derived from ourmaximallymodu-
lated visual voxels, we observed (Supplementary Figs. SFig. 5(i) and
SFig. 5(ii)) narrow ranges of peak frequencies (SFig. 5(i)(ii), A) across vi-
sual cortical regions in the range comparable to those found for the
maximally task-induced voxel clusters (Fig. 4A, B(i)). We also noted a
consistent trend that the majority of visual voxels have lower spectral
signal changes, with a smaller set of voxels yielding the largest signal
changes (SFig. 5(i)–(ii), B). Supplementary Figs. SFig. 6(i) and SFig. 6(ii)
provide a 3D overview of the variability of peak frequencies derived
for each participant's ~800 AAL-labeled visual cortical voxels in both
sessions (SFig. 6(i)–(ii), A). We noted the variability in signals of corre-
spondent AAL-parceled voxels between sessions and the overlap of
maximally task induced voxel clusters with visual cortical voxels that
generally manifested high signal changes (SFig. 6(i), SFig. 6(ii), B, C). Fur-
thermore, assessment of peak frequencies and spectral signal changes
indicated similar distributions within each AAL-parceled visual cortical
region (SFig. 7(i)–(xiii)). Additionally, voxelsmanifesting the largest spec-
tral signal changes tended to be foundwithin the calcarine, lingual gyri,
and on occasion, the occipital lobules.

Discussion

The present study assessed the test–retest reliability of visually in-
duced high-frequency (30–100 Hz) oscillations derived fromMEG sen-
sor and estimated source signals. Overall, estimates of individual peak
gamma frequencies, spectral modulation and peak frequency band-
width were remarkably stable across measurements. Although the
spectral signal change was stronger in the repeated session for source-
derived peak frequency spectra, both sensor and source spectral modu-
lations exhibited comparably high repeatability. Peak oscillatory fre-
quency yielded highest measure of reliability followed by its
corresponding spectral signal change and peak frequency bandwidth.
These stabilitymeasures of induced gamma oscillatory activity corrobo-
rate those repeatability assessments at source level reported by
Muthukumaraswamy et al. (2010) for static visual stimulus. Impor-
tantly, the current study suggests that spectral estimates of both sensor
and source derived parameters are both highly reliable. In addition, the
current study suggests that the source-space approaches significantly
improve SNRs of high frequency oscillations.

Consistent with previous findings (Hoogenboom et al., 2006;
Muthukumaraswamy et al., 2010; Schwarzkopf et al., 2012), measures
of visually-induced high frequency oscillations manifested individual
variability, particularly for peak frequency and its corresponding spec-
tral modulation. Previous study by Schwarzkopf et al. (2012) revealed
higher peak gamma frequency being associated with larger primary vi-
sual cortical surface area, and suggested that differences in visually in-
duced peak gamma frequency could be attributed to individual
differences in the structural and functional architecture of visual cortex.
Interestingly, cortical environments that are highly similar in e.g. recep-
tor density, cytoarchitecture and/or coupling strength are thought to
enable greater consistency in oscillatory activity (e.g. Breakspear et al.,
2010). These observations led Schwarzkopf et al. (2012) to further sug-
gest the role of lateral intra-areal inhibitory processes (Alitto and Dan,
2010; Edden et al., 2009) in sharpening sensory responses. Relevantly,
the narrow range of individual peak gamma frequency observed across
the extent of visual cortical areas assessed may arise from synchrony-
enhancingmechanisms of interneuronal dendritic gap junctions in spa-
tially extended interneuron networks (Traub et al., 2001). On the other
hand, theoretical studies (Cannon et al., 2014; Serenevy and Kopell,
2013) have indicated that heterogeneous cell properties and their con-
nections (e.g. those that allow inputs to arrive at target networkswith a
range of phases covering a large part of the gamma cycle) may facilitate
network entrainment (e.g. through differential recruitment of fast-
spiking interneurons) that might otherwise not be feasible if driving
phaseswere highly similar. It is therefore reasonable to infer that neural
oscillations at any given frequency (and brain region) may arise from
various mechanisms (e.g. Ainsworth et al., 2012).

Aswith previous study byMuthukumaraswamy et al. (2010)we ob-
served that maximally modulated voxels do not necessarily manifest
within the exact location in the repeated session. However, the 3-
dimensional Euclidean distance between maximal loci suggested close
proximities given an imaging resolution of 6mm. Furthermore, spectral
modulation within the visual areas reflected some inhomogeneity, as
averaging across all (a priori) visual voxels led to the loss of signal.
This inference corroborated with findings from our assessment of
peak frequencies of individuals' voxelswithin the visual cortical regions,
revealing that a majority of voxels manifested lower spectral modula-
tions relative to a small proportion of voxels exhibiting the strongest
(within participants) spectral signal change. Additionally, correspond-
ing AAL-parceled voxels revealed between session variability in spectral
signal change. These observations highlight the challenges in extracting
signals from source as well as the likely mixing of signals of differing
strengths that are picked up by the MEG sensors. In particular, the
strength of MEG source signals is dependent on its orientation, increas-
ing as the source orientation deviates from the radial towards the tan-
gential axis (Hämäläinen et al., 1993). These are likely to contribute to
the variability in spectral signal change and bandwidth corresponding
to the induced peak gamma frequency both across participants and be-
tween sessions. Additionally, varying beamforming algorithms and ap-
proaches employed in previous (e.g. Muthukumaraswamy et al., 2010;
Schwarzkopf et al., 2012) and current research may have also contrib-
uted to the differences in the reported spectral modulation. Employing
a broad-band time-frequency decomposition with multi-tapers to ex-
tract the maximally modulated voxels and subsequent finer-resolution
source signals spectral decomposition, we were able to recover the
spectral modulations observed in sensor-derived signals or exceeded
them at source level.

Interestingly, we observed that gamma spectralmodulationwas rel-
atively higher in the repeated session formany participants, particularly
at the source level. It has previously been shown that gamma band ac-
tivity is enhanced in neurons driven by attended stimuli (Fries et al.,
2001) and associated with corresponding improvements in perceptual
performance (e.g. Taylor et al., 2005;Womelsdorf et al., 2006).With re-
peated performance of the same visual task, our participants became
faster (although not significantly so) and more accurate in detecting
stimulus acceleration. More recently, neurophysiological studies by
Ray et al. (2013) and Chalk et al. (2010) highlighted that where atten-
tion is called upon in a task, the modulation in gamma spectral power
may be a reflection of the changes in the underlying excitation-
inhibition activity, which could be accounted for by normalization.
The normalization model of attention posits that a neuron's (gamma)
response is suppressed by the overall response of its neighboring neu-
rons and predicts that attention increases its excitatory drive, which in
turn increases normalization. Crucially, the findings of Ray et al.
(2013) demonstrated that even with attentional load fixed, increased
normalization, e.g. when a cell's receptive field processes its non-
preferred (vs. preferred) motion direction, led to an increase in
gamma spectral power. It is conceivable that as the visual task becomes
more familiar it calls upon less directed attention towards the center
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fixation spot for adequate performance. From this perspective, and the
variablemaximallymodulated voxel location, subtlemodulation in par-
ticipants' focal attention and corresponding normalization could under-
lie the differing excitability that yielded varying induced gamma signal
change between MEG sessions. Although beyond the scope and resolu-
tion of the present analysis, changes in signal strength between testing
sessions might be induced through stimulus repetition. Recent study in
primate visual cortex (Brunet et al., 2014) reported that repeated pre-
sentation of a pair of orthogonal visual gratings during a change detec-
tion task was associated with increased local and inter-areal gamma
activity, and suggested the role of lateral inhibitory activity in sharpen-
ing the underlying stimulus representation. Interestingly, the authors
further noted a corresponding increase in peak gamma frequency
with stimulus repetition and observed enhanced synchrony, which is
not observed in the present study.

Last but not least, it has been reasoned that source analysismay yield
more reliable estimates of MEG-activity compared to sensor-derived
measures because exact positioning of participants under theMEG sen-
sors across repeated recordings is not a prerequisite. Furthermore, the
beamforming approach in source analysis acts as spatial filters in sup-
pressing backgroundactivity thatmay lower the reliability of sensor sig-
nals and thereby improve the signal estimates. Here, we replicated the
findings observed in our previous reliability assessment of auditory
steady state responses from sensor and source derived signals (Tan
et al., 2015), which highlighted that even without available continuous
head position information (e.g. Deuker et al., 2009) careful monitoring
of head and sensors' positioning can yield highly reliable estimates of
oscillatory measures from MEG sensor signals. We note that source es-
timated spectral modulation in some participants exceeded those de-
rived from sensor signals. However, relative to sensor-derived
estimates source-derivedmeasures yielded less consistency in its corre-
sponding spectral bandwidth. Importantly, our findings affirm that peak
frequency measures of gamma-band brain oscillations can be very reli-
ably estimated from sensor (van Pelt et al., 2012) and source
(Muthukumaraswamy et al., 2010) derived MEG signals. Additionally,
our assessments indicated that while spectral signal changes are more
variable across visual cortical areas, individual peak gamma frequency
manifested a narrow range across large areas of the visual cortex.

Conclusion

The present study further substantiates the view that MEG-derived
oscillatory signatures of visual (and other sensory) responses are highly
reproducible. This finding is important as MEG is increasingly used as a
tool for the identification of biomarkers in clinical research (e.g.
Georgopoulos et al., 2010; Sun et al., 2013) and for investigation of
rhythmic activity during normal brain functioning. Specifically, our re-
search underscores peak frequency of visually induced brain oscillations
as particularly reliable. Given that gamma oscillation is generated by
well-coordinated inhibitory and/or excitatory neuronal networks
(Buzsáki and Wang, 2012) and peak frequency of induced visual
gamma has been shown to decrease with age (Gaetz et al., 2012;
Muthukumaraswamy et al., 2010), estimates of peak gamma frequency
could be useful in tracking individual's underlying neural excitability
(Ray and Maunsell, 2015) over time. No doubt, further studies are
needed to better link macroscopic measures of gamma activity e.g. M/
EEG with quantifiable proxies of microscopic (e.g. molecular;
network-level) processes. Nonetheless, these insights are particularly
encouraging for larger-scale, longitudinal, and/or clinical studies that
require repeated MEG measurements, and for which study outcomes
are not contingent on source-derived oscillatory readouts.
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