
Theoretical Computer Science 296 (2003) 295–326
www.elsevier.com/locate/tcs

Tissue P systems
Carlos Mart"#n-Videa ;∗ , Gheorghe P*aunb;a ;1 , Juan Pazosc ,

Alfonso Rodr"#guez-Pat"onc
aResearch Group on Mathematical Linguistics, Rovira i Virgili University, Pl. Imperial T�arraco 1,

43005 Tarragona, Spain
bInstitute of Mathematics of the Romanian Academy, PO Box 1-764, 70700 Bucures-ti, Romania

cDepartment of Arti/cial Intelligence, Faculty of Computer Science, Polytechnical University of Madrid,
Campus de Montegancedo, Boadilla del Monte 28660, Madrid, Spain

Abstract

Starting from the way the inter-cellular communication takes place by means of protein chan-
nels (and also from the standard knowledge about neuron functioning), we propose a computing
model called a tissue P system, which processes symbols in a multiset rewriting sense, in a net
of cells. Each cell has a 4nite state memory, processes multisets of symbol-impulses, and can
send impulses (“excitations”) to the neighboring cells. Such cell nets are shown to be rather
powerful: they can simulate a Turing machine even when using a small number of cells, each
of them having a small number of states. Moreover, in the case when each cell works in the
maximal manner and it can excite all the cells to which it can send impulses, then one can
easily solve the Hamiltonian Path Problem in linear time. A new characterization of the Parikh
images of ET0L languages is also obtained in this framework. Besides such basic results, the
paper provides a series of suggestions for further research.
c© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Natural computing; Membrane computing; P systems; Chomsky hierarchy; Lindenmayer
hierarchy; NP-complete problems

1. Introduction

This paper has two starting points: the inter-cellular communication (of chemicals,
energy, information) by means of complex networks of protein channels (we will
elaborate about this topic in the next section), and the way the neurons co-operate,

∗ Corresponding author.
1 Work supported by a grant of NATO Science Committee, Spain, 2000–2001, by the Programa C"atedra

of Fundaci"on Banco Bilbao Vizcaya Argentaria (BBVA), and by Facultad de Inform"atica, Universidad
Polit"ecnica de Madrid.

0304-3975/03/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(02)00659 -X

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82526835?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

296 C. Mart78n-Vide et al. / Theoretical Computer Science 296 (2003) 295–326

processing impulses in the complex net established by synapses (we discuss some
details in Section 3).
The common mathematical model of these two kinds of symbol-processing mecha-

nisms is the net of 4nite state devices, and this is the type of computing mechanisms
we are going to consider: networks of 4nite-automata-like processors, dealing with
symbols, according to local states (available in a 4nite number for each “cell”), com-
municating through these symbols, along channels (“axons”) speci4ed in advance.
Note that the neuron modeling was the very starting point of the theory of 4nite au-

tomata [22,18], that symbol processing neural networks have a rich (and controversial)
history (see [5] and its references), and that networks of string-processing 4nite au-
tomata have appeared in many contexts ([8,14,16,21], etc.), but our models are diJerent
in many respects from all these previous models.
Having in mind the bio-chemical reality we refer to, a basic problem concerns the

organization of the bunch of symbols available in each node (cell in a tissue or neuron),
and the easiest and most natural answer is: no organization. Formally, this means that
we have to consider multisets of symbols, sets with multiplicities associated with their
elements, but without any ordering among symbols. In this way, we need a kind of
4nite automata dealing with multisets of symbols, a topic which falls into an area of
(theoretical) computer science not very much developed, although some recent (see,
e.g., [19,11]), or not so recent (see, e.g., [4]) approaches can be found in the literature.
Actually, most of the vivid area of membrane computing [25] is devoted to multiset
processing (see details at the web address http://psystems.disco.unimib.it.).
The computing models we propose here, under the name of tissue P systems, in

short, tP systems, consist of several cells, related by protein channels. In order to
preserve also the neural intuition, we will use the shorter and suggestive name of
synapses for these channels. Each cell has a state from a given 4nite set and can
process multisets of objects (chemical compounds in the case of cells, impulses in the
case of the brain), represented by symbols from a given alphabet. The standard rules
are of the form sM→ s′M ′, where s; s′ are states and M;M ′ are multisets of symbols.
Some of the elements of M ′ may be marked with the indication “go”, and this means
that they have to immediately leave the cell and pass to the cells to which we have
direct links through synapses. This communication (transfer of symbol-objects) can
be done in a replicative manner (the same symbol is sent to all adjacent cells), or
in a non-replicative manner; in the second case we can send all the symbols to only
one neighboring cell, or we can distribute them, non-deterministically. One more choice
appears in using the rules sM→ s′M ′: we can apply such a rule only to one occurrence
of M (that is, in a sequential, minimal way), or to all possible occurrences of M
(a parallel way), or, moreover, we can apply a maximal package of rules of the form
sMi→ s′M ′

i ; 16i6k, that is, involving the same states s; s′, which can be applied to
the current multiset (the maximal mode).
By the combination of the three modes of processing objects and the three modes

of communication among cells, we get nine possible behaviors of our machinery.
Now, the problem arises how to use such a device as a computing one. One pos-

sibility is to start from a given initial con4guration (that is, initial states of cells and
initial multisets of symbol-objects placed in them) and to let the system proceed until

http://psystems.disco.unimib.it

C. Mart78n-Vide et al. / Theoretical Computer Science 296 (2003) 295–326 297

reaching a halting con4guration, where no further rule can be applied, and to associate
a result with this con4guration. Because of the non-deterministic behavior of a tP sys-
tem, starting from one given initial con4guration we can reach arbitrarily many diJerent
halting con4gurations, hence we can get arbitrarily many outputs. Another possibility
is to also provide inputs, at various times of a computation, and to look for the out-
puts related to them. Here we will consider only the 4rst possibility, of generative tP
systems, and the output will be de4ned by sending symbols out of the system. To this
aim, one cell will be designated as the output one, and in its rules sM→ s′M ′ we will
also allow that symbols from M ′ are marked with the indication “out”; such a symbol
will immediately leave the system, contributing to the result of the computation.
At the 4rst sight, such a machinery (a 4nite net of 4nite state devices) seems not

to be very powerful, for instance, as compared with the Turing machines. Thus, it is
rather surprising to 4nd that tP systems with a small number of cells (two or four),
each of them using a small number of states (at most 4ve or four, respectively) can
simulate any Turing machine, even in the non-cooperative case, that is, only using rules
of the form sM→ s′M ′ with M being a singleton (containing only one copy of only
one symbol); moreover, this is true for all modes of communication for the minimal
mode of using the rules, and, in the cooperative case, also when using the parallel or
the maximal mode of processing the objects.
In the case when the rules are non-cooperative and we use them in the maximal

mode, a characterization of the Parikh images of ET0L languages is obtained, which
completes the study of the computing power of our devices (showing that in the parallel
and maximal cases we dot not get the computational universality).
The above mentioned results indicate that our cells are “very powerful” (maybe,

from a biological point of view, “too powerful”); as their power lies in using states,
hence in remembering their previous work, a natural idea is to consider tP systems
with a low bound on the number of states in each cell. In view of the previously
mentioned results, tP systems with at most 1, 2, 3, or 4 states per cell are of interest.
We only brieMy consider this question here, and we show that even reduced tP systems
as those which use only one state in each cell can be useful: using such a net we can
solve the Hamiltonian Path Problem in linear time (this is a direct consequence of
the structure of a tP system, of the maximal mode of processing objects, and of the
power of replicating the objects sent to all adjacent cells); remember that HPP is an
NP-complete problem.
The power of tP systems with a reduced number of states per component remains

to be further investigated—many other natural research topics will be also mentioned
in the last section of the paper. The richness of these ideas for further investigations
(as well as the results mentioned above) is a proof that these tissue-like counterparts
of the “classic” P systems deserve a systematic examination.

2. The inter-cellular communication

The P systems are computing models inspired from the structure and the functioning
of the living cells—see [25,7], or the above mentioned web page.

298 C. Mart78n-Vide et al. / Theoretical Computer Science 296 (2003) 295–326

In short, a P system consists of a membrane structure (a three-dimensional structure
of vesicles, all of them placed in a main vesicle, delimited by the “skin membrane”);
in the compartments de4ned by these membranes (vesicles), there are placed multisets
of objects (interpret them as chemical compounds), and evolution rules governing the
modi4cation of these objects in time; the objects can also pass through membranes (they
can also leave the system, through the external membrane); by a maximally parallel
use of these rules (in each time unit, all objects in a compartment which can evolve
by the rules associated with that compartment have to evolve), one de4nes transitions
from a con4guration of the system to another con4guration. A sequence of transitions
is called a computation, and a result is associated with any halting computation in
the form of the vector of multiplicities of objects sent out of the system during the
computation. (The objects can also be described by strings, and then they evolve by
string processing rules, but here we do not consider this case.)
Thus, a P system is a computing device which abstracts from a single cell structure

and functioning. However, in most cases the cells are living together, associated in
tissues, organs, organisms, and in such a framework an essential feature is that of inter-
cellular communication, mainly done through the protein channels established among
the membranes of the neighboring cells [20]. Because this is the main motivation for
our models, we enter here into some details.
One knows (see, e.g., [1]) that the cell membrane is a bilayer of phospholipidic

molecules, composed of a hydrophilic head placed toward the inner and the external
spaces, and a hydrophobic tail, which is “hidden” at the middle of the two layers
of molecules. The phospholipidic molecules can move with respect to each others,
but preserving their orientation (always the hydrophobic tails remain “hidden”) and
remaining in the same plane. Because of this movement, the membrane model currently
accepted is known under the name of the @uid-mosaic model. Very important for the
chemical reactions taking place in the compartments of a cell and for the transfer of
chemical compounds through membranes is the fact that in between the phospholipidic
molecules there are inserted proteins. Some of them are placed in only one side of
the membrane (catalytic proteins), others pass from a side of the membrane to the
other side, thus establishing so-called protein channels between the two compartments
delimited by the membrane, the inside of the cell and its environment.
Because of the Muid nature of the membrane, the protein channels can change their

places on the membrane. Thus, when two cells come in contact, it may happen that
protein channels from the adjacent membranes get together, establishing a common
channel, which makes possible the transfer of chemical compounds from a cell to
another one. After having some channels of this type, further channels are enhanced,
as the two membranes remain adjacent, bound by the proteins already in contact. In
this way, a complex net of channels can be established, providing a way for performing
an inter-cellular communication. Fig. 1 illustrates this idea.
The suggestion to compute in such a compartmental structure was already followed

in the membrane computing area, by considering P systems working on arbitrary planar
graphs, see [26] (note that in the case of usual membrane structures, with 3D vesicles,
the underlying graph is a tree). Such systems with a very simple graph (star, line,
cycle) were proved in [26] to be computationally universal.

C. Mart78n-Vide et al. / Theoretical Computer Science 296 (2003) 295–326 299

Fig. 1. Inter-cellular communication.

However, the tP systems we introduce here are diJerent in many respects from the
P systems considered in [26], in general, from usual P systems: in usual P systems one
allows the evolution of objects by rules of the form u→ v, without any state associated
with the compartments, while the rules are used in the maximally parallel mode (this
corresponds to the case where each cell has only one state, and the rules are used in
the mode max); moreover, the produced symbols have associated target indications,
telling where they should be placed after using a rule. Very important in the case
of P systems are various ways to control the use of rules and, mainly, to control
the communication: by controlling the permeability of membranes, by associating with
them electrical charges, by means of priorities among rules, etc. No such an ingredient
is present in a tP system.

3. The neuron and its functioning

Because this is an important alternative motivation of our study, we present here the
structure and the functioning of a neuron, basically following computer science sources
(in particular [2]).
As any cell, a neuron has a body (also called soma), containing a nucleus (not of

interest for what follows), and a membrane. In the case of neurons, the membrane is
prolonged by two important classes of 4bers, the dendrites, which form a very 4ne
4lamentary bush around the body of the neuron, and the axon, a unique, long 4lament,
which in its turn also ends with a 4ne 4lamentous bush; each of the 4laments from
the end of the axon is terminated with a small bulb.
It is by means of these endbulbs and the dendrites that the neurons are linked to

each other: the (electrical and chemical) impulses are sent through the axon, from the
body of the neuron to the endbulbs, and the endbulbs transmit the impulses to the
neurons whose dendrites they touch. Such a contact between an endbulb of an axon
and the dendrites of another neuron is called a synapse. A neuron can be linked in this
way to several other neurons, hence each neuron can receive impulses from several
neurons and can transmit impulses to several neurons.

300 C. Mart78n-Vide et al. / Theoretical Computer Science 296 (2003) 295–326

The transmission of impulses (again: electrical and chemical) from a neuron to
another one is done, roughly speaking, in the following way. A neuron will be “4red”
only if it gets suPcient excitation through its dendrites. These excitations should come
more or less together, in a short period of time, called the period of latent summation.
Moreover, the input impulses can be of two types, excitatory and inhibitory, and in
order to get the neuron excited it is necessary that the “algebraic sum” of impulses
exceed a given threshold speci4c to the neuron.
After 4ring a neuron and having it excited, there is a small interval of time necessary

to synthesize the impulse to be transmitted to the neighboring neurons through the axon;
also, there is a small interval of time necessary to the impulse to reach the endbulbs of
the axon. After having an impulse transmitted through the axon, there is a time called
the refractory period during which the axon cannot transmit another impulse.
In short, we have inputs of various types (chemical or electrical, also diJerent in

their intensities, maybe also diJerent qualitatively, depending on the source—think to
the fact that some neurons can have inputs from the various sensory areas, the skin,
the eyes, the muscles), in packages (each neuron has several dendrites and they can
get impulses from several other neurons or from several sensory areas), and the neuron
synthesizes an impulse which is transmitted to the neurons to which it is related by
synapses; the synthesis of an impulse and its transmission to the adjacent neurons are
done according to certain “states” of the neuron. In diJerent moments, depending on
its previous actions, the neuron can act diJerently.
We will make an essential use of these observations in Section 5, when de4ning a

formal counterpart of the biological neural nets, modeling at the same time the case
of inter-cellular communication in tissue-like structures.

4. Some mathematical prerequisites

The computability notions we use here are standard and can be found in many books,
for instance, in [24] and [28], so we specify only some of them, mainly in order to
4x our notations.
The set of natural numbers is denoted by N.
A multiset over a set X is a mapping M : X →N; for a∈X , we say that M (a) is the

multiplicity of a in M . The set supp(M)= {a∈X |M (a)¿0} is called the support of
M . Here we work only with multisets over 4nite sets X (implicitly, with multisets of
4nite support). In this case, weight(M)=

∑
a∈X M (a) is called the weight of M . For

two multisets M1; M2 over some set X we write M1 ⊆M2 if and only if M1(a)6M2(a)
for all a∈X (we say that M1 is included in M2). The union of M1; M2 is the multiset
M1 ∪M2 : X →N de4ned by (M1 ∪M2)(a)=M1(a)+M2(a), for all a∈X . If M1 ⊆M2,
then we also de4ne the diAerence multiset M2−M1 : X →N by (M2−M1)(a)=M2(a)−
M1(a), for all a∈X .
For Y ⊆X and M a multiset over X , we de4ne the projection of M on Y by

prY (M)(a) =
{
M (a); if a ∈ Y;
0; otherwise;

for each a∈X .

C. Mart78n-Vide et al. / Theoretical Computer Science 296 (2003) 295–326 301

For a given alphabet V , we denote by V ∗ the language of all strings over V ,
including the empty string, denoted by �. The length of x∈V ∗ is denoted by |x|,
while |x|a is the number of occurrences of the symbol a∈X in the string x∈V ∗. If
V = {a1; : : : ; an} (the ordering of symbols is important), then �V : V ∗ →Nn, de4ned
by �V (x)= (|x|a1 ; : : : ; |x|an), for x∈V ∗, is the Parikh mapping associated with V . The
mapping �V is extended in the natural way to languages over V . For a family FA of
languages, we denote by PsFA the family of Parikh images of languages in FA.
By CF; CS; RE we denote the families of context-free, context-sensitive, and recur-

sively enumerable languages, respectively. (Consequently, PsRE is the family of Turing
computable sets of vectors of natural numbers.)
A multiset M over an alphabet V can be represented by a string w∈V ∗ such that

�V (w) gives the multiplicities in M of the symbols from V ; obviously, all permu-
tations of w are representations of the same multiset. This suggests to use strings as
representations of multisets, thus, when we will say “the multiset w∈V ∗” this means
“the multiset represented by w”. In this framework, we will also write w(a) for denot-
ing |w|a. Clearly, the empty multiset, that with an empty support, is represented by the
empty string, �. The string representation of multisets also makes possible the writing
wn for representing the union of n copies of the multiset represented by w.
Further, more technical, notions and notations will be introduced when necessary.

5. Tissue P systems

We now pass to the de4nition of our variant of P systems. We introduce it in the
general form, then we will consider variants of a restricted type.
A tissue P system, in short, a tP system, of degree m¿1, is a construct

! = (O; #1; : : : ; #m; syn; iout);

where:
(1) O is a 4nite non-empty alphabet (of objects);
(2) syn⊆{1; 2; : : : ; m}×{1; 2; : : : ; m} (synapses among cells);
(3) iout ∈{1; 2; : : : ; m} indicates the output cell;
(4) #1; : : : ; #m are cells, of the form

#i = (Qi; si;0; wi;0; Pi); 16 i 6 m;

where:
(a) Qi is a 4nite set (of states);
(b) si;0 ∈Qi is the initial state;
(c) wi;0 ∈O∗ is the initial multiset of objects;
(d) Pi is a 4nite set of rules of the form sw→ s′xygozout , where s; s′ ∈Qi, w; x∈O∗,

ygo ∈ (O×{go})∗ and zout ∈ (O×{out})∗, with the restriction that zout = � for all
i∈{1; 2; : : : ; m} diJerent from iout .

A tP system as above is said to be cooperative if it contains at least a rule sw→ s′w′

such that |w|¿1, and non-cooperative in the opposite case. The objects which appear

302 C. Mart78n-Vide et al. / Theoretical Computer Science 296 (2003) 295–326

in the left hand multiset w of a rule sw→ s′w′ are sometimes called impulses, while
those from w′ are also called excitations.

Remark 1. Note that we allow rules of the forms s→ s′; s→ s′w′, although they may
be considered as “non-realistic” from the biological point of view, and we also allow
synapses of the form (i; i); 16i6m, although in the proofs below we do not need such
circular synapses.

Any m-tuple of the form (s1w1; : : : ; smwm), with si ∈Qi and wi ∈O∗, for all 16i6m,
is called a con/guration of !; thus, (s1;0w1;0; : : : ; sm;0wm;0) is the initial con/guration
of !.
Using the rules from the sets Pi; 16i6m, we can de4ne transitions among the

con4gurations of the system. To this aim, we 4rst consider three modes of processing
the impulse-objects and three modes of transmitting excitation-objects from a cell to
another one.
Let us denote Ogo= {(a; go) | a∈O}, Oout = {(a; out) | a∈O}, and Otot =O∪Ogo ∪

Oout .
For s; s′ ∈Qi; x∈O∗; y∈O∗

tot , we write

sx ⇒min s′y iJ sw → s′w′ ∈ Pi; w ⊆ x; and y = (x − w) ∪ w′;
sx ⇒par s′y iJ sw → s′w′ ∈ Pi; wk ⊆ x; wk+1 �⊆ x;

for some k ¿ 1; and y = (x − wk) ∪ w′k ;
sx ⇒max s′y iJ sw1 → s′w′

1; : : : ; swk → s′w′
k ∈ Pi; k ¿ 1; such that

w1 : : : wk ⊆ x; y = (x − w1 : : : wk) ∪ w′
1 : : : w

′
k ;

and there is no sw → s′w′ ∈ Pi such that
w1 : : : wkw ⊆ x:

In the 4rst case, only one occurrence of the multiset from the left hand side of a
rule is processed (replaced by the multiset from the right hand of the rule, at the
same time changing the state of the cell); in the second case a maximal change is
performed with respect to a chosen rule, in the sense that as many as possible copies
of the multiset from the left hand side of the rule are replaced by the corresponding
number of copies of the multiset from the right hand side; in the third case a maximal
change is performed with respect to all rules which use the current state of the cell
and introduce the same new state after processing the objects.
We also write sx ⇒(sx, for s∈Qi; x∈O∗, and (∈{min; par; max}; if there is no

rule sw→ s′w′ in Pi such that w⊆ x. This encodes the case when a cell cannot process
the current objects in a given state (it can be “unblocked” after receiving new impulses
from its ancestors).
From the biological point of view, the maximal mode seems more realistic, as it

seems that the cells (neurons included) can process chemical objects (impulses) in a
rather ePcient—hence maximal—manner. Mathematically, the max mode corresponds
to the assumption that each set Pi is union-closed, in the following sense: if two rules
sw1 → s′w′

1; sw2 → s′w′
2 are in Pi, then also the rule s(w1 ∪w2)→ s′(w′

1 ∪w′
2) is in Pi.

This implies that, if Pi contains at least one rule sw→ s′w′ with a non-empty w∪w′,
then Pi is in4nite (but “4nitely-generated” by the union-closure of a 4nite set of rules).

C. Mart78n-Vide et al. / Theoretical Computer Science 296 (2003) 295–326 303

Now, remember that the multiset w′ from a rule sw→ s′w′ contains symbols from
O, but also symbols of the form (a; go) (or, in the case of the cell iout , of the form
(a; out)). Such symbols will be sent to the cells related by synapses to the cell #i
where the rule sw→ s′w′ is applied, according to the following three modes:
• repl: each symbol a, for (a; go) appearing in w′, is sent to each of the cells #j such
that (i; j)∈ syn;

• one: all symbols a appearing in w′ in the form (a; go) are sent to one of the cells
#j such that (i; j)∈ syn, non-deterministically chosen; more exactly, in the case of
modes par and max of using the rules, we 4rst perform all applications of rules,
and after that we send all obtained symbols to a unique descendant of the cell (that
is, we do not treat separately the objects introduced by each rule, but all of them in
a package);

• spread: the symbols a appearing in w′ in the form (a; go) are non-deterministically
distributed among the cells #j such that (i; j)∈ syn.

In the case of modes repl and spread there is no diJerence between treating the objects
produced by rules in a package, as in the case of the mode one, or separately for each
rule: for repl anyway the symbols are sent to all descendants, while for spread the
distribution is completely random.
In order to formally de4ne the transition among the con4gurations of ! we need

some further notations. For a multiset w over Otot , we denote by go(w) the submultiset
of symbols a∈O, appearing in w in the form (a; go), and by out(w) the submultiset
of symbols a∈O appearing in w in the form (a; out). Clearly, go(w)(a)=w((a; go))
and out(w)(a)=w((a; out)); a∈O.
Moreover, for a node i in the graph de4ned by syn we denote anc(i)= {j | (j; i)∈syn}

and succ(i)= {j | (i; j)∈ syn} (the ancestors and the successors of node i, respectively).
Now, for two con4gurations C1 = (s1w1; : : : ; smwm); C2 = (s′1w

′′
1 ; : : : ; s

′
mw

′′
m) we write

C1 ⇒(; + C2, for (∈{min; par; max}; +∈{repl ; one; spread}, if there are w′
1; : : : ; w

′
m in

O∗
tot such that

siwi ⇒(s′iw
′
i ; 16 i 6 m;

and
• for += repl we have:

w′′
i = prO(w′

i) ∪
⋃

j∈anc(i)
go(w′

j);

• for += one we have:

w′′
i = prO(w′

i) ∪
⋃
j∈Ii

go(w′
j);

where Ii is a subset of anc(i) such that the set anc(i) was partitioned into I1; : : : ; Im;
at this transition, all non-empty sets of objects of the form

⋃
j∈Ik go(w

′
j), 16k6m,

should be sent to receiving cells (added to multisets w′′
l ; 16l6m);

• for += spread we have:

w′′
i = prO(w′

i) ∪ zi;

304 C. Mart78n-Vide et al. / Theoretical Computer Science 296 (2003) 295–326

where zi is a submultiset of the multiset
⋃
j∈anc(i) go(w

′
j) such that z1; : : : ; zm are

multisets with the property
⋃m
j=1 zj =

⋃
j∈anc(i) go(w

′
j), and such that all z1; : : : ; zm are

sent to receiving cells (added to multisets w′′
l ; 16l6m).

Note that in the case of the cell #iout we also remove from w′
iout all symbols a∈O

which appear in w′
iout in the form (a; out).

During any transition, some cells can do nothing: if no rule is applicable to the
available multiset of objects in the current state, then a cell waits until new objects
are sent to it from its ancestor cells. It is also worth noting that each transition lasts
one time unit, and that the work of the net is synchronized, the same clock marks the
time for all cells.
A sequence of transitions among con4gurations of the tP system ! is called a

computation of !. A computation which ends in a con4guration where no rule in
no cell can be used, is called a halting computation. Assume that during a halting
computation the tP system ! sends out, through the cell #iout , the multiset z. We say
that the vector �O(z), representing the multiplicities of objects from z, is computed by
!. (Because of the similarity with the generative work of grammars, we also use to
say that the vector �O(z) is generated by !.)

We denote by N(;+(!); (∈{min; par; max}; +∈{repl ; one; spread}; the set of all vec-
tors of natural numbers generated by a tP system !, in the mode ((; +). The family
of all sets N(;+(!), generated by all cooperative tP systems with at most m¿1 cells,
each of them using at most r¿1 states, is denoted by NtPm; r(Coo; (; +); when non-
cooperative tP systems are used, we write NtPm; r(nCoo; (; +) for the corresponding fam-
ily of vector sets. When one (or both) of the parameters m; r is (are) not bounded, then
we replace it (them) with ∗, thus obtaining families of the form NtPm;∗(/; (; +); NtP∗; r
(/; (; +), etc.
We have 18 families of the form NtP∗;∗(/; (; +), but, as we will see below, not all

of them are diJerent.

6. Two examples

Before investigating the power and the properties of tP systems, let us examine two
examples, in order to clarify the de4nitions and to illustrate the way of working of our
systems.
Consider 4rst a simple tP system:

!1 = (O; #1; #2; #3; syn; iout);

O= {a};
#1 = ({s}; s; a; {sa→ s(a; go); sa→ s(a; out)});
#2 = ({s}; s; �; {sa→ s(a; go)});
#3 = ({s}; s; �; {sa→ s(a; go)});
syn= {(1; 2); (1; 3); (2; 1); (3; 1)};
iout = 1:

C. Mart78n-Vide et al. / Theoretical Computer Science 296 (2003) 295–326 305

Fig. 2. An example of a tP system.

A tP system can be graphically represented as done in Fig. 2 with !1, with ovals
associated with the cells (these ovals will contain the initial state, the initial multiset,
and the set of rules, and will be labeled with 1; 2; : : : ; m), with arrows indicating the
synapses, and with an arrow leaving from the output cell.
The reader can easily check that we have:

Nmin;repl(!1) = {(n) | n¿ 1};
Nmin;+(!1) = {(1)}; for + ∈ {one; spread};

Npar;repl(!1) = {(2n) | n¿ 0};
Npar;+(!1) = {(1)}; for + ∈ {one; spread};

Nmax;repl(!1) = {(n) | n¿ 1};
Nmax;+(!1) = {(1)}; for + ∈ {one; spread}:

Indeed, in the non-replicative mode of communication, no further symbol is pro-
duced, hence we only generate the vector (1). In the replicative case, the symbols
produced by the rule sa→ s(a; go) from cell 1 are doubled by communication. When
the rules are used in the parallel mode, then all symbols are processed at the same
time by the same rule, which means that all symbols present in the system are doubled
from a step to the next one, therefore, the powers of 2 are obtained. When the rules are
used in the minimal mode, the symbols are processed or sent out one by one, hence
all natural numbers can be obtained. In the maximal mode, we can send copies of a
at the same time to cells 2 and 3, and outside the system, hence again any number of
symbols can be sent out.
Let us now consider a tP system with a more sophisticated functioning:

!2 = ({a; a′; b; b′; c; c′; Z}; #1; #2; {(1; 2); (2; 1)}; 1);

#1 = ({s; s′; s′′; s′′′; siv; sv}; s; a;
{sa→ saa(b; go);

306 C. Mart78n-Vide et al. / Theoretical Computer Science 296 (2003) 295–326

sa→ s′aa(b; go)(b; go)(c; go);

s′b→ s′′;

s′′a→ s′′a′(a; out);

s′′a→ s′′′a′(a; out)(c′; go);

s′′ → s′′;

s′′′a→ sZ;

s′′′b′ → siv;

siva′ → siva(a; out);

siva′ → sva(a; out)(c; go);

siv → siv;

sva′ → sZ;

svb→ s′′;

sZ → sZ});

#2 = ({s; s′; s′′}; s; �;
{sc→ s′;

s′b→ s(b; go);

sc′ → s′′;

s′′b→ s(b′; go)}):
If the rules are used in the parallel mode, then in the 4rst cell we obtain 2n copies

of a, for some n¿1, in parallel with sending to cell 2 a number of copies of b. After
changing the state of #1 to s′ and sending c to #2, cell #1 waits two steps, while #2
changes its state from s to s′ and then sends back to #1 all copies of b. At the next
step, in the 4rst cell s′ is changed to s′′ (and all copies of b are removed), which
at the next step sends out of the net copies of each a. If this is done by using the
rule s′′a→ s′′a′(a; out), then the work of the net is never 4nished, because of the rule
s′′ → s′′. If we use the rule s′′a→ s′′′a′(a; out)(c′; go), then the computation stops after
one more step, when c′ is used in cell #2 (because no copy of b is present in #2, no
further rule can be used here, hence the 4rst cell remains “locked” in state s′′′). Thus,
we obtain

Npar;+(!2) = {(2n) | n¿ 1}; + ∈ {repl ; one; spread}:
(Because each cell has only one successor, the three modes of communication are
equivalent.)
Because we do not have rules involving the same pair of states (with the excep-

tion of s′′a→ s′′a′(a; out); s′′ → s′′, where the use of s′′ → s′′ changes nothing, and
sa→ saa(b; go); sZ→ sZ from cell 1, but the presence of Z means that the computa-
tion is not a successful one), the mode max coincides with the mode par, hence we
get the same set of vectors as above also when using the maximal mode.

C. Mart78n-Vide et al. / Theoretical Computer Science 296 (2003) 295–326 307

In the case of the minimal use of rules we have a more interesting behavior and we
obtain:

Nmin;+(!2) = {(n2) | n¿ 2}; + ∈ {repl ; one; spread}:
Indeed, we start by producing a number n¿2 or copies of a in the 4rst cell, while
sending n copies of b to the second cell, by using the rules sa→ saa(b; go) and
sa→ s′aa(b; go)(b; go)(c; go). During this time, the second cell waits in state s. Af-
ter receiving the symbol c, the second cell changes its state to s′ and then returns to s
while sending a copy of b back to the 4rst cell. During these two steps, the 4rst cell
waits in state s′.
In the presence of b, the 4rst cell changes the state to s′′, and in this state it sends

out of the net one copy of a for each copy of a it has; at this time, the internal
copies of a are primed. The computation can continue forever in state s′′, because of
the rule s′′ → s′′, hence eventually the rule s′′a→ s′′′a′(a; out)(c′; go) must be used. If
unprimed copies of a are still present, then the trap-symbol Z is introduced by the rule
s′′′a→ sZ , and the computation will never stop because of the rule sZ→ sZ . Thus, we
have to introduce the state s′′′ while changing the last a into a′ (and sending c′ to the
second cell).
In cell #2, the symbol c′ entails the change of s into s′′, which, in turn, sends to

#1 a copy of b, primed. Now, a process as above takes place in #1, but controlled
by states siv; sv instead of s′; s′′: in the presence of b′, the state s′′′ is changed to siv,
which sends out a copy of a for each internal a′, at the same time removing the prime;
the process should stop by using the rule siva′ → sva(a; out)(c; go), otherwise the rule
siv→ siv can be used forever. Moreover, when using the rule which introduces the state
sv no primed a should be present, otherwise the trap-symbol Z is introduced by the
rule sva′ → sZ , and the computation never stops. The state siv will return to s′′ again
in the presence of b.
The process is repeated as long as we have copies of b in the second cell, that is,

n times. For each b one sends out of the net n copies of a, in total n2. When no b
is available, the computation stops, with the 4rst cell in one of the states s′′′; sv and
the second cell in one of the states s′; s′′. Again, no diJerence exists between the three
modes of communication.
Note the dramatic diJerence between the results obtained in mode min and in mode

par.

7. Further language theory prerequisites

We now introduce some more technical elements from language theory, concerning
matrix grammars and Lindenmayer systems.

7.1. Matrix grammars and their normal form

In the proofs of the next section we need the notion of a matrix grammar with
appearance checking, hence we brieMy introduce it here. For further details, we refer
to [13].

308 C. Mart78n-Vide et al. / Theoretical Computer Science 296 (2003) 295–326

A matrix grammar with appearance checking is a construct G=(N; T; S;M; F), where
N; T are disjoint alphabets, S ∈N , M is a 4nite set of sequences of the form
(A1 → x1; : : : ; An→ xn), n¿1, of context-free rules over N ∪T (with Ai ∈N; xi ∈
(N ∪T)∗, in all cases), and F is a set of occurrences of rules in M (N is the non-
terminal alphabet, T is the terminal alphabet, S is the axiom, while the elements of M
are called matrices).
For w; z ∈ (N ∪T)∗ we write w ⇒ z if there is a matrix (A1 → x1; : : : ; An→ xn) in

M and the strings wi ∈ (N ∪T)∗; 16i6n + 1, such that w=w1; z=wn+1; and, for all
16i6n, either (1) wi=w′

iAiw
′′
i ; wi+1 =w′

i xiw
′′
i , for some w′

i ; w
′′
i ∈ (N ∪T)∗, or (2)

wi=wi+1; Ai does not appear in wi, and the rule Ai→ xi appears in F . (The rules
of a matrix are applied in order, possibly skipping the rules in F if they cannot be
applied—therefore we say that these rules are applied in the appearance checking
mode.)
The language generated by G is de4ned by L(G)= {w∈T ∗ | S ⇒∗ w}: The family

of languages of this form is denoted by MATac. When F = ∅ (hence we do not use the
appearance checking feature), the generated family is denoted by MAT .
It is known that CF ⊂MAT ⊂MATac=RE, the inclusions being proper. All one-letter

languages in the family MAT are regular, see [17].
A matrix grammar G=(N; T; S;M; F) is said to be in the binary normal form if

N =N1 ∪N2 ∪{S; #}, with these three sets mutually disjoint, and the matrices in M are
in one of the following forms:
(1) (S→XA); with X ∈N1; A∈N2,
(2) (X →Y; A→ x); with X; Y ∈N1; A∈N2; x∈ (N2 ∪T)∗,
(3) (X →Y; A→ #); with X; Y ∈N1; A∈N2,
(4) (X → �; A→ x), with X ∈N1; A∈N2; and x∈T ∗.
Moreover, there is only one matrix of type 1 and F consists exactly of all rules
A→ # appearing in matrices of type 3; # is called a trap-symbol, because once intro-
duced, it is never removed. A matrix of type 4 is used only once, in the last step of
a derivation.
According to [13], for each matrix grammar there is an equivalent matrix grammar

in the binary normal form.
For an arbitrary matrix grammar G=(N; T; S;M; F), let us denote by ac(G) the

cardinality of the set {A∈N |A→ (∈F}. From the construction in the proof of Lemma
1.3.7 in [13] one can see that if we start from a matrix grammar G and we get the
grammar G′ in the binary normal form, then ac(G′)= ac(G).
In [15] it was proved that each recursively enumerable language can be generated

by a matrix grammar G such that ac(G)62.
Consequently, to the properties of a grammar G in the binary normal form we can

add the fact that ac(G)62. We will say that this is the strong binary normal form
for matrix grammars.

7.2. Lindenmayer systems

The usual test bed for comparing the power of any new class of computing devices is
the hierarchy of Turing computable functions=numbers=languages. Fine classi4cations of

C. Mart78n-Vide et al. / Theoretical Computer Science 296 (2003) 295–326 309

such languages (of sets of number relations, if taking the Parikh images of languages)
are provided by the Chomsky hierarchy and by the Lindenmayer hierarchy. Here we
consider only some basic types of L systems and we refer to [27] for details.
An ET0L system (extended tabled interactionless L system) is a construct G=(V; T;

w; R1; : : : ; Rn), where V is an alphabet, T ⊆V (the terminal alphabet), w∈V ∗ (the
axiom), and R1; : : : ; Rn, n¿1, are 4nite sets of context-free rules over V (called tables);
each table Ri is complete, that is, for each a∈V there is a rule a→ v in Ri.

For x; x′ ∈V ∗ and 16i6n we write x ⇒Ri x′ if x= a1a2 : : : ak , for aj ∈V;
16j6k, and x′ = v1v2 : : : vk for aj→ vj ∈Pi; 16j6k (the symbols are rewritten in
parallel, by the rules of the given table). The language L(G) generated by G consists
of all strings over T which can be derived from the axiom w by 4nitely many steps
⇒Ri as above, with respect to the tables of G. The family of all such languages is
denoted by ET0L.
If each table contains only one rule a→ v for each a∈V , then the ET0L system

is said to be deterministic, and the corresponding family of languages is denoted by
EDT0L. If the system G contains only one table, then it is called an E0L system, and
the family of the generated languages is denoted by E0L.
It is known that CF ⊂E0L⊂ET0L⊂CS and that CF (and also E0L) is incomparable

with EDT0L. Moreover, E0L is incomparable with MAT , and ET0L contains languages
which are not in MAT (but it not known whether or not MAT − ET0L is non-empty).
In the sequel we will make use of the following normal form for ET0L systems.

Each language L∈ET0L can be generated by an ET0L system G=(V; T; w; R1; R2),
that is, with only two tables. Moreover, from the proof of Theorem V.1.3 in [27], we
see that any derivation with respect to G starts by several steps of using R1, then R2
is used (exactly once), and the process is iterated; the derivation ends by using R2
(actually, R1 only prepares the string for R2, by changing “the colors” of symbols,
never changing the length of the string, while R2 is really changing the strings).

8. The power of tP systems

As standard when considering a new computing device, we compare the power
of tP systems with that of Turing machines and of restricted variants of them. We
start by considering the minimal mode of using the rules, and this turns out to be
computationally universal, a fact which makes natural the comparison with (Parikh
images of) Chomsky families, in particular, PsRE. In a subsequent section we will
consider the parallel and the maximal modes of using the rules, and this will make
necessary the comparison with (Parikh images of) Lindenmayer families.
The following relations are direct consequences of the de4nitions.

Lemma 1. (i) For all 16m6m′, 16r6r′, /∈{Coo; nCoo}, (∈{min; par; max}, and
+∈{repl ; one; spread}, we have:

NtPm;r(/; (; +) ⊆ NtPm′ ;r′(/; (; +) ⊆ NtP∗;∗(/; (; +) ⊆ PsRE;

NtPm;r(nCoo; (; +) ⊆ NtPm;r(Coo; (; +):

310 C. Mart78n-Vide et al. / Theoretical Computer Science 296 (2003) 295–326

(ii) For all tP systems !, cooperating or not, where each cell has at most one
successor, and for all (∈{min; par; max} we have

N(;repl(!) = N(;one(!) = N(;spread(!):

8.1. Comparison with Chomsky families

Rather surprising, if we take into consideration the apparently weak ingredients of
our models, when using the mode min of applying the rules, even the non-cooperative
tP systems turn out to be computationally universal. (As expected, the same result
holds true also when using cooperative rules, in all modes min, par, max.) In proving
such results, we try to keep as reduced as possible both the number of cells and the
maximal number of states used by the cells.

Theorem 2. PsRE=NtP2;5(/; min; +), for all /∈{Coo; nCoo}, +∈{repl ; one; spread}.

Proof. We prove only the inclusion ⊆, the opposite one can be obtained by a straight-
forward construction (or as a consequence of the Turing–Church thesis).
Because of the equality PsRE=PsMATac, we start by considering a matrix grammar

G=(N; T; S;M; F) in the strong binary normal form, hence with N =N1 ∪N2 ∪{S; #},
and with matrices of the four forms mentioned in Section 7.1, with only two symbols
B(1); B(2) ∈N2 used in appearance checking rules. Assume that we have k matrices of the
form mi : (X → (; A→ x); with X ∈N1; (∈N1 ∪{�}; A∈N2; x∈ (N2 ∪T)∗, 16i6k.
Also, let labj; j=1; 2, be such that mi : (X →Y; B(j) → #); j=1; 2; i∈ labj, are the
matrices of M containing rules to be applied in the appearance checking manner. We
assume that lab1; lab2, and {1; 2; : : : ; k} are mutually disjoint.
We construct the tP system

! = (O; #1; #2; 2);

with the alphabet

O=N1 ∪ N2 ∪ T ∪ {H; Z}
∪ {Xi;j |X ∈ N1; 16 i 6 k; 06 j 6 k}
∪ {Ai;j |A ∈ N2; 16 i 6 k; 06 j 6 k};

and the following cells (the axiom multiset XA of #1 corresponds to the initial matrix
(S→XA) of the grammar G):

#1 = ({s; s′; sf; s1; s2}; s; XA;
{sX → s′(Xi;i; go);

s′A→ s(Ai;i; go) |mi : (X → (; A→ x) ∈ M; 16 i 6 k}
∪{sXi;0 → sY |mi : (X → Y; A→ x); 16 i 6 k}
∪{sXi;0 → sf |mi : (X → �; A→ x); 16 i 6 k}
∪{sfD→ sfD |D ∈ N2 ∪ {Z}}

C. Mart78n-Vide et al. / Theoretical Computer Science 296 (2003) 295–326 311

∪{sX → sjY (H; go);

sjB(j) → sfZ;

sjH → s | j = 1; 2; mi : (X → Y; B(j) → #); i ∈ labj}
∪{s→ s; s′ → s′});

#2 = ({s; s′; s′′}; s; �;
{sXi;j → s′Xi;j−1 |X ∈ N1; 16 i 6 k; 26 j 6 k}
∪{s′Ai;j → sAi;j−1 |A ∈ N2; 16 i 6 k; 26 j 6 k}
∪{sXi;1 → s′′(Xi;0; go) |X ∈ N1; 16 i 6 k}
∪{s′′Ai;1 → s(z; go)(y; out) |mi : (X → (; A→ x); 16 i 6 k;

x = zy; z ∈ N ∗
2 ; y ∈ T ∗}

∪{s′′Ai;j → s′′Z |A ∈ N2; 16 i 6 k; 26 j 6 k}
∪{s′Ai;1 → s′′Z |A ∈ N2; 16 i 6 k}
∪{s′′Z → s′′Z; sH → s(H; go)});

moreover, we have the synapses

syn = {(1; 2); (2; 1)}:

(We have written (z; go) instead of (A1; go) : : : (An; go), with Ai ∈N2; 16i6n, such that
z=A1 : : : An, and a similar short writing was used for (y; out).)
As long as the states s; s′ are present, the 4rst cell can work at least by rules

s→ s; s′ → s′, hence we have to remove these states. Assume that we use a rule
sX → s′(Xi; i; go) and then a rule s′A→ s(Aj; j; go), for some 16i; j6k. The symbols
Xi; i; Aj; j are sent to the second cell, where, under the control of states s; s′, one alter-
nately decreases by one the second components of the subscripts. During this time, the
4rst cell uses the rule s→ s (no symbol from N1 is present, so no rule of the form
sX → s′(Xj; j; go) can be used). The computation continues in this way until one of the
symbols from cell 2 reaches a subscript with the second component being equal to 1.
We have three cases:
Case 1: If i¡j, then in the second cell we use the rule sXi;1 → s′′(Xi;0; go) and then

s′′Aj; k → s′′Z , for some k¿2. The computation will never 4nish, because of the rule
s′′Z→ s′′Z of the second cell.
Case 2: If i¿j, then in the second cell we will use the rule s′Aj;1 → s′′Z , which

again leads to an endless computation, because the rule s′′Z→ s′′Z can be used forever.
Case 3: If i= j, then after using the rule sXi;1 → s′′(Xi;0; go) we use the rule s′′Ai;1 →

s(z; go)(y; out), which returns the second cell to state s. In cell 1 we can replace Xi;0
by Y , thus completing the simulation of the matrix mi : (X →Y; A→ x), hence the
computation can continue. In the case when mi was a terminal matrix, then we can
use the rule sXi;0 → sf, and then the state sf checks whether or not any non-terminal
from N2 is still present, a case in which the computation will continue forever.

312 C. Mart78n-Vide et al. / Theoretical Computer Science 296 (2003) 295–326

Of course, instead of using these rules we can use the rule s→ s, but it changes
nothing, hence eventually we have to use the above mentioned rules. In this way, we
can correctly simulate the matrices of G without appearance checking rules.
Assume now that we start in cell 1 by using a rule sX → sjY (H; go), for some

mi : (X →Y; B(j) → #) with i∈ labj; j=1; 2. At the next step, if the symbol B(j) is
present, then the rule sjB(j) → sfZ is used, which introduces the trap-symbol Z , and
the computation continues forever by means of the rule sfZ→ sfZ . If no symbol B(j)

is present, then the 4rst cell waits one step. At this time, the second cell uses the
rule sH→ s(H; go) and sends back the symbol H . In the presence of this symbol, the
4rst cell returns to state s. In this way, one correctly simulates the matrix mi with the
second rule used in the appearance checking mode.
Consequently, all derivations in G can be simulated in ! and, conversely, all halt-

ing computations in ! correspond to terminal derivations in G. One can easily see
that �T (L(G))=Nmin; +(!), for all +∈{repl ; one; spread} (because no cell has two
successors, the three modes of communication are equivalent).

From the previous construction one can easily see that in the case of matrix grammars
without appearance checking the states s; s′; sf of the 4rst cell are suPcient, hence we
have the following result:

Corollary 3. PsMAT ⊆NtP2;3(/; min; +), for all /∈{Coo; nCoo}; +∈{repl ; one; spread}.

At the price of using two more cells, we can decrease the number of used states.

Theorem 4. PsRE=NtP4;4(/; min; +), for all /∈{Coo; nCoo}; +∈{one; spread}.

Proof. We start again from a matrix grammar G in the strong binary normal form.
With the same notations as in the proof of Theorem 2, we construct a tP system
! as indicated in Fig. 3 (we do not present this tP system formally, because the
representation in the 4gure contains all necessary information and can also be analysed
in an easier way from the point of view of the correctness of its functioning).
As usual, the matrices are of the forms mi : (X →Y; A→ x), or mi : (X → �; A→ x),

or mi : (X →Y; B(j) → #), Z is a trap-symbol, and H is a new symbol; D is again a
generic symbol from N2.
Let us examine the work of the tP system !, especially because it has some features

diJerent from the tP system used in the previous proof.
In the 4rst cell, we have to choose to pass to one of the states s′ and s′′ (as long

as we use the rule s→ s nothing is changed). In the presence of s′ we send to one of
cells 2 and 3 all symbols, primed. In the presence of s′′ we send to one of cells 2 and
3 all symbols, double primed.
The fact that all symbols are communicated is ensured by the state s′′′, which in

the presence of any symbol D∈N2 introduces the trap-symbol Z , and then the rule
s′′′Z→ s′′′Z can be used forever; note that the state s′′′ is also introduced after simu-
lating a terminal matrix of G, and if any D∈N2 is present, then the computation will
never stop.

C. Mart78n-Vide et al. / Theoretical Computer Science 296 (2003) 295–326 313

Fig. 3. The tP system from the proof of Theorem 4.

Now, if any double primed symbol arrives in the second cell, then the trap-symbol
Z is introduced and the computation will never stop. Similarly, if any primed symbol
arrives in the third cell, then the computation will never stop. Therefore, in the case
of starting with s′, all symbols arrive in cell 2. This cell, in collaboration with cell 4,
simulates the matrices of G without appearance checking rules; this is performed in a
way similar to the work of the tP system in the proof of Theorem 2. When a matrix
mi; 16i6k, is correctly simulated, then all symbols are sent to cell 1, by means of
the state s′′′ (the fact that all symbols are communicated is ensured by the fact that
the state s′ of #4 will transform any remaining D from N2 in Z and then the rule
s′Z→ s′Z will be used forever).
When starting in cell 1 by introducing the state s′′, all symbols will be sent (double

primed) to cell 3, and here we simulate a matrix mi : (X →Y; B(j) → #). Namely, in

314 C. Mart78n-Vide et al. / Theoretical Computer Science 296 (2003) 295–326

the presence of state sj; j=1; 2, all symbols D′′ are sent back to cell 1, unprimed, with
the exception of B(j).
Eventually, the rule sjX ′′ → s′(Y; go) is used, completing the simulation of the matrix

(and ensuring that all symbols D were sent back to cell 1 and that the symbol B(j)

is not present: otherwise, the rule s′D′′ → sZ is used, for any remaining D, including
D=B(j); and the computation will never halt). Thus, the process is iterated.
We conclude that we have �T (L(G))=Nmin; +(!), for all +∈{one; spread} (the

fact that all primed or double primed symbols should go to the same cell ensures
the fact that even in the spread mode we have to work in the one mode, otherwise
the computation will never stop).

If we use cooperative rules, then we can further decrease both the number of cells
and of states. Moreover, we can characterize PsRE for all modes min, par, max of
processing the objects, and this completes the study of the cooperative case.

Theorem 5. For all (∈{min; par; max}, +∈{repl ; one; spread}, PsRE=NtP2;2(Coo;
(; +).

Proof. We use again the notations from the previous two proofs, and, starting from a
matrix grammar G in the strong binary normal form, we construct the tP system

! = (N1 ∪ N2 ∪ {X1; X2 |X ∈ N1} ∪ {c; H; Z}; #1; #2; {(1; 2); (2; 1)}; 1);

with the following cells:

#1 = ({s; s′}; s; cXA;
{scXA→ scYz(y; out) | (X → Y; A→ zy) ∈ M; z ∈ N ∗

2 ; y ∈ T ∗}
∪{scXA→ sc(y; out) | (X → �; A→ y) ∈ M; y ∈ T ∗}
∪{scD→ scZ |D ∈ N2}
∪{scZ → scZ}
∪{scX → s′cYj(H; go);

s′cYjB(j) → scZ;

s′cYjH → scY | (X → Y; B(j) → #) ∈ M; j = 1; 2});

#2 = ({s}; s; �; {sH → s(H; go)}):

With the experience of the previous proofs, the reader can easily check that we have the
equality �T (L(G))=N/;+(!) for all /∈{min; par; max} (all rules involve the symbol
c, which appears in only one copy and is never changed, hence even in the modes
par and max the rules of the 4rst cell are actually used in the min mode), and for
all +∈{repl ; one; spread} (each cell has only one successor, hence the three modes of
communication coincide).

C. Mart78n-Vide et al. / Theoretical Computer Science 296 (2003) 295–326 315

In the case of grammars without appearance checking, the second cell is not neces-
sary and the same assertion is true for the state s′, hence we have:

Corollary 6. PsMAT ⊆NtP1;1(Coo; (; +), for all (∈{min; par; max}; +∈{repl ; one;
spread}.

In the case of the parallel mode of using the rules, we can obtain sets outside
PsMAT , even in the non-cooperative case, for all modes of communication. Indeed,
for

! = ({a}; ({s}; s; a; {sa→ saa; sa→ s(a; out)}); ∅; 1);
we have Npar; +(!)= {(2n) | n¿0}, for all +∈{repl ; one; spread}, and this set is not
in PsMAT [17]. The power of modes par and max will be settled in the following
section.
We do not know whether or not the results in Theorems 2, 4, and 5 are optimal in

the number of cells and of states. There also remains to investigate the properties of
the families NtPm; r(nCoo; min; +); +∈{repl ; one; spread}, for the small values of m; r
which are not covered by the previous results.

8.2. Comparison with Lindenmayer families

The maximal mode of using the rules in a tP system resembles the parallel mode of
rewriting the strings in an L system, and this makes the following results expected.

Theorem 7. For all +∈{repl ; one; spread}:
(i) PsE0L⊆NtP1;2(nCoo; max; +),
(ii) PsET0L⊆NtP1;3(nCoo; max; +).

Proof. Let G=(V; T; w; R1; R2) be an ET0L system in the normal form, hence with
only two tables. We construct the tP system

! = (V; ({s1; s2; s3}; s1; w; P1); ∅; 1);
with the cell having the following rules:

s1a→ s1x;

s1a→ s2x; for all a→ x ∈ R1;
s1a→ s3a; for all a ∈ V;
s2a→ s1x; for all a→ x ∈ R2;
s3a→ s3(a; out); for all a ∈ T;
s3a→ s3a; for all a ∈ V − T:

In the presence of the state s1 one simulates the table R1; at any moment, we can
switch either to state s2, which entails the simulation of table R2, or to state s3, which

316 C. Mart78n-Vide et al. / Theoretical Computer Science 296 (2003) 295–326

determines the end of the computation. In the presence of s3 no further table is sim-
ulated, but the terminal symbols are sent out of the system; if the derivation is not
terminal, hence symbols from V − T are still present in the cell, then the computation
continues forever by using rules of the form s3a→ s3a, for a∈V − T , hence no out-
put is obtained. Consequently, �T (L(G))=Nmax; +(!), for all +∈{repl ; one; spread},
which proves assertion (ii).
If we have only one table, R1, then the state s2 is no longer necessary, hence two

states suPce, and we get assertion (i).

For tP systems working in the min mode, we need additional cells (and states) in
order to simulate E0L and ET0L systems.

Theorem 8. PsE0L⊆NtP2;3(nCoo; min; +), for all +∈{repl ; one; spread}.

Proof. Let G=(V; T; w; R) be an E0L system. We construct the tP system

! = (V ∪ {F;H; Z}; #1; #2; {(1; 2); (2; 1)}; 1);

#1 = ({s1; s2; s3}; s1; w;
{s1a→ s1(x; go);

s1a→ s2(x; go)(H; go) | a→ x ∈ R}
∪{s2a→ s2Z | a ∈ V}
∪{s2Z → s2Z; s1 → s1; s2H → s1(F; go); s2H → s3}
∪{s3a→ s3(a; out) | a ∈ T}
∪{s3a→ s2Z | a ∈ V − T});

#2 = ({s; s′; s′′}; s; �;
{sH → s′}
∪{s′a→ s′(a; go);

s′a→ s′′(a; go)(H; go);

s′′a→ sZ | a ∈ V}
∪{s′′F → s; sZ → sZ; s′Z → s′Z; s′′Z → s′′Z}):

By using rules of the form s1a→ s1(x; go), associated with a→ x∈R, we simulate a
derivation step in G; when all symbols are rewritten, we can use the rule s1a→ s2(x; go)
(H; go), otherwise the trap-symbol Z is introduced and the computation will never stop.
If s1 is not replaced by s2, then the rule s1 → s1 can be used forever. The second cell
waits in state s as long as the symbol H is not received from the 4rst cell. In the
presence of H , the second cell changes its state to s′, which sends back to cell #1 all
the symbols (this is again ensured by the trap-symbol Z : if any symbol a∈V is still
present, then the rule s′′a→ sZ must be used). Now, in the presence of H , the 4rst

C. Mart78n-Vide et al. / Theoretical Computer Science 296 (2003) 295–326 317

cell either returns from state s2 to state s1 (at the same time, F is sent to the second
cell), and the process is iterated (when F is sent to #2, this cell returns to state s,
waiting again for the symbol H), or to state s3, which sends out all terminal symbols;
if any symbol from V − T is still present, then the computation never stops. Thus, we
have the equality �T (L(G))=Nmax; +(!), for all +∈{repl ; one; spread}.

In the case of ET0L systems we needed one more cell and one more state (but we
do not know whether or not this result can be improved).

Theorem 9. PsET0L⊆NtP3;4(nCoo; min; +), for all +∈{repl ; one; spread}.

Proof. Let G=(V; T; w; R1; R2) be an ET0L system in the normal form. We construct
the tP system

! = (O; #1; #2; #3; {(1; 2); (2; 1); (1; 3); (3; 1)}; 3);
with the alphabet

O = V ∪ {a′; a′′ | a ∈ V} ∪ {F;H;H ′; H ′′; Z};
and the following cells (h′; h′′ are the morphisms which replace each a∈V by a′; a′′,
respectively):

#1 = ({s1; s2; s3}; s1; w;
{s1a→ s1(h′(x); go);

s1a→ s2(h′(x); go)(H; go) | a→ x ∈ R1}
∪{s2a→ s2Z | a ∈ V}
∪{s2Z → s2Z; s1 → s1}
∪{s2H → s1(F; go); s2H → s3}
∪{s3a→ s3(h′′(x); go);

s3a→ s2(h′′(x); go)(H; go) | a→ x ∈ R1});
#2 = ({s; s′; s′′}; s; �;

{sH ′ → s′}
∪{s′a′ → s′(a; go);

s′a′ → s′′(a; go)(H; go);

s′′a′ → sZ | a ∈ V}
∪{sZ → sZ; s′Z → s′Z;

s′′Z → s′′Z; s′′F → s}
∪{sa′′ → sZ | a ∈ V}
∪{sH ′′ → sZ});

318 C. Mart78n-Vide et al. / Theoretical Computer Science 296 (2003) 295–326

#3 = ({s; s′; s′′; s′′′}; s; �;
{sH ′′ → s′}
∪{s′a′′ → s′(x; go);

s′a′′ → s′′(x; go)(H; go) | a→ x ∈ R2}
∪{s′′a′′ → sZ | a ∈ V}
∪{sZ → sZ; s′Z → s′Z; s′′Z → s′′Z;

s′′′Z → s′′′Z; s′′F → s}
∪{sa′ → sZ | a ∈ V}
∪{sH ′ → sZ}
∪{sH ′′ → s′′′}
∪{s′′′a′′ → s′′′(a; out) | a ∈ T}
∪{s′′′a′′ → sZ | a ∈ V − T}):

The work of this tP system is a combination of the work of the system from the
proofs of Theorems 4 and 8: all the symbols are sent either to cell #2, primed, or to
cell #3, double primed, at the same time simulating the use of the table R1 (if single
primed symbols arrive in cell #2 or double primed symbols arrive in cell #1, then
the computation will never stop). From #2 we return the symbols to the 4rst cell,
so the simulation of R1 can be iterated. In the third cell we simulate the use of the
table R2. The trigger for starting the work of each cell (for introducing the states s′

in #2 and #3, and for returning to state s1 in #1) is again the symbol H (primed or
double primed for #2 and #3, respectively). At any time, in cell #3 we can pass to the
state s′′′, which determines the end of the simulation of the derivation. If all symbols
are from T , then they are sent out of the cell and the computation stops, otherwise the
computation continues forever and no output is obtained. Thus, we obtain the equality
�T (L(G))=Nmin; +(!), for +∈{one; spread}.
For the case of += repl we remove the rules sa′′ → sZ; a∈V , and sH ′′ → sZ from

#2, and the rules sa′ → sZ; a∈V , and sH ′ → s from #3. For the tP system !′ obtained
in this way, we have �T (L(G))=Nmin; repl(!′) (the replication has no eJect, as all
single primed symbols from #3 and all double primed symbols from #2 are ignored).

On the other hand, the converse of assertion (ii) from Theorem 7 is also true, even
in the following more general form (and this settles the study of modes par and max:
they do not lead to computational universality).

Theorem 10. NtP∗;∗(nCoo; (; +)⊆PsET0L, for all (∈{par; max} and +∈{repl ; one;
spread}.

Proof. Consider a tP system !=(O; #1; : : : ; #m; syn; iout), with #i=(Qi; si;0; wi;0; Pi),
16i6m.

C. Mart78n-Vide et al. / Theoretical Computer Science 296 (2003) 295–326 319

We construct an ET0L system G with the total alphabet

V = {(s; i) | s ∈ Qi; 16 i 6 m} ∪ {(a; i) | a ∈ E; 16 i 6 m} ∪ {Z} ∪ O
(Z is a new symbol), and the terminal alphabet O.
De4ne the morphisms hi : (O∪Qi)∗ →V ∗ by h(()= ((; i) for all (∈Qi ∪O,

16i6m. The axiom of G is

w = h1(s1;0w1;0)h2(s2;0w2;0) : : : hm(sm;0wm;0):

The tables of G are constructed as follows.
For each i=1; 2; : : : ; m, and each s; s′ ∈Qi, we consider the sets of rules of the

following form:

Ri(s; s′) = {(s; i) → (s′; i)}
∪ {(a; i) → hi(x)f+(u) | sa→ s′xu ∈ Pi; x ∈ O∗; u ∈ O∗

go}
∪ {(q; i) → Z | q ∈ Qi − {s}}
∪ {(b; i) → (b; i) | there is no rule sb→ s′z in Pi};

where f+(u); +∈{repl ; one; spread}, denotes a possible distribution of the symbols from
u after the use of the rule sa→ s′xu, according to the mode +: in the case of += repl,
then

frepl(u) = hj1 (u) : : : hjk (u);

where {j1; : : : ; jk}= succ(i); in the case of += one, then

fone(u) = hj(u);

where j is one of the descendants of cell i such that j is the same for all rules
(a; i)→ hi(x)f+(u) from each set of the form Ri(s; s′); 4nally, for += spread ,

fspread (u) = hj1 (u1) : : : hjk (uk);

where {j1; : : : ; jk}= succ(i) and u1; : : : ; uk is a partition of u. Note that for += one and
+= spread we have several sets of the form Ri(s; s′), one for each possible value of
f+(u),
It is clear that such a set of rules, applied in the ET0L manner, corresponds to using

the rules from Pi in the max manner, with at least a rule sa→ s′xu eJectively used.
In order to simulate the case when a cell does not work (no rule is applicable to its

current multiset), we consider sets Ri(s); s∈Qi; of rules of the following form

Ri(s) = {(s; i) → (s; i)}
∪ {(q; i) → Z | q ∈ Qi − {s}}
∪ {(a; i) → (a; i) | a ∈ O; and no rule sa→ s′z appears in Pi}
∪ {(a; i) → Z | a rule sa→ s′z there is in Pi}:

320 C. Mart78n-Vide et al. / Theoretical Computer Science 296 (2003) 295–326

When constructing the sets Ri(s; s′) as above for i= iout , besides symbols b∈O
and ·(b; go)∈Ogo in the right hand side of rules sa→ s′xu which lead to (a; i)→
hi(x)f+(u) we can also have symbols (b; out); b∈O. All such symbols are replaced by
b (hence they are terminal symbols with respect to G); therefore, in this case the rules
of Ri(s; s′) are of the form (a; i)→ hi(x)f+(u)z, for z ∈O∗.

Now, we perform the unions of sets Ri(s; s′); Ri(s′′) as above, taking exactly one
set for each i=1; 2; : : : ; m, in all possible ways; to each of the resulting sets of rules
we also add completion rules of the form c→ c, for all symbols c∈O∪{Z}. The
obtained sets of rules are tables of G. From the way they are constructed, and from
the manner of considering pair-symbols (a; i) with a∈O and i specifying the cell where
a is present, one can see that using such tables exactly corresponds to transitions in
the tP system !. Conversely, each transition can be simulated by using a suitable table
of the ET0L system G.
What remains is to stop the work of G in the same manner as in !, namely only for

halting computations, and in that case to remove all non-terminal symbols still present
in the sentential form of G. This can be done by using “terminal” tables constructed
as follows. For all m-tuples of states s1; : : : ; sm with si ∈Qi; 16i6m, consider the set:

R(s1; : : : ; sm) = {(si; i) → � | 16 i 6 m}
∪ {(a; i) → � | no rule of the form sia→ s′z is in Pi}
∪ {(a; i) → Z | there are rules sia→ s′z in Pi}
∪ {a→ a | a ∈ O}:

We add all rules of the form c → Z for all symbols diJerent from s1; : : : ; sm, a, and
(a; i) for which we have already rules in the set R(s1; : : : ; sm) (therefore, we also have
the rule Z→Z).
It is easy to see that such a table can be applied without introducing the trap-symbol

Z , which is never eliminated from the sentential forms of G, only when no rule is
applicable in !.
Consequently, for all +∈{repl ; one; spread}, we have the equality �O(L(G))=

Nmax; +(!), hence the theorem is proved for the case of max.
The changes for the case of par are straightforward: in the sets Ri(s; s′) we have

to consider only one rule of the form (a; i)→ hi(x)f+(u), for a 4xed a∈O (that is,
the set of rules is associated not only with s; s′, but also with a precise rule sa→ s′xu
from Pi); the sets of rules Ri(s) and R(s1; : : : ; sm) remain unchanged. The parallel mode
of using the rules in an ET0L system ensures the fact that when using such a rule
(a; i)→y we process all occurrences of the symbol (a; i) in the current string. For the
tP system !′ obtained in this way we have the equality �O(L(G))=Npar; +(!′), for
all +∈{repl ; one; spread}, hence the theorem is also proved for the case of the mode
par.

Together with assertion (ii) from Theorem 7 we get the following characterization of
PsET0L, which precisely describes the power of the mode max in the non-cooperative
case.

C. Mart78n-Vide et al. / Theoretical Computer Science 296 (2003) 295–326 321

Corollary 11. NtP1;1 (nCoo; max; +) ⊆ NtP1;2 (nCoo; max; +) ⊆ NtP1;3 (nCoo; max; +) =
NtPm; r (nCoo; max; +) =NtP∗;∗ (nCoo; max; +) = PsET0L, for all m¿1; r¿3, and
+∈{repl ; one; spread}.

A more precise characterization of families NtPm; r(nCoo; par; +), when +∈{repl ;
one; spread}, remains to be found (but we already know that such systems only gen-
erate Parikh images of ET0L languages).

9. Solving HPP in linear time

The architecture of tP systems and their way of working (especially the fact that in
the maximal mode of using the rules we can process all objects which may be processed
in such a way that the same next state is obtained, irrespective which rules are used,
and the fact that in the replicative mode one can send the same objects to all successors
of a cell) have an intrinsic computational power. More precisely, problems related to
paths in a (directed) graph can be easily solved by a tP system, just by constructing a
net with the synapses graph identical to the graph we deal with, constructing all paths
in the graph with certain properties by making use of the maximal mode of applicating
the rules and of the replicative communication, and checking the existence of a path
with a desired property.
We illustrate this power of tP systems with the Hamiltonian Path Problem (HPP),

which asks whether or not in a given directed graph G=(V;U) (where V = {a1; : : : ; am}
is the set of vertices, and U ⊆V ×V is the set of edges) there is a path starting in
some vertex ain, ending in some vertex aout , and visiting all vertices exactly once.
For simplicity, in what follows we assume that ain= a1 and aout = am. It is know that
the HPP is an NP-complete problem, hence it is one of the problems considered as
intractable for the sequential computers (for the Turing machines).
Having a graph G=(V;U) as above, we construct the tP system

! = (O; #1; : : : ; #m; U; m);

with the alphabet

O = {[z; k] | z ∈ V ∗; 06 |z|6 m; 06 k 6 m};
and with the following cells:

#1 = ({s}; s; [�; 0];
{s[�; 0] → s([1; 1]; go)});

#i = ({s}; s; �;
{s[z; k] → s([zi; k + 1]; go) | z ∈ V ∗;

16 |z|6 m− 2; |z|i = 0; 16 k 6 m− 2});
for each i = 2; 3; : : : ; m− 1; and

322 C. Mart78n-Vide et al. / Theoretical Computer Science 296 (2003) 295–326

Fig. 4. A diPcult graph.

#m = ({s}; s; �;
{s[z;m− 1] → s([zm;m]; out) | z ∈ V ∗; |z| = m− 1}):

It is easy to see that Nmax; repl(!) �= ∅ if and only if HPP has a solution for the graph
G: the paths in G grow simultaneously in all cells of !, because of the max mode of
using the rules (each cell has only one state, hence all rules can be used at the same
time). Moreover, the cell #m can work only after m − 1 steps and a symbol is sent
out of the net at the step m. Thus, it is enough to watch the tP system at step m and
if any symbol is sent out, then HPP has a solution, otherwise we know that such a
solution does not exist. (Note that the symbol sent out describes a Hamiltonian path
in G.)
The previous construction does not work for non-cooperative tP systems with the

modes min and par of using the rules. For instance, for the graph indicated in
Fig. 4, one accumulates exponentially many partial paths in nodes ir ; jr close to node
2, because the ancestors are replicating the paths, but from each cell only one path is
processed. The reader is asked to simulate the work of the associated tP system for a
small k, say 5.

10. Topics for further research

Compared to the wealth of research topics which can be imagined with respect to
tP systems, the present paper looks rather preliminary. We list here only part of such
research topics. For sure, the reader can formulate many others, looking for new variants
(more adequate to the brain organization or to the tissues structure and functioning,
more elegant from a mathematical point of view, more powerful, more ePcient, etc.),
for further problems (either of a mathematical or a computational interest, or inspired
from the biology of tissues or from the theory of non-symbolic neural networks),
for applications, for possible implementations. Our list roughly follows this ordering of
topics, from variants to possible implementations, but it supposes no ordering according
to the signi4cance of the questions.
First, let us formulate again the question about a closer investigation of (the power

of) non-cooperative tP systems working in modes par and max. Especially the latter
case is important, as we consider it closer to the biochemical reality (in particular, to

C. Mart78n-Vide et al. / Theoretical Computer Science 296 (2003) 295–326 323

the brain activity), and in view of the result from Section 9, proving the computational
ePciency of this mode.
Concerning the possibility of considering variants, the landscape looks endless. For

instance, instead of having only one cell providing an output, we can consider several
output cells; does this makes any diJerence? Then, between the min and the par
modes of working, we can consider intermediate cases, as in the cooperating distributed
grammar systems [10]: a rule should be used at most k, exactly k, at least k times in
parallel, for a given k. We can also go towards max and use in a given step at most
k, exactly k, at least k rules which may be diJerent to each other.
Moreover, we can consider variants of the modes of communication. First, we can use

no indication go, each new symbol being immediately sent to an adjacent cell. A more
restrictive possibility is to use indications goj, with j being the cell where the symbol
must go. This last idea is related to the mode of communicating in standard P systems,
from where further similar ideas can be borrowed. In the model we have considered
here, the objects which are not processed at a given step are passed unchanged to
the next con4guration. This looks too computer science oriented; a more biologically
oriented variant would be to “forget” (remove) all symbols not processed at a given
step (or to remove them after a given number of steps, which could model the idea of
“memory”). This seems interesting for the case of parallel and, especially, maximal use
of rules, otherwise too many objects are lost. This variant is somewhat related to the
case when no cell can wait, such a case leading to the end of the computation (with two
possibilities: if some cells can work and some other cannot, then either the computation
is blocked, without any output, or we can consider that the computation halts correctly;
the 4rst case can provide a powerful mode of controlling the computation, a sort of
appearance checking feature, like in matrix grammars).
A natural variant, probably also realistic from a biological point of view, is to work

in a hybrid mode, with various cells having various modes of using the rules and of
communicating. It is also possible to control the communication by considering /lters
at the destination cells (in a similar way as in networks of language processors [9]),
which is also expected to be a powerful feature.
Coming closer to language theory, a 4rst possibility is to consider strings as results

of a computation, by arranging the symbols which leave the net in the ordering of
their exit; when several symbols are expelled at the same time, then any ordering of
them is accepted. A completely diJerent area of research can be obtained by using
strings in the net, not multisets of symbols, that is, representing the objects from each
cell as a set of strings. In such a case, the string-excitations will be handled by string
processing rules, for instance, by rewriting. The presence of states provides a powerful
tool for controlling the use of rules, like in state grammars [13], which will probably
lead to “easy” characterizations of recursively enumerable languages (this depends on
the precise de4nition of the mechanism).
Now, let us pass to imagining further types of problems. Consider 4rst something

which can be also considered a constructive variant: using a tP system as a transducer.
Start with initial states and, maybe, objects present in cells, but also consider some
inputs (dendrites linked to the environment), which bring objects into the net. After
a computation, we get an output, related to this input. This is similar to the case of

324 C. Mart78n-Vide et al. / Theoretical Computer Science 296 (2003) 295–326

neural networks, from which we can borrow many other problems, for instance, related
to the self-organization of the net, learning, adaptation to new environments, Mexibility
(adding or removing cells, states, rules, synapses). Especially this last idea, of having
a tP system with a dynamic structure, seems to be promising from a computational
point of view.
There are many problems of a mathematical and computational interest. In Section 8

we have found only collapsing hierarchies on the number of cells and of states. How-
ever, if we bound the number of states, for instance, at two per cell, it is highly possible
to obtain an in4nite hierarchy of the computed sets of vectors of natural numbers with
respect to the number of cells. Various classi4cations of tP systems can be de4ned
starting from the shape of the graph de4ned by the synapses (diameter, indegree, out-
degree, planar/non-planar, ring, cycles, etc.). Which is the inMuence of the shape of the
graph on the power and the properties of tP systems? From a computational point of
view, it is of interest to consider deterministic cells (the solution to a problem should
be obtained in a deterministic manner, a possible implementation on a usual computer
needs working in a deterministic manner, etc.).
We have mentioned several times connections with other areas of distributed and

parallel computing, such as classic automata networks, multiset automata, membrane
computing, grammar systems and systems of cooperating automata, networks of lan-
guage processors, systolic automata, and others. These connections should be more
technically explored, for instance, looking for the possibility of simulating (bisimulat-
ing?) some devices by tP systems or conversely. This can bring results from an area
to another one and can also suggest variants for the involved mechanisms, borrowing
ideas from each other.
Going back to one of our motivations, that of having a symbolic model of the

“real” neural nets, we can consider several questions of interest. What means memory
in our context? How can we store and retrieve information in a tP system? Also,
having in mind that the human brain contains a large number of competences (for
processing languages, in the sense of [6], following the chomskian viewpoint that the
brain competences have a grammatical structure) the question arises concerning the
way of organizing a tP system-brain in such a way to handle several diJerent classes
of competences, to compute several diJerent sets of vectors of natural numbers. What
kind of “parametrization” is possible in this framework and how large eJects can have
such a parametrization? What about considering a universal sub-net, in the sense of
programmability, embedded in a tP system, so that a large range of behaviors are
obtained? Admittedly, this is a speculative question, but its interest is obvious.
What about investigating the behavior itself of tP systems, as a dynamic process,

without taking (too much) care of the outputs? Cycles of con4gurations, deadlocks,
over-crowded cells, 4ring of given cells, reachability of certain con4gurations, and so
on and so forth can be notions of interest in such a case, maybe also with some
biological signi4cance.
We have reached in this way the topic of possible applications, a premature question

for this stage. Further investigations are necessary before having a sensitive answer,
starting, for instance, by considering several graph theory problems which can probably
be approached in this framework, as already indicated in Section 9. What about prob-

C. Mart78n-Vide et al. / Theoretical Computer Science 296 (2003) 295–326 325

lems of other types, not necessarily from graph theory? What about other modes than
max, can they lead to polynomial (maybe, linear) solutions to NP-complete problems,
as the maximal mode does?
We close this discussion by expressing our belief that the tP systems, in the form

considered here or in a form which will be found to be more adequate-elegant-powerful-
useful, deserve our full attention and that we hope that the domain will pay oJ for the
research eJorts which we expect to follow.

References

[1] B. Alberts, et al., Essential Cell Biology. An Introduction to the Molecular Biology of the Cell, Garland
Publ. Inc, New York, London, 1998.

[2] M.A. Arbib, Brains, Machines, and Mathematics, 2nd Edition, Springer, Berlin, 1987.
[3] M.A. Arbib, The Metaphorical Brain: An Introduction to Schemes and Brain Theory, Wiley Interscience,

Berlin, 1988.
[4] J.P. Banatre, P. Fradet, D. LeMetayer, Gamma and the chemical abstract reaction model: 4fteen years

after, in: C.S. Calude, Gh. P*aun, G. Rozenberg, A. Salomaa (Eds.), Multiset Processing. Mathematical,
Computer Science, and Molecular Computing Points of View, Lecture Notes in Computer Science, Vol.
2235, Springer, Berlin, 2001, pp. 17–44.

[5] D.S. Blank, et al., Connectionist symbol processing: dead or alive? Neural Comput. Surveys 2 (1999)
1–40.

[6] C. Calude, S. Marcus, Gh. P*aun, The universal grammar as a hypothetical brain, Rev. Roum. Ling. 24
(5) (1979) 479–489.

[7] C. Calude, Gh. P*aun, Computing with Cells and Atoms, Taylor and Francis, London, 2000.
[8] C. ChoJrut (Ed.), Automata Networks, Lecture Notes in Computer Science, Vol. 316, Springer, Berlin,

1988.
[9] E. Csuhaj-Varju, Networks of language processors, in: Gh. P*aun, G. Rozenberg, A. Salomaa (Eds.),

Current Trends in Computer Science, World Sci., Singapore, 2001, 781–800.
[10] E. Csuhaj-Varju, J. Dassow, J. Kelemen, Gh. P*aun, Grammar Systems. A Grammatical Approach to

Distribution and Cooperation, Gordon and Breach, London, 1994.
[11] E. Csuhaj-Varju, C. Martin-Vide, V. Mitrana, Multiset automata, in: C.S. Calude, Gh. P*aun,

G. Rozenberg, A. Salomaa (Eds.), Multiset Processing. Mathematical, Computer Science, and Molecular
Computing Points of View, Lecture Notes in Computer Science, Vol. 2235, Springer, Berlin, 2001,
pp. 67–82.

[12] K. Culik II, A. Salomaa, D. Wood, Systolic tree acceptors, RAIRO 18 (1984) 53–79.
[13] J. Dassow, Gh. P*aun, Regulated Rewriting in Formal Language Theory, Springer, Berlin, 1989.
[14] Z. Esik, A note on isomorphic simulation of automata by networks of two-state automata, Discrete

Applied Math. 30 (1991) 77–82.
[15] R. Freund, Gh. P*aun, On the number of non-terminals in graph-controlled, programmed, and matrix

grammars, Proc. of the MCU Conf., ChiXsin*au, 2001, Lecture Notes in Computer Science, Vol. 2055,
Springer, Berlin, 2001, 214–225.

[16] F. Gecseg, Products of Automata, Springer, Berlin, 1986.
[17] D. Hauschild, M. Jantzen, Petri nets algorithms in the theory of matrix grammars, Acta Informatica

31 (1994) 719–728.
[18] S.C. Kleene, Representation of events in nerve nets and 4nite automata, Automata Studies, Princeton

Univ. Press, Princeton, N.J., 1956, 2–42.
[19] M. Kudlek, C. Martin-Vide, Gh. P*aun, Toward FMT (Formal Macroset Theory), Pre-proc. of Workshop

on Multiset Processing, Curtea de ArgeXs, Romania, TR 140, CDMTCS, Univ. Auckland, 2000,
pp. 149–158.

[20] W.R. Loewenstein, The Touchstone of Life. Molecular Information, Cell Communication, and the
Foundations of Life, Oxford Univ. Press, New York, Oxford, 1999.

326 C. Mart78n-Vide et al. / Theoretical Computer Science 296 (2003) 295–326

[21] A. Mateescu, V. Mitrana, Parallel 4nite automata systems communicating by states, Intern. J. Found.
Computer Sci. 13 (2002) 733–749.

[22] W.S. McCulloch, W.H. Pitts, A logical calculus of the ideas immanent in nervous activity, Bull. Math.
Biophys. 5 (1943) 115–133.

[23] M. Minsky, Computation: Finite and In4nite Machines, Prentice-Hall, Englewood CliJs, NJ, 1967.
[24] Ch.P. Papadimitriou, Computational Complexity, Reading, MA, 1994.
[25] Gh. P*aun, Computing with membranes, J. Computer Syst. Sci. 61(1) (2000) 108–143; see also Turku

Center for Computer Science-TUCS Report No. 208, 1998, www.tucs.4.
[26] Gh. P*aun, Y. Sakakibara, T. Yokomori, P systems on graphs of restricted forms, Publicationes Math.

Debrecen, to appear.
[27] G. Rozenberg, A. Salomaa, The Mathematical Theory of L Systems, Academic Press, New York, 1980.
[28] G. Rozenberg, A. Salomaa (Eds.), Handbook of Formal Languages, 3 volumes, Springer, Berlin, 1997.

http://www.tucs.fi

	Tissue P systems
	Introduction
	The inter-cellular communication
	The neuron and its functioning
	Some mathematical prerequisites
	Tissue P systems
	Two examples
	Further language theory prerequisites
	Matrix grammars and their normal form
	Lindenmayer systems

	The power of tP systems
	Comparison with Chomsky families
	Comparison with Lindenmayer families

	Solving HPP in linear time
	Topics for further research
	References

