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Abstract In this paper a new flow field prediction method which is independent of the governing

equations, is developed to predict stationary flow fields of variable physical domain. Predicted flow

fields come from linear superposition of selected basis modes generated by proper orthogonal

decomposition (POD). Instead of traditional projection methods, kriging surrogate model is used

to calculate the superposition coefficients through building approximate function relationships

between profile geometry parameters of physical domain and these coefficients. In this context,

the problem which troubles the traditional POD-projection method due to viscosity and compress-

ibility has been avoided in the whole process. Moreover, there are no constraints for the inner prod-

uct form, so two forms of simple ones are applied to improving computational efficiency and cope

with variable physical domain problem. An iterative algorithm is developed to determine how many

basis modes ranking front should be used in the prediction. Testing results prove the feasibility of

this new method for subsonic flow field, but also prove that it is not proper for transonic flow field

because of the poor predicted shock waves.
ª 2015 Production and hosting by Elsevier Ltd. on behalf of CSAA & BUAA.
1. Introduction

For some systems governed by complex equations, a reduced

order model (ROM) which approximates the high-fidelity
(HF) models well with rather fewer states can be generated
by some certain methods. So, developing efficient ROMs to
improve computational efficiency is a hot issue in computa-
tional physics now. The combination of proper orthogonal
decomposition (POD)1–3 and projection methods (POD-pro-

jection) is such a research direction in the area of fluid dynam-
ics. This strategy approximates the HF result by the linier
superposition of some selected basis modes, and the coeffi-

cients of these selected basis modes are determined by solving
ordinary differential equations (ODEs) generated from pro-
jecting the governing equations onto the selected basis modes.

In the past decades, many problems in fluid dynamics have
got corresponding ROMs through POD-projection approach.
Two projection methods for applying this strategy in problems

governed by Euler equations are presented in Ref.4 ROMs
about aeroelasticity of airfoil5,6 and turbine engine7 have also
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been derived. But all these applications above ignored the fluid
viscosity. It is true that problems which concern viscosity could
also be handled by this approach. For example, Ma and

Karniadakis8 investigated the stability and dynamics of
three-dimensional limit-cycle states inflow past a circular cylin-
der using ROM generated by POD-projection strategy. Other

similar literature includes laminar, transitional and turbulent
flows simulation,9–13 flow field calculation and control in chem-
ical process14 and free surface shallow water flows.15 However,

these problems all ignored the compressibility of fluid.
Not many researches have been conducted concerning the

problems that concern compressible viscous flows by POD-pro-
jection strategy. Rowley et al.16 got the ROM for compressible

Navier–Stokes equations, but the flow must be isentropic.
Bourguet et al.17 extended the application to transonic flows
around airfoil, which are governed by Navier–Stokes equa-

tions. While, the flow fields are constrained under constant vis-
cosity assumption. It is worth noting that all the constraints
above come from the projection process. For realizing the pro-

jection process, the governing equations should be modified
into some forms to lead quadratic fluxes, and the inner product
should make dimensional sense.16 Besides compressibility and

viscosity, variable physical domain, which means that the
domain occupied by the flow field is variable, also causes trou-
bles for the application of POD-projection, because the projec-
tion process requires a fixed physical domain in principle. Of

course, this problem has been solved in some cases. For the
physical domain discretized by structured meshes, index-based
POD6,18,19 could be used to eliminate this problem. In addition,

Hadamard formulation could also be used to cope with small
deformations of physical domain in POD-projection process.17

All the drawbacks presented above can be summarized as

the so-called intrusive feature: starting from an existing com-
putational code, additional derivations and programming
efforts required to develop a ROM.20 Bui-Thanh et al.21

combined POD with cubic spline interpolation to predict
inviscid flow field of fixed airfoil when a single parameter, such
as the angle of attack or inflow Mach number, is changed.
This method gets over the intrusive feature, but can just treat

single parameter problems, and the physical domain should
still be fixed because of the constraint from inner product.
Qiu et al.22 presented a new strategy to predict flow field

by the combination of surrogate model and POD. Compared
with the combination of cubic spline interpolation and POD,
multi-parameters problems could be handled easily by this

method.
Following the work presented in Ref.22, this paper is

devoted to develop a simpler and more precise ROM method
for stationary flow field prediction. For that, the combination

of POD and kirging surrogate model23 is used to build ROM
system. Two simple forms of index-based inner product are
applied into the POD process, which improve the computa-

tional efficiency and make the physical domain variation
problems very easy. Meanwhile, an efficient algorithm, which
is used to determine how many basis modes ranking front

should be used, is proposed in this paper.
Brief introductions of POD and kriging surrogate model

are presented in Sections 2 and 3 respectively. Section 4.1

introduces flow field prediction method based on the combina-
tion of POD and kriging surrogate model in detail. The algo-
rithm used to determine the basis modes number is presented
out in Section 4.2. Following that, the applying of different
forms of inner product is discussed. Section 5 presents two sets
of prediction results and the corresponding analysis under
different flow conditions. A brief summary is concluded in

Section 6.

2. Proper orthogonal decomposition and POD-projection system

To use POD method, the data set should be pre-treated. Nor-
mally, there are two forms,24 covariance form and correlation
form, to pre-treat the data set from the perspective of statistics.

The first one is the most common method, and the second
method is more suited to data with mixed units and significant
magnitude difference. Since the results generated by the CFD

code in present work are dimensionless, the covariance method
is adopted here.

Let fUðiÞðxÞ : 1 � i � N; x 2 Xg represent a set of N sample

flow fields (called snapshots commonly), X is the physical
domain of flow field, and we deem each snapshot as a vector.
With covariance method, each snapshot should be rewritten in
the form of UðiÞðxÞ ¼ ~UðiÞðxÞ þUðxÞ, and UðxÞ is the average

of all snapshots. Then the vector set f~UðiÞðxÞ : 1 � i � N;
x 2 Xg can span a linear space W. POD method is used to
decompose space W into a set of orthogonal basis

fUðiÞðxÞ : 1 � i � N; x 2 Xg (called basis modes) which has
the maximum mean square projection on all snapshots. This
leads to such a constrained maximization problem:

max
1

N

XN
i¼1

~UðiÞ;U
� ��� ��2

s:t: ðU;UÞ ¼ 1

ð1Þ

where ð� ; �Þ and j � j are inner product operation and norm
defined on L2 (square integrable space, SIS) respectively. Since
UðiÞðxÞ : 1 � i � N; x 2 X
� �

is a set of orthogonal basis of
space W which is spanned by ~UðiÞðxÞ : 1 � i � N; x 2 X

� �
; then

each basis mode U can be represented by the linear superposi-
tion of ~UðiÞðxÞ as

U ¼
XN
i¼1

aðiÞ ~UðiÞ ð2Þ

If all the coefficients aðiÞ are solved out, then the basis

modes are known. The so-called Rayleigh-Rita method25

could be used to solve this problem above. Literature14 pre-
sents the process for the most common solution. First it defines

a core function

Kðx; x0Þ ¼ 1

N

XN
i¼1

~UðiÞðxÞ~UðiÞðx0Þ ð3Þ

and an operator

RU ¼
Z

X
Kðx; x0ÞUðx0Þdx0 ð4Þ

where R : L2ðXÞ ! L2ðXÞ. Inner product operation between
RU and U leads

ðRU;UÞ ¼
Z

X
RUðxÞUðxÞdx ¼ 1

N

XN
i¼1
ð~UðiÞ;UÞ
�� �� ð5Þ

The right side of this equation is equal to the target of Eq.

(1). So, the maximization problem then transforms into finding
the maximum eigenvalue of
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RU ¼ kU

s:t: ðU;UÞ ¼ 1
ð6Þ

The expression above in detail isZ
X
Kðx; x0ÞUðx0Þdx0 ¼ kU

s:t: ðU;UÞ ¼ 1

ð7Þ

Substituting Eqs. (2) and (3) into the equation above, we
will obtainXN
i¼1

XN
k¼1

1

N

Z
X

~UðiÞðx0Þ~UðkÞðx0Þdx0
� �

aðkÞ

" #
~UðiÞðxÞ

¼
XN
i¼1

kaðiÞ ~UðiÞðxÞ
ð8Þ

which can be rewritten as another eigenvalue problem as

CV ¼ kV ð9Þ

where C is a N�N matrix with Cij ¼ ð~UðiÞ; ~UðjÞÞ=N, and V is
the eigenvector corresponding to eigenvalue k. So C is a non-
negative symmetric matrix, and it has a complete set of orthog-

onal eigenvectors

VðiÞ ¼ a
ðiÞ
1 a
ðiÞ
2 � � � a

ðiÞ
N

h iT
; 1 � i � N ð10Þ

Then the coefficients for the ith basis mode in Eq. (2) are
the elements of the ith eigenvector of matrix C, namely

UðiÞ ¼
XN
j¼1

a
ðiÞ
j

~UðjÞ ð11Þ

Usually, all the N basis modes are sequenced in descending
order of their corresponding eigenvalues, because those basis

modes corresponding to bigger eigenvalues contain more snap-
shot characteristics than others. The criteria that used to mea-
sure the amount of snapshots characteristics contained in the

first M ð1 �M � NÞ basis modes is so-called energy,2 which
is defined as

EnM ¼
XM
i¼1

kðiÞ
,XN

j¼1
kðjÞ ð12Þ

In most cases, just the first few basis modes would contain

most (� 99%) energy of the snapshot set. So, each snapshot
can be approximated by the linear superposition of these modes

UðiÞðxÞ�
XP
j¼1

bðjÞUðjÞðxÞþUðxÞ; ðEnP� 99%; P<<NÞ ð13Þ

This is the famous 99% energy criteria proposed by Siro-
vich.2 The coefficients bðjÞ can be solved out by least square
method, which leads to such equations

Mb ¼ f ð14Þ

where Mjk ¼ ðUðkÞðxÞ;UðjÞðxÞÞ
��P
k;j¼1, b ¼ ½bð1Þ; bð2Þ; � � � ; bðPÞ�T

and fj ¼ ð~UðiÞðxÞ;UðjÞðxÞÞ
��P
j¼1. Since the basis modes is a set

of orthonormal basis, bðjÞ can be solved directly from

bðjÞ¼ ~UðiÞðxÞ;UðjÞðxÞ
� ���P

j¼1 ð15Þ

Any flow field UðxÞ, which is not included in the snapshot

set and unknown in prior, could also be approximated by the
linear superposition of the selected modes, namely
UðxÞ �
XP
j¼1

bðjÞUðjÞðxÞ þUðxÞ; P << N ð16Þ

Since UðxÞ is unknown in prior, the coefficients bðjÞ here

could not be found out by solving Eq. (15). Instead, projecting
the governing equations onto selected basis modes is used to
solve themout. Generally, projectionmeans to do inner product
operation between selected basismodes and the governing equa-

tions. It will lead to a set of simple ODEs which could be solved
easily. But, as mentioned in Section 1, the projection process
itself is not easywhen the governing equations are very complex.

3. Kriging surrogate model

Let fXðiÞ : 1 � i � Ng represent a set of N input parameters

vectors from samples, for each vector, there are z elements,

namely XðiÞ ¼ x
ðiÞ
1 ; x

ðiÞ
2 ; � � � ; xðiÞz

h iT
. The sample output parame-

ters vector is Y ¼ ½y1; y2; . . . ; yN�
T
; here yið1 � i � NÞ repre-

sents the corresponding output scalar values of XðiÞ

ð1 � i � NÞ: Y could be generated by high fidelity simulations
or experiments. Now we want to use these samples to predict

the output value when input vector X is beyond the samples.
Kirging surrogate model presumes the real function relation-
ship between the input vector and output value as

yðXÞ ¼ bþ ZðXÞ ð17Þ

where b is a hyperparameter which is the determined part and
ZðXÞ is a Gaussian stochastic process with zero mean and
covariance in the form of

CovðZðXðiÞÞ;ZðXðjÞÞÞ ¼ r2
zRðXðiÞ;XðjÞÞ ð18Þ

where R is the correlation function between two input points,
and r2

z the Gaussian process variance. For R, most applica-
tions use Gaussian function

RðXðiÞ;XðjÞÞ ¼ expð�dðXðiÞ;XðjÞÞÞ ð19Þ

where dðXðiÞ;XðjÞÞ is the distance function between XðiÞ and XðjÞ.

Usually it is a weighted distance function

dðXðiÞ;XðjÞÞ ¼
Xz
k¼1

hk x
ðiÞ
k � x

ðjÞ
k

��� ���2 ð20Þ

Hyperparameters hk control the degree of nonlinearity in

kriging surrogate model. Once they are found out, the predic-
tion model would be built. Through maximum likelihood pre-
diction, finding these hyperparameters transforms into solving

a constrained minimization problem:

MinuðhÞ ¼ RðhÞj j1=zr2
zðhÞ

h ¼ h1; h2; � � � ; hz½ �T; ðhj � 0Þ
��z
j¼1

(
ð21Þ

where RðhÞ is a N�N matrix whose ijth element is

RðhÞij ¼ RðXðiÞ;XðjÞÞ, I is the unit matrix, and r2
zðhÞ can be

found out from

r2
z ¼ 1

N
ðY� Ib̂ÞTRðhÞ�1ðY� Ib̂Þ

b̂ ¼ ITRðhÞ�1Y
ITRðhÞ�1I

8><>: ð22Þ

Many methods could be used to solve the problem above,

and in our study, genetic algorithm (GA) is adopted. Once
the hyperparameters are known, the prediction model could
be built in detail as
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yðXÞ ¼ b̂þ rTðXÞRðhÞ�1ðY� Ib̂Þ ð23Þ

Here rðXÞ ¼ RðX;Xð1ÞÞ;RðX;Xð2ÞÞ; � � � ;RðX;XðNÞÞ
	 
T

:

The prediction standard deviation is

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
zð1� rTðXÞRðhÞ�1rðXÞÞ

q
ð24Þ
4. Flow field prediction based on POD and kriging surrogate

model

In this section, the kriging surrogate model, instead of projec-
tion method, is used to find the coefficients of selected basis

modes in Eq. (16). And the inner product forms for variable
physical domain are discussed.

4.1. Combination of POD and kriging surrogate model

The principle that use kirging surrogate model to find basis
modes coefficients out is: assume that that the flow field varies

with the changing of z parameters X ¼ ½x1; x2; � � � ; xz�T which
could be, for example, the geometry parameters of the config-

uration. Let fUðiÞgNi¼1 be a set of snapshots corresponding to

the parameter set fXðiÞgNi¼1. Do the POD process on the snap-

shots set and select the first P basis modes to approximate each
snapshot following Eq. (13). Then a basis mode coefficients set

fbðiÞgNi¼1 with bðiÞ ¼ ½bðiÞ1 ; b
ðiÞ
2 ; . . . ; b

ðiÞ
P �

T
could be generated. That

means the flow field UðiÞ which is decided by XðiÞ could be

described by bðiÞ approximately. So there is a certain function
relationship b ¼ FðXÞ between the parameters vector X and
the coefficients vector b. And, we can use kriging surrogate

model to approximate this function relationship as

b ¼ FðXÞ � bFðXÞ.
Since kriging surrogate model can just approximate the

function relationship about single output variable, if the first
P basis modes are selected to predict the flow field decided
by any new parameters vector b, then P kriging surrogate mod-

els should be built. Namely, for the coefficient of the jth basis
mode, the function relationship bj � f̂jðXÞ should be con-
structed based on the database fbðiÞj g

n

i¼1 and fXðiÞgni¼1. Finally,
the basis mode coefficients for any new flow field UðXÞ decided
by parameters vector X are solved by

b1 � f̂1ðXÞ
b2 � f̂2ðXÞ
..
. ..

.

bP � f̂PðXÞ

8>>>>><>>>>>:
ð25Þ

Then, UðXÞ could be approximated by Eq. (13) using these
coefficients, namely

UðXÞ �
XP
j¼1

bðjÞUðjÞðxÞ þUðxÞ ð26Þ

From the process above, we do not introduce any assump-
tion or constraint to the problem. The flow field prediction
method is independent with the governing equations. So, com-
pressibility and viscosity would not cause any trouble. And it is

easy to extend this method to predict other physical fields or
large-scale output problems.
4.2. Algorithm used to determine the number of modes

As mentioned in Section 2, the number of modes that should
be used can be determined by the famous 99% energy crite-
rion. Usually this criterion can promise a predicted result

which is not very poor, but probably not the best one (as dem-
onstrated in next section). For the prediction method used in
this paper, a more applicable modes number could be deter-
mined during the prediction process. That is based on such a

feature: if U
ðXÞ
P is the predicted result of UðXÞ by using the first

P basis modes, then when we use the fist Pþ 1 basis modes to
repeat the prediction, we just need to build the kriging surro-

gate model for the Pþ 1 basis mode. The new prediction result
can be represented as

U
ðXÞ
Pþ1 ¼ U

ðXÞ
P þ bPþ1U

ðPþ1ÞðxÞ ð27Þ

Based on the formula above, we can construct an efficient
algorithm which can promise a good prediction result without

trying all choices of modes number. Let q be an integer, dP be
the residual between U

ðXÞ
ðP�1Þ and U

ðXÞ
ðPÞ , e is the residual tolerance,

and U
ðXÞ
ð0Þ ¼ UðxÞ. Then the procedure can be summarized as

follows, beginning with P ¼ 1:

Step 1. Build the surrogate model to predict the superposi-

tion coefficient bP of the P th basis mode.
Step 2. Get U

ðXÞ
P by using linear superposition between

U
ðXÞ
ðP�1Þ and UðPÞðxÞ, namely Eq. (27). Then calculate dP .

Step 3. If P < q, go to Step 5. Else, find out the maximum

and minimum of data set fdP ; dP�1; . . . ; dP�qþ1g, and
name them dmax and dmin respectively.
Step 4. If jdmax � dminj � e, then stop the iteration, the final

modes number is P and the final prediction result is U
ðXÞ
P .

Otherwise, go to Step 5.
Step 5. Set P ¼ P þ 1 and go to Step 1.

There are many choices about the criteria that used to
quantify dP in preceding iteration. In the present work, the dif-

ference between both surface pressure distributions (SPDs)
which are extracted from both predicted flow fields is adopted.
The definition is

dP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

S

XS
i¼1
ðCðiÞpPþ1 � C

ðiÞ
pPÞ

2

vuut ð28Þ

where C
ðiÞ
pPþ1 and C

ðiÞ
pP are the surface pressure coefficients of

U
ðXÞ
ðPþ1Þ and U

ðXÞ
ðPÞ at the ith grid vertex of all S grid vertexes that

around the solid surface.

4.3. Inner product for variable physical domain

Usually, the inner product used in POD process about aerody-
namic problem is defined on SIS. For example, the inner prod-

uct between ~UðmÞ and ~UðnÞ from the snapshots set
~UðkÞðxÞ : 1 � k � N; x 2 X
� �

is

~UðmÞ; ~UðnÞ
� �

¼
Z

X

~UðmÞ ~UðnÞdX ¼
Z

X

Xw
z¼1

~UðmÞz
~UðnÞz dX ð29Þ

where ~UðmÞz and ~UðnÞz are the zth variables of all w variables in
~UðmÞ and ~UðnÞ respectively. The last term of the equation above
means the physical domain should be included in the inner
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product in some certain forms. While, for the problem treated

in this paper, the physical domains of flow fields are different
from each other. It makes the operation of Eq. (29) hard to go
on. Bourguet et al.17 used Hadamard formulation to treat

problem of flow field prediction around an airfoil submitted
to small deformations. This approach captures airfoil profile
deformations by a boundary conditions modification whereas
the spatial domain remains unchanged. While using this

method, you have to change your CFD code to solve the so-
called HF Navier–Stokes equations. And the airfoil deforma-
tions in ROM are represented in some complex forms. More-

over, the deformations are constrained ‘‘small’’.
Actually, if all the snapshots are generated from the compu-

tations done on structured meshes which have the same topol-

ogy and index, another simpler approach proposed by
LeGresley and Alonso19 could be applied. For the physical
domain discretized by structured meshes, the discrete equiva-
lent of the inner product in Eq. (29) is then

ð~UðmÞ; ~UðnÞÞ ¼
X
i;j

Xw
z¼1

~UðmÞz
~UðnÞz Aij ð30Þ

where Aij is the ensemble average area of the ijth grid cells in all
snapshots measured in the physical domain. In this case, the
domain is the same for all snapshots. Eq. (30) seems calcula-
tionally easy, but the area of the ijth grid cell in each snapshot

should be solved out. Moreover, if the CFD code, which is
used to calculate the snapshots, uses vertex scheme instead
of cell-centered scheme, values of ~UðmÞz and ~UðnÞz at the center

of the ijth cells should be predicted out from their values at
the vertexes around the cells. If we need not to build a POD-
Projection ROM system, just as what is being done in this

paper, the physical domain needs not to be included into the
inner product. So, it leads to the simplified inner product

ð~UðmÞ; ~UðnÞÞ ¼
X
i;j

Xw
z¼1

~UðmÞz
~UðnÞz ð31Þ

Compared with Eq. (30), it seems that the equation here
just ignores the cell area item, and actually it convents the

computation a lot. In Eq. (31), ~UðmÞz and ~UðnÞz could be their val-
ues either at the ijth grid vertexes or the center of the ijth grid
cells, and it just depends on the scheme of the CFD code.
Obviously, this simplified inner product turns to be the most

common one defined on euclidean space (ES). It is more con-
venient and has higher computational efficiency. Moreover, it
just requires that the meshes for both sets have the same topol-

ogy and index. As for the physical domains, they can be differ-
ent from each other.
Fig. 1 Profiles of baseline airfoil, the probabl
5. Stationary flow fields prediction of different airfoils

In this section, we present the prediction results of stationary
flow fields of different airfoils. In detail, we set q ¼ 4 and

e ¼ 1:0� 10�6 as the iteration stop criteria. For comparison,
all the prediction work is repeated with using two different
inner product forms, namely, Eqs. (30) and (31). In the follow-

ing sections, results signed by ‘‘SIS’’ means they are generated
by using inner product in the form of Eq. (30), signed by ‘‘ES’’
means they are generated by using inner product in the form of
Eq. (31), signed by ‘‘CFD’’ means they are generated by the

CFD code directly.
The airfoils of the snapshots are generated by adding six

hicks-henna bumps26 and one CST classic function bump27

onto both sides of the baseline airfoil RAE-2822. The CST
bumps on both sides are used to change the slope at the trailing
edge. The formula for hicks-henna bump is Eq. (32), for CST

bump is Eq. (33).

yðxÞ ¼ a sinðpxln 0:5= ln tÞ ð32Þ

yðxÞ ¼ a
11!x10ð1� xÞ

10!
ð33Þ

where t is the peak location of the hicks-henna bump; the peak

locations of the six hicks-henna bumps are 0.1c 0.25c 0.45c
0.65c 0.8c and 0.9c, c is the chord length of the baseline airfoil;
a is the coefficient of the bump height which is generated by

Latin hypercube sample method.28 For the first four hicks-
henna bumps, the height coefficient intervals are [0.004,
0.004], for the 5th, 6th and the CST bumps are [0.002,

0.002], [0.001, 0.001] and [0.001, 0.001] respectively.
Two hundred airfoils are generated to compute their sta-

tionary flow fields as snapshots. The CFD code solves Rey-
nolds averaged Navier–Stokes equations using vertex

scheme. The trailing edges of all airfoils are sharp, and the
mesh type is typical C mesh with 320� 64 cells. Ten airfoils
beyond the snapshots are generated as testing samples. The

prediction is repeated under two different conditions. The first
is totally subsonic condition with freestream Mach number
Ma= 0.50, Reynolds number Re ¼ 4:0� 106 and angle of

attack a=2.8�. The second is transonic conditions with free-
stream Ma= 0.72, Re ¼ 5:4� 106 and a= 2.8�.

Fig. 1(a) shows the baseline airfoil RAE-2822, the thickest
and thinnest airfoils that could be generated from the intervals

of all bumpheight coefficients. Their corresponding SPDs under
both testing conditions are shown in Fig. 1(b) and Fig. 1(c).
From both figures, under subsonic condition, the negative pres-

sure peak of SPD at the leading edge on upper surface changes
e thickest and the thinnest snapshot airfoil.
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much drastically than other segments. While, variation of the
shock wave under the transonic condition is the most attractive
part. Generally, variation range of the SPD caused by the airfoil

profile changing is wider under Mach number 0.72.
The variables u, v, Ma, and Cp are considered to be pre-

dicted in the flow fields of the ten testing airfoils, where u

and v are the velocity along x and y directions, and Cp is the
pressure coefficient. Since it is hard to define an error measure
criterion which could consider all the four variables at the

same time, the error of the predicted SPDs is used to represent
the prediction precision indirectly. The definition is similar
with Eq. (28), namely

E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

S

XS
i¼1
ðCðiÞpe � CðiÞp Þ

2

vuut ð34Þ
Fig. 2 Energy curves generated usin

Fig. 3 Flow fields of selected ba
where CðiÞpe and CðiÞp are the predicted pressure coefficient and

the value solved by the CFD code at the ith grid vertex of
all S grid vertexes that around the airfoil surface.

5.1. Results for Mach number 0.50

The energy curves of both basis mode sets generated by using
both forms of inner product and the average flow field are pre-
sented in Fig. 2. The average flow field is generated by assign-

ing the average values of each flow field variable at each grid
node to the corresponding grid node of the average mesh of
all snapshots. For the criterion of 99% energy, just the first

6 basis modes, which contain 99.056% energy in total, could
satisfy it. And the first 12 modes that contain 99.224% energy
in total are needed corresponding to the ES result. It seems
g both inner product definitions.

sis modes in case Ma = 0.5.
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that it is easier to concentrate the energy into the modes rank-
ing front when using the inner product defined on SIS.

Fig. 3 shows the 1st, 5th, 10th and 20th basis modes gener-

ated using both forms of inner product (actually, they are the
flow fields of UþU). Compared with the average flow field,
the variation happening near the leading edge on the upper

surface is the most obvious in these basis modes. That means
the most significant variation characters among all the snap-
shots are around here. The 10th SIS basis mode is close to

the average flow field already, while, the corresponding ES
one still has obvious difference compared with the average
flow field. This phenomenon fits with the difference between
their corresponding energy curves in Fig. 2.

The boxplots of prediction errors defined by Eq. (34) of the
10 testing airfoils are presented in Fig. 4. In general, the error
converges when the first 18 modes are used when using the SIS

inner product, the corresponding number is 13 for using ES
inner product. Moreover, the general prediction precision is
higher with using SIS inner product after the prediction error

is converged.
Fig. 5 Residual convergence process of t

Fig. 6 Prediction error vs modes number o

Fig. 4 Boxplots about prediction errors of SPDs
In detail, the prediction process and results of the 3rd and
4th testing flow fields are given here. As shown in Fig. 5, if
using the iteration algorithm proposed in this paper to predict

both testing flow fields, the modes number is 29 (SIS) and 35
(ES) respectively. If using the 99% energy criterion, for both
testing flow fields, the modes number is 6 (SIS) and 12 (ES)

respectively, just as signed in Fig. 2(a). The prediction errors
of both testing flow fields are presented in Fig. 6. Generally,
when the inner product is defined on SIS, using the modes

number determined by the 99% energy criterion, the predic-
tion error is much higher than the converged error value. In
contrast, the iteration algorithm could provide a proper result
which attaches the converged error value with no redundant

basis modes. By using the inner product defined on ES, both
criteria provide the results at the same precision level, but more
redundant basis modes are used in the iteration algorithm.

When the first 30 basis modes are used, the predicted SPDs
and SPDs 	r of the 3rd and 4th testing airfoils are presented
in Fig. 7. From this figure, both SPDs are predicted precisely,

though both predicted SPDs of the 4th testing airfoil deviate
esting flow fields in case of Ma = 0.5.

f testing flow fields in case of Ma = 0.5.

of the ten testing airfoils in case of Ma = 0.5.



Fig. 7 Predicted SPDs and errors (	r) of the testing airfoil using the first 30 modes in the case of Ma = 0.5.
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from the CFD one a little at the negative peak segment. Sim-

ilarly, for both testing airfoils, the predicted velocity profiles
(see Fig. 8) near trailing edge on upper surface, where the
boundary layer is the thickest, have good agreements with
the CFD ones using both forms of inner products. Fig. 9 shows
Fig. 9 Predicted Mach number contours of two testing airfoil

Fig. 8 Predicted velocity profiles at x/c = 0.99 on upper surface of t

Ma = 0.5.
the predicted Mach number contours of both testing flow

fields. Both SIS results and ES result of the 3rd testing flow
field nearly cover the corresponding CFD result. While, similar
to the predicted SPD, ES result of the 4th testing flow field
biases the CFD results a little.
s when the first 30 modes are used in the case of Ma = 0.5.

wo testing airfoils when the first 30 modes are used in the case of
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5.2. Results for Mach number 0.72

When the flow condition changes to Mach number 0.72, with
either inner product form, the energy contained in the modes
ranking front is less than that in case Mach number 0.5, just

as indicated in Fig. 10. For satisfying the 99% energy criteria,
the first 12 and 15 modes are needed using SIS and ES inner
product respectively. We can speculate that the variation char-
acters contained in the snapshots are more complex than that

in case Mach number 0.5. Fig. 11 shows the flow fields of the
1st, 5th, 10th and 20th basis modes generated using both forms
of inner product. Compared with the average flow field pre-

sented in Fig. 10(b), the most obvious difference exists in these
modes are the intensity and amount of discontinuous stripes.
From this figure, the number of discontinuities increases with
Fig. 11 Flow fields of selected m

Fig. 10 Energy curves generated with
the increase of mode number, while their intensity decreases.
This phenomenon can be explained as follows: most character-
istics of shock waves of different intensities at different posi-

tions contained in all the snapshots have been decomposed
into the modes ranked in front. As the results presented in
the following paragraphs, this kind of discontinuities distribu-

tion in the modes causes some trouble for the shock wave
prediction.

The boxplots presented in Fig. 12 indicates that the general

prediction precision decreases a lot compared with the situa-
tion in case Ma= 0.5. The convergence modes number of
the error is 36 for SIS result and 13 for ES result. Inverse to
the situation in caseMa= 0.5, the general prediction precision

using the ES inner product is slightly better than that with the
SIS inner product.
odes in the case of Ma = 0.72.

using both inner product definitions.



Fig. 12 Boxplots about prediction errors of SPDs of the 10 testing airfoils in the case of Ma = 0.72.
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In detail, the prediction process and results of the 2nd and
4th testing flow fields are researched carefully. As shown in

Fig. 13, if using the iteration algorithm proposed in this paper
to predict the 2nd testing flow field, the modes number is 32
(SIS) and 25 (ES); to predict the 4th testing flow field, the

modes number is also 32 (SIS) and 25 (ES). If using the 99%
energy criterion, for both testing flow fields, the modes number
is 12 (SIS) and 15 (ES) respectively, just as signed in Fig. 10(a).

As shown in Fig. 14, if the inner product is defined on SIS, the
99% energy criterion fails to determine a proper modes num-
ber where the error has been converged. But if the inner prod-

uct is defined on ES, then this criterion determines precisely.
While, no matter which inner product is used, the numbers
of modes determined by the iteration algorithm exceed the
optimal numbers significantly for both testing airfoils.

The predicted SPDs and SPDs 	r of the 2nd and 4th test-
ing airfoils by using the first 30 modes are presented in Fig. 15.
Clearly, the main part of the prediction error here comes from

the poorly predicted shock waves. From this figure, the
Fig. 14 Prediction error vs modes number of tw

Fig. 13 Residual convergence process of two
prediction standard deviations of SPD at the segments around
the shock waves are much bigger than that at other segments,

and all the predicted SPDs deviate from the CFD ones obvi-
ously in the same area. But all the predicted results have good
agreement with the CFD ones on the lower surface and the

back segment of upper surface. Moreover, compared with
the CFD results, all the predicted shock waves are wider and
less distinct. This phenomenon is much more obvious in

Fig. 16, where the predicted shock waves are fuzzier than the
CFD ones, especially for the 4th testing flow fields. Even, a
noise stripe, as indicated by the black arrows, occurs in both

predicted results of the 2nd testing flow field. This noise stripe
does not exist in the CFD flow field, and it is very distinct in
the ES result. In Fig. 17, the velocity profiles, at x/c = 0.99
on the upper surface extracted from predicted flow fields, coin-

cide with the CFD ones very well for the 2nd testing flow field.
Though for the 4th testing airfoil, they slightly deviate from
the CFD ones, while, they have similar profiles to the CFD

ones.
o testing flow fields in the case of Ma= 0.72.

testing flow fields in the case of Ma = 0.72.



Fig. 16 Predicted Mach number cloud pictures of two testing airfoils when the first 30 modes are used in the case of Ma = 0.72.

Fig. 15 Predicted SPDs and errors (±r) of two testing airfoil with the first 30 modes in the case of Ma = 0.72.
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5.3. Analysis of prediction results of flow fields containing shock
waves

From the results presented in both sections above, the predic-
tion precision in case Ma= 0.72 decreases more than that that
in caseMa= 0.5. Naturally, on the one hand, this is caused by

the wider variation range of the snapshots in the transonic
case. On the other hand, the characteristic of the transonic
basis modes should also be in charge of the decrement of the
prediction precision.

As shown in Fig. 11, there are more than one discontinuous
strips in the flow fields of these modes ranking front. Obvi-
ously, this is caused by the POD process which concentrates

most shock wave discontinuities contained in snapshots into
these modes. Each predicted flow field is generated from the
linear superposition of these modes, namely Eq. (16). So,



Fig. 17 Predicted velocity profiles at x/c = 0.99 on upper surface of two testing airfoils when the first 30 modes are used in the case of

Ma = 0.72.
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shock waves contained in the predicted flow fields come from
the linear superposition of these discontinuous stripes con-

tained in selected modes. Probably, the superposition of these
discontinuous stripes, which are located near the exact shock
wave position, could generate the desired approximate shock

wave, but these remaining discontinuities could not cancel
mutually. Then those noise stripes appear. And, since each dis-
continuous stripe is much wider than exact shock waves, the

predicted shock waves are also wider and fuzzier.
Since both the position and strength of the shock wave are

very important features in a transonic or supersonic flow field,

the method developed in this paper is not proper for flow field
containing shock wave.
6. Conclusions

(1) A flow field prediction method based on Kriging surro-
gate model and POD is developed to predict stationary
flow fields of variable physical domain. Two forms of

inner product are constructed to figure out the variable
physical domain problem. An iterative algorithm is pro-
posed to determine how many basis modes ranking front

should be used in the prediction.
(2) Testing results of subsonic stationary flow fields around

airfoils are very precise compared with CFD results.
While under transonic condition, the prediction preci-

sion decreases a lot. Partially, it is caused by the larger
variation range of snapshots. Mainly, it is caused by
the inherent defect of linear superposition of discontinu-

ous stripes contained in the main basis modes. So, the
prediction method developed in this paper is very proper
for the subsonic flow field, but not proper for the flow

field contains shock wave.
(3) The testing results also indicate that the iteration algo-

rithm could determine a proper modes number if both
the stop criterion parameters are reasonable. But it is

hard to give such reasonable parameters in prior. So,
we suggest that it is better to set a relatively strict stop
criterion which could promise a precision result.
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