Note
On the number of independent chorded cycles in a graph
Daniel Finkel
Mathematics Department, University of Washington, Seattle, WA 98195, USA
Received 11 July 2006; received in revised form 2 May 2007; accepted 17 September 2007
Available online 4 December 2007
Abstract
Hajnal and Corrádi proved that any simple graph on at least 3k vertices with minimal degree at least 2k contains k independent cycles. We prove the analogous result for chorded cycles. Let G be a simple graph with \(|V(G)| \geq 4k\) and minimal degree \(\delta(G) \geq 3k\). Then G contains k independent chorded cycles. This result is sharp.
© 2007 Published by Elsevier B.V.
Keywords: Chorded cycles; Independent cycles

1. Introduction
Hajnal and Corrádi proved the following result in 1963 [2].

Theorem 1. Let G be a graph with \(|V(G)| \geq 3k\) and \(\delta(G) \geq 2k\). Then G contains k independent cycles.

Their result was generalized and extended by Erdős [5], Dirac [4,5], Justesen [6], and Wang [8,9], who currently has the strongest generalization in [8]. Theorem 1 is in a sense a natural generalization of the well-known fact that any graph G with minimal degree \(\delta(G) \geq 2\) contains a cycle. Pósa posed the same question for chorded cycles in [7], and it is easy to show [3] that \(\delta(G) \geq 3\) gives the existence of a chorded cycle in G.

It is natural to ask whether a result analogous to Theorem 1 holds for chorded cycles. In this paper, we show that it does.

Theorem 2. Let G be a graph with \(|V(G)| \geq 4k\) and \(\delta(G) \geq 3k\). Then G contains k independent chorded cycles.

2. Notation and conventions
We will consider only simple graphs. A chorded cycle is a cycle with at least one chord. Let G be a graph, and H, H′ subgraphs of G. We denote by \(\delta(G)\) the minimal degree of the vertices of G. We will write \(G - H\) to denote the subgraph of G induced by \(V(G)\setminus V(H)\), and \(H + H'\) to denote the subgraph of G induced by \(V(H) \cup V(H')\). Write \(d(H; H')\) for the number of edges \(xy\) satisfying \(x \in V(H)\) and \(y \in V(H')\). Let a, b be vertices of G. For convenience we will write \(d(a, b; H, H')\) rather than the more cumbersome \(d((a, b); H + H)\). For positive integers m, n, let \([n, m]\)

E-mail address: dfinkel@math.washington.edu.

0012-365X/S - see front matter © 2007 Published by Elsevier B.V.
doi:10.1016/j.disc.2007.09.035
denote the complete bipartite graph with classes consisting of \(n \) and \(m \) vertices. By independent we mean vertex disjoint. We say \(G \) contains \(k \) independent chorded cycles if there is a subgraph \(H \) of \(G \) consisting of \(k \) independent chorded cycles.

3. Proof of main result

Remark. This result is sharp. Since a chorded cycle must have at least four vertices, the condition on \(|V(G)| \) is clearly necessary. For \(m \geq 6k - 2 \) the graph \([3k - 1, m - 3k + 1]\) has minimal degree \(3k - 1 \) and contains no collection of \(k \) independent chorded cycles, as any chorded cycle must contain three vertices from the first class.

Proof of Theorem 2. We will proceed by induction on \(k \). Pósa posed the problem for \(k = 1 \) in [7], and it was proven in [3]. Suppose the theorem is true for all \(k \leq s - 1 \), and take \(G \) a graph with \(|V(G)| \geq 4s \) and \(\delta(G) \geq 3s \). Consider the set \(\mathcal{B} \) of all collections of \(s - 1 \) independent chorded cycles in \(G \). By the inductive hypothesis \(\mathcal{B} \) is nonempty, and certainly \(\mathcal{B} \) is finite. Thus, we may choose an element \(K \in \mathcal{B} \) satisfying the following two conditions:

1. For all \(K' \in \mathcal{B} \), \(|V(K)| \leq |V(K')| \). We refer to this condition as the minimality of \(K \).
2. For all \(K' \in \mathcal{B} \) that are minimal in the sense of the above condition, the length of a maximal path in \(G - K' \) is of equal or shorter length than a maximal path \(P \) in \(G - K \). We refer to this condition as the maximality of \(P \).

To prove the theorem, we show first that \(|V(P)| \geq 4 \), and then that this implies the existence of \(s \) independent chorded cycles in \(G \).

By the inductive hypothesis, we may remove any three vertices from \(V(G) \), and the graph induced by what remains contains \(s - 1 \) independent chorded cycles, so \(|V(G - K)| \geq 3 \). \(\square \)

Lemma 1. Let \(D \) be a chorded cycle and \(w \) a vertex not in \(V(D) \). Suppose \(|V(D)| \geq 5 \) and \(d(w; D) \geq 4 \). Then there is a chorded cycle \(D' \) on a subset of \(V(D) \cup w \) with \(|V(D')| < |V(D)| \).

Proof. Suppose \(D \) and \(w \) be given satisfying the conditions of the lemma. Label five vertices \(\{y_1, y_2, y_3, y_4, y_5\} \subset V(D) \) such that \(wy_j \) is an edge for \(1 \leq j \leq 4 \) and \(\{y_1, y_2, y_3, y_4, y_5\} \) is a list in cyclic order in \(D \). Then there is a chorded cycle \(D' \) induced by the vertices \(V(D+w-y_4-y_5) \), and \(|V(D')| \leq |V(D)| + 1 - 2 < |V(D)| \) is immediate. \(\square \)

The lemma implies that if \(w \in G - K \) is a vertex with \(d(w; D) \geq 4 \) for some chorded cycle \(D \in K \), then \(|V(D)| = 4 \) by the minimality of \(K \). In particular, we have the following corollary.

Corollary 1. For any vertex \(w \) in \(G - K \) and any chorded cycle \(D \in K \), \(d(w; D) \leq 4 \), with equality only if \(D \) is a chorded 4-cycle.

If \(G - K \) contains a chorded cycle, the theorem follows immediately. For the remainder of this proof, we assume that \(G - K \) does not contain a chorded cycle.

Lemma 2. \(V(P) = V(G - K) \).

Proof. Suppose to the contrary that \(P \) consists of a single point \(a \), and choose another vertex \(v \in G - K \). Then \(d(a, v; K) \geq 6s = 6(s - 1) + 6 \) by the maximality of \(P \), so there is a chorded cycle \(D \in K \) such that \(d(a, v; D) \geq 7 \).
Without loss of generality, \(d(a; D) = 4 \). It follows that \(D \) is a chorded 4-cycle, say \(V(D) = \{y_1, y_2, y_3, y_4\} \), and \(d(v; D) \geq 3 \). Without loss of generality, say \(y_1, y_2, \) and \(y_3 \) are neighbors of \(v \). Then there is a chorded cycle induced by \(\{v, y_1, y_2, y_3\} \) and \(ay_4 \) is an edge of \(G \). This gives a collection of \(s - 1 \) chorded cycles \(K' \in \mathcal{B} \) with \(|V(K)| = |V(K')| \).
But \(ay_4 \in G - K' \), so the maximal path in \(G - K' \) has nonzero length. This contradicts our assumption of the maximality of \(P \). Hence, \(P \) is not a single point.

Now suppose to the contrary that there was a point \(v \in G - K \) not in \(V(P) \). Then we can take a maximal path \(Q \) (possibly a point) in \(G - K - P \). Let \(a \) and \(b \) be the endpoints of \(P \), and let \(c \) be an endpoint of \(Q \). Note that \(d(a, b; K) \geq 6s - 4 \) and \(d(c; K) \geq 3s - 4 \), else we have a chorded cycle in \(G - K \). Hence, \(d(a, b, c; K) \geq 9s - 8 = 9(s - 1) + 1 \), so there exists a chorded cycle \(D \in K \) with \(d(a, b, c; D) \geq 10 \). By the pigeonhole principle and the above
corollary, \(d(x; D) = 4 \) for some \(x \in \{a, b, c\} \). Without loss of generality, it is sufficient to consider the cases where \(x = a \) and \(x = c \). If \(d(c; D) = 4 \), we know \(d(a; D) \geq 2 \), so there exists a vertex \(y \in D \) such that \(ay \) is an edge. This gives a chorded 4-cycle induced by \(V(D - y) \cup c \) and an edge \(ay \) left over. This contradicts the maximality of \(P \). If, on the other hand, \(d(a; D) = 4 \), then there is a vertex \(y \in D \) such that \(cy \) and \(by \) are edges of \(G \). This gives a chorded 4-cycle induced by \(V(D - y + a) \) and edges \(by \) and \(cy \) left over. This also contradicts the maximality of \(P \). Therefore, we have \(V(P) = V(G - K) \). □

It is immediate from the lemma that \(|V(P)| \geq 3 \). We prove now that equality does not hold. Suppose to the contrary that \(|V(P)| = 3 \). Let

\[
K_1 = \{ \text{chorded cycles } D \in K | d(y; P) = 3 \text{ for some } y \in D, \}
\]

and define iteratively

\[
K_i = \left\{ \text{chorded cycles } D \in K \left| \left(\bigcup_{j=1}^{i-1} K_j \right) \bigcap d(y; P) = 3 \text{ for some } y \in D, E \in K_{i-1} \right. \right\}.
\]

Obviously, \(K_i = \emptyset \) for some \(i \), since \(K \) contains only finitely many chorded cycles. Say \(K_i \) is the last nonempty set obtained from the process above. Define \(\bar{K} = P \cup \bigcup_i K_i \).

Lemma 3. Every chorded cycle \(D \in \bigcup K_i \) has exactly 4 vertices.

Proof. Label the vertices of \(P = x_0y_0z_0 \) and let \(D_1 \) be a chorded cycle in \(K_1 \). This means that there is a vertex \(v_1 \) in \(D_1 \) such that \(v_1x_0, v_1y_0, \) and \(v_1z_0 \) are edges. In particular, there is a chorded 4-cycle induced by the vertices \(\{v_1, x_0, y_0, z_0\} \). By minimality of \(K \), \(D_1 \) must have four vertices as well.

Let \(\{D_i\}_{1 \leq i \leq n} \) be a collection of chorded cycles with \(D_i \in K_i \) and \(v_i \in D_i \) satisfying \(d(v_i; D_{i-1}) = 4 \). Assume inductively that \(D_i \) is a chorded 4-cycle for \(1 \leq i \leq n - 1 \), with vertices \(v_i, x_i, y_i, z_i \). By hypothesis, \(v_n \) is a neighbor to every vertex of \(D_{n-1} \), so \(v_n, x_{n-1}, y_{n-1}, z_{n-1} \) is a chorded 4-cycle. Repeating the argument, we have \(v_{n+1}, x_{n+1}, y_{n+1}, z_{n+1} \) as a chorded 4-cycle, for \(1 \leq i \leq n - 1 \). This gives \(n \) chorded 4-cycles induced by \(V(P + D_1 + \cdots + D_{n-1} + v_n) \), so by the minimality of \(K \), \(D_n \) must have only four vertices as well. Applying the inductive step proves the lemma. □

Define \(G' = G - \bar{K} \). Now \(\bar{K} \) consists of \(t \leq s - 1 \) chorded cycles, all with four vertices, and \(P \), so \(|V(\bar{K})| = 4t + 3 \). It follows that \(|V(G')| \geq 4s - (4t + 3) \geq 4s - 4(s - 1) - 3 = 1 \), so in particular \(G' \) is nonempty. Consider any vertex \(w \in G' \). Our definition of \(\bar{K} \) and Lemma 2 give us that there is a chorded cycle \(E \in K \) such that \(w \in E \subseteq G' \). If \(d(w; P) = 3 \) then \(E \) would be a member of \(\bar{K} \), a contradiction. Therefore, since \(V(P) = V(G - K) \), we have \(d(w; G - K) \leq 2 \). Also, given \(D \in K \), it follows that \(d(w; D) \leq 3 \), else \(w \in \bar{K} \). Therefore, \(d(w; \bar{K}) \leq 3t + 2 \). This gives us that \(\delta(G') \geq 3s - (3t + 2) = 3(s - t - 1) + 1 \). Hence \(\delta(G' - w) \geq (s - t - 1) + 1 \), and \(|V(G' - w)| \geq 4\delta(G' - w) - 4s - 4t - 3 - 1 = 4s - 4t - 1 \). By the inductive hypothesis it follows that \(G' - w \) contains a collection of \(s - t - 1 \) independent chorded cycles. This means that \((G' - w) + (\bar{K} - P) \subseteq G - P - w \) contains \(s - t - 1 + t = s - 1 \) chord cycles. But \(w \in K \), so this contradicts the minimality of \(K \). Therefore, \(|V(P)| > 3 \).

Let \(a \) and \(d \) be the endpoints of \(P \), and \(b \) and \(c \) the neighbors of \(a \) and \(d \), respectively, in \(P \). Since \(G - K \) does not contain a cycle with chord by assumption, \(d(a; P), d(d; P) \leq 2 \) and \(d(b; P), d(c; P) \leq 3 \). We have already observed that there are no vertices of \(G - K \) that are not in \(P \), so we must have \(d(a, b, c, d; K) \geq 12s - 10 = 12(s - 1) + 2. \) This means that for some chorded cycle \(D \in K \) we have \(d(a, b, c, d; D) = 13 \). Since \(d(x; D) \geq 4 \) for some \(x \in \{a, b, c, d\} \) we know that \(|V(D)| = 4 \).

Without loss of generality, we can assume \(d(a, b; D) \geq d(c, d; D) \). Counting gives \(d(a, b; D) \geq 7 \) and \(d(c, d; D) \geq 5 \). Consider \(D \) to be a 4-cycle, and name its vertices \(y_1, y_2, y_3, y_4 \) in cyclic order. Without loss of generality, for two neighboring vertices in \(D \), say \(y_3 \) and \(y_4 \), we have \(d(c, d; y_3, y_4) \geq 3 \). This means that a chorded cycle is induced on \(\{c, d, y_3, y_4\} \). But \(d(a, b; y_1, y_2) \geq 3 \) is immediate as well, so a chorded cycle is induced on these vertices as well. Hence, \(G \) contains a independent collection of \(s \) chorded cycles. Applying induction, this proves the theorem.
Acknowledgments

Thanks to Arie Bialostocki and András Gyárfás for their guidance. Gyárfás first proved the theorem for \(k = 2 \). Copies of that proof are available upon request.

References