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SUMMARY

Mostmitochondrial proteins possessN-terminal pre-
sequences that are required for targeting and import
into the organelle. Upon import, presequences are
cleaved off by matrix processing peptidases and
subsequently degraded by the peptidasome Cym1/
PreP, which also degrades Amyloid-beta peptides
(Ab). Here we find that impaired turnover of pre-
sequence peptides results in feedback inhibition of
presequence processing enzymes. Moreover, Ab in-
hibits degradation of presequence peptides by PreP,
resulting in accumulation of mitochondrial prepro-
teins and processing intermediates. Dysfunctional
preprotein maturation leads to rapid protein degra-
dation and an imbalanced organellar proteome.
Our findings reveal a general mechanism by which
Ab peptide can induce the multiple diverse mito-
chondrial dysfunctions accompanying Alzheimer’s
disease.

INTRODUCTION

The vast majority of mitochondrial proteins is nuclear-encoded

and has to be imported into the organelle from the cytosol.

Approximately two-thirds of all mitochondrial preproteins

possess N-terminal presequences that direct them to the mito-

chondrial import machineries (Neupert and Herrmann, 2007;

Chacinska et al., 2009; Vögtle et al., 2009). Upon import, prese-

quences are typically cleaved by the mitochondrial processing
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peptidase MPP in the matrix releasing the mature protein (Haw-

litschek et al., 1988; Yang et al., 1991; Vögtle et al., 2009). In

several cases, MPP generates import intermediates that are

further processed by the octapeptidyl peptidase Oct1/MIP or

the intermediate cleaving peptidase Icp55 (Vögtle et al., 2009,

2011; Mossmann et al., 2012; Teixeira and Glaser, 2013). Incom-

plete processing of mitochondrial preproteins leads to their

destabilization and accelerated turnover (Yang et al., 1991; Mu-

khopadhyay et al., 2007; Vögtle et al., 2009, 2011; Varshavsky,

2011). Presequence peptides that have been cleaved by MPP

are subsequently degraded by the matrix peptidasome Cym1/

PreP, a metallopeptidase of the pitrilysin family M16 (Alikhani

et al., 2011a). PreP catalyzes turnover of peptides larger than

11 amino acids as well as unstructured proteins (Stahl et al.,

2002). Recently, it has been shown that PreP also degrades am-

yloid-beta (Ab) peptides that were reported to accumulate in

mitochondria of Alzheimer’s disease (AD) patients, and a decline

in PreP activity has been observed in ADmitochondria (Manczak

et al., 2006; Falkevall et al., 2006; Hansson Petersen et al., 2008;

Alikhani et al., 2011b). Ab import depends on the mitochondrial

import machinery (Hansson Petersen et al., 2008). Mitochondrial

Ab appears to affect a multitude of different functions in AD,

including respiration, detoxification of reactive oxygen species

(ROS), and organellar morphology (Lustbader et al., 2004; Man-

czak et al., 2006; Yao et al., 2009; Rhein et al., 2009; Morais and

De Strooper, 2010; Selfridge et al., 2013). How a single peptide

like Ab can impair all of these diverse, important mitochondrial

functions remaines elusive.

Here, we investigated the effects of impaired peptide turnover

and of Ab peptide accumulation on mitochondrial functions. We

report that mitochondrial preprotein maturation depends on effi-

cient peptide degradation. Moreover, we find that mitochondrial

Ab leads to inhibition of peptide turnover, thereby causing
c.
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Figure 1. Mitochondrial Presequence Pro-

cessing Depends on Peptide Turnover

(A) Immunoblot analysis of wild-type (WT) and

cym1D mitochondria isolated from yeast strains

grown on YPD at 30�C. Right panel shows Cym1

and control proteins that are not imported via

presequences. p, precursor; i, intermediate; c,

cleaved protein.

(B) Sod2 presequence specific antibody recog-

nizes the larger precursor form accumulating in

cym1D mitochondria.

(C) Immunoblot showing Sod2 precursor accu-

mulation in yeast with mutations in the catalytic

center of Cym1 (HXXEH).

(D) Synthetic lethality of cym1D mas1 double

mutant. The indicated strains were grown under

respiratory growth condition (YPG plates, 30�C).
(E) In vitro processing of [35S]Sod2 precursor in

soluble extracts of wild-type (WT) and cym1D

mitochondria in the presence of 10 mM Cox4 pre-

sequence peptide. Quantifications represent

mean ± SEM (n = 4).

(F) In vitro synthesized Cym1 protein restores

Sod2 precursor processing in cym1D mitochon-

drial extract. Reaction was performed as

described in (E). Oct1, wheat germ lysate with

synthesized Oct1 protein; Control, without wheat

germ lysate.
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accumulation of nonprocessed preproteins and processing

intermediates within mitochondria. Impaired preprotein matu-

ration modulates protein turnover and changes the global or-

ganellar protein composition, which might finally explain the

pleiotropic mitochondrial defects observed in AD mitochondria.

RESULTS

Mitochondrial Presequence Processing Depends on
Peptide Turnover
In order to analyze the physiological impact of peptide turnover

on mitochondrial functions, we characterized a yeast mutant

that lacks the PreP homolog Cym1 (Kambacheld et al., 2005).

We isolated mitochondria from cym1D and wild-type strains

and analyzed various mitochondrial proteins by western blotting.

Several proteins showed a strong accumulation of their precur-

sor forms and processing intermediates as well as decreased

levels of cleaved, mature proteins in cym1D mitochondria in

comparison to wild-type (Figure 1A). An antibody raised against

the presequence peptide of Sod2 revealed a specific signal of

the precursor form in cym1D mitochondria, but not in wild-type

(Figure 1B). Analysis of cym1 mutants that lack critical residues

of the metal binding motif (HXXEH) (Table S1, available online;

Kambacheld et al., 2005) indicated that accumulation of precur-

sor proteins depends on Cym1 protease activity (Figure 1C). This
Cell Metabolism 20, 662–669
implied that impaired peptide degrada-

tion in cym1D might affect the prese-

quence processing activity of MPP. To

further support this assumption, we per-

formed a global mass spectrometric anal-

ysis of mitochondrial N termini in cym1D

mitochondria using COFRADIC (com-
bined fractional diagonal chromatography) (Vögtle et al., 2009)

(Table S2). Indeed, a large number of N termini in cym1D mito-

chondria corresponded to nonprocessed preproteins or pro-

cessing intermediates of dually processed proteins when

compared to the N-proteome of wild-type mitochondria (Tables

S2 and S3) (Vögtle et al., 2009). We conclude that the lack of the

peptidasome Cym1 leads to impaired preprotein maturation

in vivo.

As an additional assay to link preprotein maturation and

peptide turnover, we generated a yeast mutant that lacks

Cym1 and harbors a temperature-sensitive allele of the essential

MPP subunit Mas1 (Hawlitschek et al., 1988; Yang et al., 1991;

Vögtle et al., 2009). The mutant was not able to grow under res-

piratory conditions (i.e., when mitochondrial energy metabolism

is essential for cell viability), indicating a genetic interaction of the

presequence peptidase MPP and the peptidasome Cym1

(Figure 1D).

The proteins that were accumulating as precursors or pro-

cessing intermediates in cym1D samples encompass a variety

of mitochondrial functions, including respiration, ATP synthesis,

mtDNA maintenance, and gene expression or oxidative stress

response (Table S3; Figures 1A and 1B). Assessment of various

mitochondrial functions in cym1D mitochondria revealed

increased levels of ROS, decreased membrane potential, and

impaired O2 consumption compared to wild-type (Figure S1A).
, October 7, 2014 ª2014 Elsevier Inc. 663
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Remarkably, similar diverse mitochondrial dysfunctions have

been observed in mitochondria from AD patients and AD mouse

models (Morais and De Strooper, 2010; Manczak et al., 2006;

Rhein et al., 2009; Alikhani et al., 2011b). These results indicate

that physiological consequences of impairedmitochondrial pep-

tide turnover activity correlate with pathological phenotypes

observed in AD mitochondria.

To test if presequence processing is affected in the absence

of Cym1, we performed in organello imports of radiolabelled

preproteins into isolated mitochondria of wild-type and cym1D

yeast cells. Presequence processing of Sod2 preprotein was

impaired in cym1D mitochondria, and nonprocessed preprotein

accumulated as a Proteinase K-resistant form within the organ-

elle (Figure S1B). Similar defects were observed when import

was performed in mas1 mitochondria (Figure S1C). The general

import efficiency of the presequence import pathway was not

compromised in cym1D or mas1 mitochondria (tested by the

nonprocessed Hsp10 preprotein) (Figures S1B and S1C). The

processing defect in cym1D appeared to be specific for MPP

because presequence cleavage of Mrpl32 that does not depend

on MPP (Nolden et al., 2005) was fully functional in cym1Dmito-

chondria (Figure S1D). To directly analyze the dependency of

preprotein maturation on peptide turnover, we employed an

in vitro processing assay in mitochondrial extracts (Figure S1E)

(Falkevall et al., 2006) from wild-type and cym1D mitochondria.

This allowed the analysis of presequence processing indepen-

dent of protein import. Presequence peptides were rapidly

degraded in wild-type, but not cym1D, extracts (Figure S1F). In

the presence of a typical presequence peptide (Cox4preseq.)

(Yang et al., 1991), the in vitro processing of radiolabelled

Sod2 precursor by MPP was efficiently blocked in the absence

of Cym1 (Figure 1E). Cox4 presequence peptides were able to

inhibit purified MPP in similar concentrations (Figures S1G and

S1H) (Yang et al., 1991). To exclude that the impaired prese-

quence processing activity in cym1D is caused by an indirect ef-

fect, we added cell-free translated Cym1 protein to the in vitro

processing assay. We found that MPP processing activity was

restored in cym1D extracts in the presence of Cym1 protein, indi-

cating a direct functional link between Cym1 activity and prese-

quence processing (Figure 1F). In addition, overexpression of

MPP in the cym1D strain, as well as presence of purified MPP

in mitochondrial extracts of cym1D, was able to suppress the

impaired preprotein processing activity (Figures S1I and S1J).

We conclude that impaired turnover of presequence peptides

leads to inhibition of MPP processing activity. This functional

coupling explains the preprotein accumulation observed in

cym1D mitochondria in vivo (Figures 1A and 1B; Table S3).

Maturation of Precursor Processing Intermediates
Depends on Cym1
We wondered why preprotein processing intermediates also

accumulated in the cym1D mutant (Figure 1A). It has been pro-

posed that PreP/Cym1 requires a minimal substrate length of

11 amino acids (Stahl et al., 2002). However, the intermediate

peptidase Oct1 cleaves off octapeptides (Vögtle et al., 2011).

We constructed an oct1Dcym1D double mutant, and the

observed synthetic growth defect pointed to a functional link be-

tween both enzymes (Figure 2A). Furthermore, we found that

processing activity of purified MPP was not affected in the pres-
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ence of octapeptides (derived from the Oct1 substrate Sdh1;

Figure 2B). In contrast, the presence of a presequence peptide

efficiently inhibited MPP activity (Figure S1H). However, in vitro

processing of the Cox4 precursor that is cleaved sequentially

by MPP and Oct1 revealed a specific impairment of the Oct1-

dependent processing step in cym1D in the presence of octa-

peptides (Figure 2C). This indicated that Cym1 activity is also

affected by accumulation of octapeptides and that an impaired

turnover of MPP generated presequences, and Oct1-derived

octapeptides leads to inhibition of presequence processing,

causing accumulation of preproteins as well as processing

intermediates.

To investigate the functional consequences of impaired prese-

quence processing activity, we employed mitochondria from the

temperature-sensitive mas1 strain that had been shifted to

nonpermissive growth temperature for 24 hr to inactivate MPP

activity in vivo. Western blot analysis revealed an accumulation

of nonprocessed preproteins and reduced levels of mature

proteins similar to the phenotype observed in cym1D mitochon-

dria (Figure 2D). Thus, inactivation of either peptide turnover

(cym1D) or presequence processing (mas1) leads to the pheno-

type of impaired preprotein maturation and reduced amounts of

mature proteins (Figures 1A, 1B, and 2D).

Ab Impairs Mitochondrial Peptide Turnover, Leading to
Feedback Inhibition of Presequence Processing
Next, we asked if Abpeptide that accumulates inmitochondria of

AD patients and represents a substrate of human PreP might

cause a delay in matrix peptide degradation and thereby induce

feedback inhibition of presequence processing enzymes. We

found that Ab peptide was degraded by Cym1 in mitochondrial

extracts and by the recombinant enzyme (Figures 3A and 3B).

However, degradation of Ab was slower compared to turnover

of presequence peptides (Figure S2A). We then analyzed degra-

dation of Cox4 presequence peptides in wild-type mitochondrial

extracts and found that the presence of Ab, but not of a scram-

bled form, impaired the peptide turnover capacity of Cym1 (Fig-

ure 3C, lanes 5–13 versus 18–26). Scrambled Ab was not

degraded by Cym1 (Figure S2B). We further asked if Ab can

also affect presequence processing activity of MPP. We tested

the processing of radiolabelled Sod2 preprotein and observed

a striking delay in presequence processing in the presence of

Ab (Figure 3D). We noticed that Ab1–40 (unlike the shorter version

Ab1–28) slightly inhibited activity of purified MPP at higher con-

centrations (Figures S2C and S2D) and therefore included the

shorter version in our functional assays. Taken together, our find-

ings show that Ab peptide inhibits peptide turnover in mitochon-

drial extracts, which causes impaired maturation of preproteins.

Mitochondrial Ab Inhibits Precursor Maturation In Vivo
To analyze the effect of Ab on precursor maturation in vivo, we

attempted to reconstitute the entire mechanism described

above in a yeast model that allowed galactose-induced expres-

sion of an eGFP-Ab1–42 fusion protein harboring a cleavage site

for TEV protease (Figure 4A). Coexpression of TEV protease led

to release of Ab peptides from the fusion protein (Figure S3A).

To analyze Ab-induced mitochondrial dysfunctions, we em-

ployed the aging-prone strain coa6D, which showed a moderate

instability of respiratory chain complexes in order to mimick
c.
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Figure 2. Maturation of Precursor Processing Intermediates Depends on Cym1

(A) Synthetic growth defect of cym1D oct1D double-mutant yeast strain under fermentable conditions (23�C, YPD). [rho0], wild-type strain lacking mitochondrial

DNA.

(B) Processing of [35S]F1b precursor by purified MPP is not inhibited by octapeptides. Quantifications represent mean ± SEM (n = 3).

(C) In vitro processing assay of [35S]Cox4 precursor in WT and cym1D mitochondrial extracts in the presence of octapeptides. Quantifications represent

mean ± SEM (n = 4).

(D) Impaired preprotein maturation leads to imbalanced mitochondrial proteome.Wild-type and temperature-sensitivemas1 strains were grown on YPDmedium

at 23�C and shifted to nonpermissive temperature (37�C) for 24 hr. Inactivation of the essential MPP subunit Mas1 causes accumulation of precursor proteins

that are rapidly degraded. This leads to decreased amounts of mature, fully cleaved proteins (lanes 4–6 and 10–12). In contrast, proteins that do not contain

presequences were not affected (lanes 13–18). p, precursor; i, intermediate; c, cleaved protein.
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conditions in aged humans (Larsson, 2010; Vögtle et al., 2012),

and induced eGFP-Ab1–42 expression by growth on galactose.

Ab localized to mitochondria (Figures S3B and S3C) and

impaired maturation of Sod2 precursor in soluble mitochondrial

extracts (Figures 4B and 4C). The presequence import pathway

was not compromised by Ab (Figure S3D). After induction for

3 days, we observed accumulation of several precursor proteins

in mitochondria of the Ab-expressing strain (Figure 4C), indi-

cating that Ab inhibits preprotein maturation in vivo. After induc-

tion for 5 days, several mitochondrial dysfunctions were

observed in mitochondria isolated from the Ab-expressing strain

compared to the control strain. This included increased levels of

ROS, a decrease in membrane potential, and impaired oxygen

consumption (Figure S3E). Overexpression of Cym1 in the

Ab-expressing strain led to an increased turnover of Ab, sub-

stantial reduction of the accumulating preproteins in vivo

(Figure S3F), and increasedMPP processing activity in vitro (Fig-

ure S3G). We conclude that Ab-mediated inhibition of the pepti-

dasome Cym1 leads to an impaired presequence processing

activity of MPP, which results in accumulation of preproteins

in vivo.

As a further in vivo system, we tested freshly isolated matrix

extracts from brain mitochondria of PS2APP mice. This AD

model harbors mutations in the PS2 (N141I) and APP (Swedish
Cell
FAD) genes and shows Ab accumulation in mitochondria (Fig-

ure S3H) (Rhein et al., 2009; Ozmen et al., 2009). Indeed, pro-

cessing of the Cox4 preprotein was significantly impaired in

PS2APP samples compared to that in age-matched wild-type

mice (Figure 4D).

Finally, we asked if mitochondrial precursor accumulation

caused by Ab can be observed in AD patients. Therefore, we iso-

lated mitochondria from post mortem brain samples of four AD

patients and four age-matched non-AD controls (Table S4).

Western blot analysis showed the presence of higher molecular

species of thematrix proteinMDH2 in all patient samples, but not

in controls (Figure 4E). An antibody raised against the prese-

quence peptide of MDH2 that recognizes only the precursor,

but not themature, cleaved protein, confirmed the specific accu-

mulation of theMDH2preproteins in ADmitochondria (Figure 4F).

In order to identify further mitochondrial proteins that might

accumulate as preproteins or processing intermediates in AD

patients, we screened various antibodies by western blotting

and performed a ChaFRADIC analysis (Venne et al., 2013).

Several proteins could be identified, including the mitochondrial

ribosomal subunit MRPL23 and NDUFA9, a subunit of the respi-

ratory complex I (Figure S3I and Table S5). Taken together, our

results show that mitochondrial Ab causes impaired maturation

of preproteins in vivo.
Metabolism 20, 662–669, October 7, 2014 ª2014 Elsevier Inc. 665
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Figure 3. Ab Impairs Mitochondrial Peptide Turnover, Leading to Feedback Inhibition of Presequence Processing

(A) Ab degradation in soluble extracts of wild-type (WT) and cym1D mitochondria.

(B) Ab degradation by cell-free translated Cym1 (wheat germ lysate). Oct1, Oct1 translated in wheat germ lysate.

(C) Ab1–28, but not Abscrambled, peptide impairs Cox4 presequence peptide degradation in WT soluble mitochondrial extract. Cox4 presequence peptide (10 mM)

was added to each reaction. Mas1, loading control.

(D) In vitro processing of [35S]Sod2 precursor in WT mitochondrial extract in the presence of the indicated Ab peptides (10 mM) and 10 mM Cox4 presequence

peptide. The control 60 min value was set to 100%; mean ± SEM (n = 3).
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DISCUSSION

So far, mitochondrial presequence processing and peptide turn-

over have been considered independent reactions. Our findings

indicate a functional coupling of both processes. Presequence

processing capacity seems to depend directly on efficient pep-

tide clearance in thematrix, as addition of the peptide-degrading

enzyme Cym1 to mitochondrial cym1D extracts immediately

restored MPP presequence processing activity in vitro. More-

over, lack of Cym1 leads to accumulation of immature prepro-

teins in vivo, reflecting themas1mutant phenotypewith impaired

presequence processing activity. Accumulating presequence

peptides likely bind to the active site of MPP, thereby competing

directly with incoming preproteins (Yang et al., 1991; Taylor

et al., 2001). In both cases—mutations in Cym1 and in Mas1—

impaired preprotein maturation causes accelerated protein

degradation and results in an imbalanced organellar proteome.

As a consequence, various mitochondrial functions are affected,

e.g., decreased respiration and membrane potential and

increased levels of ROS. Interestingly, similar phenotypes have

been observed in AD mitochondria (Morais and De Strooper,

2010; Manczak et al., 2006; Rhein et al., 2009; Alikhani et al.,

2011b). It is still unclear if mitochondrial dysfunction is the cause

or consequence of AD and how mitochondrial damage is con-

nected to other cellular dysfunctions observed in AD (Lin and

Beal, 2006; Morais and De Strooper, 2010; Treusch et al.,

2011). However, it has been shown that Ab accumulates in mito-

chondria of AD patients, where it seems to affect similar diverse
666 Cell Metabolism 20, 662–669, October 7, 2014 ª2014 Elsevier In
functions that we found here in cym1Dmitochondria. Our results

reveal that Ab causes inhibition of the peptidasome PreP/Cym1.

In turn, accumulation of presequence peptides leads to impaired

maturation and therefore cumulation of mitochondrial prepro-

teins by inhibition of the presequence processing machinery.

Indeed, global proteomic studies of AD samples indicated an

imbalance of the mitochondrial proteome; presequence-con-

taining mitochondrial proteins in particular were found affected

(Rhein et al., 2009; Begcevic et al., 2013).

The results presented here provide a mechanistic model that

can explain the diversity of mitochondrial dysfunctions observed

in AD (Figure 4G). Herein, the presequence processing machin-

ery plays a central role in the age-dependent vicious cycle of

mitochondrial dysfunction in AD. Our findings offer exciting per-

spectives on the development of diagnostic markers (e.g., to

detect preproteins in blood cells of patients that were found to

possess mitochondrial dysfunctions; Leuner et al., 2012) and

therapeutic strategies (e.g., stimulation of the presequence pro-

cessing machinery) in AD.

EXPERIMENTAL PROCEDURES

Isolation of Mitochondria from Yeast Cells and Mouse and Human

Brain Tissue

Mitochondria from S. cerevisiae strains (Table S1), mouse, and human brain

tissues (Table S4) were isolated by differential centrifugation. Yeast cells

were grown in YPD or YPG medium. Cells were harvested by centrifugation.

Wild-type C57Bl/6 mice and transgenic mice (line PS2APP, homozygous for

human PS2 N141I and APP Swedish FAD transgenes; Rhein et al., 2009;
c.
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Figure 4. Mitochondrial Ab Inhibits Preprotein Maturation In Vivo

(A) Inducible expression system for generation of free Ab1–42 peptide in the yeast cytosol.

(B) In vitro processing assay of [35S]Sod2 precursor in yeast mitochondrial extracts isolated from coa6D strains harboring empty vector pESCev or pESCeGFP-Aß

(1 day induction on galactose medium). Both strains coexpress TEV protease (p416TEVcyt). Quantifications represent mean ± SEM (n = 3).

(C) Immunoblot analysis of purified mitochondria from strains described in (B) after induction for 3 days on galactose medium. exp., exposure time. Stars indicate

accumulating precursor proteins.

(D) In vitro processing assay of Cox4 precursor in WT and PS2APP mouse brain mitochondrial extract. mtHSP70, loading control. Quantifications represent

mean ± SEM (n = 3).

(E) Immunoblot analysis of various mitochondrial proteins in purified brain (temporal cortex) mitochondria from AD and age-matched non-AD control brains

(isolated pairwise). Star indicates precursor protein.

(F) Validation of MDH2 precursor accumulation (star) in AD brain mitochondria using presequence-specific antibody. Arrow, nonspecific signal.

(G) Model of Ab-induced inhibition of mitochondrial preprotein maturation. In healthy cells (left), mitochondrial preproteins are imported from the cytosol and

presequences are efficiently cleaved off by presequence processing enzymes. Presequence peptides (shown in red) are then degraded by the peptidasome

PreP, which constitutes the mitochondrial peptide turnover machinery. Peptide turnover is impaired in the presence of Ab (AD, right), leading to the inhibition of

presequence processing and accumulation of preproteins. This results in their destabilization and turnover.
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Ozmen et al., 2009) of 12 months were sacrificed, and brains were removed.

Tissue samples of the temporal cortex of human brains were collected post

mortem for diagnostic purposes. Cells or tissues were homogenized by 15–

30 strokes in a glass potter. Cell debris and nonbroken cells were removed

in two consecutive centrifugation steps (484–1,500 3 g, 4�C). Mitochondria

were isolated by centrifugation at 7,000–16,0003 g at 4�C. The mitochondrial

fractions were aliquoted, snap frozen in liquid nitrogen, and stored at �80�C.

Preprotein Processing and Peptide Degradation Assays in Soluble

Mitochondrial Extracts

Isolated mitochondria were washed, reisolated, and suspended in reaction

buffer (250 mM sucrose, 10 mM MOPS/KOH [pH 7.2], 80 mM KCl, 1–5 mM

MgCl2, 5 mM KH2PO4). Mitochondrial extracts were obtained by sonication

on ice (five times for 30 s with 30 s breaks; Sonifier250, Branson) or by solubi-

lization in 1% digitonin. Samples were centrifuged at 100,0003 g for 45 min or

20,000 3 g for 10 min at 4�C, respectively. The supernatant was incubated

with radiolabelled preproteins, various peptides, and/or chemical amounts
Cell
of peptidases. Reactions were stopped by the addition of 43 Laemmli buffer.

Samples were analyzed via SDS-PAGE followed by autoradiography and

immunodecoration.

In Vivo Reconstitution of Ab-Induced Mitochondrial

Dysfunction in Yeast

Yeast strains were transformed with p416TEVcyt and pESCeGFP-Aß or pESCev

(empty vector). For selection, cells were grown in selective medium lacking

histidine and uracil. Expression of plasmids was induced by shift to selective

medium containing 2% galactose. Cells were grown at 30�C for 1, 3, or

5 days. Cell extracts were obtained by post-alkaline extraction, andmitochon-

dria were isolated as described above. Samples were analyzed on SDS-PAGE

followed by immunodecoration.

In Vitro MPP Activity Assay

b-MPP (with N-terminal poly-His tag) and a-MPP (Mas1 and Mas2) subunits

from S. cerevisiae were expressed in E. coli BL21 cells. Cells were grown in
Metabolism 20, 662–669, October 7, 2014 ª2014 Elsevier Inc. 667



Cell Metabolism

Ab Impairs Mitochondrial Preprotein Maturation
LB medium (1% [w/v] tryptone, 0.5% [w/v] yeast extract, 1% [w/v] NaCl) at

37�C, and expression was induced by 1 mM IPTG. Cells were lysed and incu-

bated with Ni-NTA resin (QIAGEN). MPP was eluted and further purified by

size-exclusion chromatography. For activity assays, purified MPP was incu-

bated in processing buffer with various peptides prior to the addition of 35S-

labeled F1b preprotein (Nicotiana plumbaginifolia). Reactions were stopped

with Laemmli buffer, and samples were analyzed by SDS-PAGE and

autoradiography.

Generation of Radiolabelled Precursors and Chemical Amounts

of Peptidases

Radiolabelled preproteins were synthesized by in vitro transcription/transla-

tion using the rabbit reticulate lysate system (Promega) in the presence of
35S-methionine. Chemical amounts of Cym1 (aa 8–989) and control protein

(Oct1; aa 29–772) were synthesized using the RTS wheat germ system (5

PRIME).

Statistical Analysis

Quantified data are shown as mean ± SEM and were obtained from at least

three independent experiments.
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Leuner, K., Schulz, K., Schütt, T., Pantel, J., Prvulovic, D., Rhein, V., Savaskan,

E., Czech, C., Eckert, A., and Müller, W.E. (2012). Peripheral mitochondrial

dysfunction in Alzheimer’s disease: focus on lymphocytes. Mol. Neurobiol.

46, 194–204.

Lin, M.T., and Beal, M.F. (2006). Mitochondrial dysfunction and oxidative

stress in neurodegenerative diseases. Nature 443, 787–795.

Lustbader, J.W., Cirilli, M., Lin, C., Xu, H.W., Takuma, K., Wang, N.,

Caspersen, C., Chen, X., Pollak, S., Chaney, M., et al. (2004). ABAD directly

links Abeta to mitochondrial toxicity in Alzheimer’s disease. Science 304,

448–452.

Manczak, M., Anekonda, T.S., Henson, E., Park, B.S., Quinn, J., and Reddy,

P.H. (2006). Mitochondria are a direct site of A b accumulation in

Alzheimer’s disease neurons: implications for free radical generation and

oxidative damage in disease progression. Hum. Mol. Genet. 15, 1437–1449.

Morais, V.A., and De Strooper, B. (2010). Mitochondria dysfunction and neuro-

degenerative disorders: cause or consequence. J. Alzheimers Dis. 20 (Suppl

2 ), S255–S263.
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Vögtle, F.-N., Wortelkamp, S., Zahedi, R.P., Becker, D., Leidhold, C., Gevaert,

K., Kellermann, J., Voos, W., Sickmann, A., Pfanner, N., and Meisinger, C.

(2009). Global analysis of the mitochondrial N-proteome identifies a process-

ing peptidase critical for protein stability. Cell 139, 428–439.
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