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a b s t r a c t

The smallest number of edges that have to be deleted from a graph G to obtain a bipartite
spanning subgraph is called the bipartite edge frustration of G and denoted by ϕ(G). In
this paper we extend the splice and link for two graphs and determine their bipartite edge
frustration. As an application, the bipartite edge frustration of a polybuckyball is computed.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Erdös [1,2] and Edwards [3] proved that for any graph G there is a bipartite subgraph of G with at least |E(G)|2 +
|V (G)|−1
4

edges. Those bounds were further improved for various classes of graphs; for example Staton [4] and Locke [5] proved that
if G is a connected cubic graph and G 6= K4 then G has a bipartite subgraph with at least

7|E(G)|
9 edges and also the lower

bound of 45 |E(G)|was established for cubic triangle-free graphs [6].
Let G be a graph with the vertex and edge sets V (G) and E(G) respectively. The bipartite edge frustration of G is defined

as the minimum number of edges that have to be deleted from G to obtain a bipartite spanning subgraph. We denote it by
ϕ(G).
It is easy to see, if G is bipartite then ϕ(G) = 0. It follows easily that ϕ(G) ≤ |E(G)|

2 and that the complete graph on n
vertices has the maximum possible bipartite edge frustration among all graphs on n vertices.
The quantity ϕ(G) is, in general, difficult to compute; it is NP-hard for general graphs. Hence, it makes sense to search

for classes of graphs that allow its efficient computation. Some results in this direction was reported in [7] for fullerenes
and other polyhedral graphs and in [8] for some classes of nanotubes. In an earlier paper [9], the bipartite edge frustration
was computed for some composite graphs. Splice and link are two important graph operations such that they have some
application in chemistry. Splice of cycles serves as models of spirane molecules and models of complex molecules are built
from simpler building block by iterating and/or combining the splice and link operation; see [10]. In this paper the notions
of splice and link are extended and call them double splice and double link and then obtain their bipartite edge frustration.
The paper is organized as follows. In the next section we recall some definitions and preliminaries about splice and link.
Section 3 contains the main results about the bipartite edge frustration of double splice and double link.

2. Definitions and preliminaries

All graphs considered in this paper will be finite and simple. The notation we use is mostly standard and taken from
standard graph theory textbooks, such as [11].
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Fig. 1. The double splice and double link.

Definition 2.1. Let G and H be two simple and connected graphs with disjoint vertex sets. For given vertices a ∈ V (G) and
b ∈ V (H), a splice of G and H is defined as the graph (G.H)(a, b) obtained by identifying the vertices a and b. Similarly, a
link of G and H is defined as the graph (G ∼ H)(a, b) obtained by joining a and b by an edge.

The following theorem immediately conclude.

Theorem 2.2. Let G and H be two simple and connected graphs with disjoint vertex sets. For each a ∈ V (G) and b ∈ V (H), the
bipartite edge frustration of splice and link of G and H are obtained as follows:
(i) ϕ

(
(G.H)(a, b)

)
= ϕ(G)+ ϕ(H),

(ii) ϕ
(
(G ∼ H)(a, b)

)
= ϕ(G)+ ϕ(H).

Proof. The proof is straightforward. �

Now we extend the above operations, for splice of G and H by identifying two vertices and for link G and H by joining
two vertices as the following definition.

Definition 2.3. Let G and H be two simple and connected graphs with disjoint vertex sets. For given vertices a, b ∈ V (G)
and c, d ∈ V (H), a double splice of G and H is defined as the graph (G : H)(a, b : c, d) obtained by identifying the vertices a
and c and vertices b and d. Similarly, a double link of G and H is defined as the graph (G ≈ H)(a, b : c, d) obtained by joining
a and c by an edge and b and d by another edge. A double splice and double link of two graphs are shown schematically in
Fig. 1.

Let us mention to the bipartite edge frustration of double splice and double link of graphs. At first we define a concept
that is used for proving the next theorems.

Definition 2.4. Let G be a graph. For a, b ∈ G, ϕa,b(G) is the smallest number of edges that have to be deleted from a graph
G to obtain a bipartite spanning subgraph such that a, b are occurred in the same partition. Similarly, we define ϕ′a,b(G),
for each a, b ∈ G, as the smallest number of edges that have to be deleted from a graph G to obtain a bipartite spanning
subgraph such that a, b are occurred in the different partitions.

It is easy to show that ϕ(G) = min{ϕ′a,b(G), ϕa,b(G)}.

Example. (i) ϕa,b(Pn) =
{
0 2|d(a, b)
1 2 - d(a, b) , ϕ′a,b(Pn) =

{
1 2|d(a, b)
0 2 - d(a, b),

(ii) ϕa,b(C2n) =
{
0 2|d(a, b)
1 2 - d(a, b) , ϕ′a,b(C2n) =

{
1 2|d(a, b)
0 2 - d(a, b),

(iii) ϕa,b(C2n+1) = ϕ′a,b(C2n+1) = ϕ(C2n+1), for each a, b ∈ V (C2n+1),
(iv) ϕa,b(Kn) = ϕ′a,b(Kn) = ϕ(Kn), for each a, b ∈ V (Kn).

Remark. Let G and H be two graphs. If ab ∈ E(G) and cd ∈ E(H), then these edges are identified in double splice graph
(G : H)(a, b : c, d). In this case |E

(
(G : H)(a, b : c, d)

)
| = |E(G)| + |E(H)| − 1. Otherwise |E

(
(G : H)(a, b : c, d)

)
| =

|E(G)| + |E(H)|. In double splice graph when the vertices a and c are identified, we can certainly assume that u = a = b,
by similar argument we assume v = b = d. Indeed we can assume that, u, v ∈ V (G)∩ V (H). We abbreviate the notation to
(G : H)when the vertices u, v ∈ V (G) ∩ V (H) are clear from context.

3. Main results

In this section formulas for the bipartite edge frustration of double splice and double link of two graphs are computed.

Theorem 3.1. Let G and H be two graphs. For each u, v ∈ V (G) ∩ V (H) such that |E
(
(G : H)

)
| = |E(G)| + |E(H)|, we have

ϕ
(
(G : H)

)
= min{ϕu,v(G)+ ϕu,v(H), ϕ′u,v(G)+ ϕ′u,v(H)}.

Proof. Suppose that G0 is a bipartite subgraph of G by removing ϕu,v(G) edges, such that u, v are in the same partition.
Similarly, assume H0 is a bipartite subgraph of H by removing ϕu,v(H) edges, such that u, v are in the same partition.
It follows immediately that (G0 : H0) is a bipartite subgraph of (G : H). Then by deleting ϕu,v(G) + ϕu,v(H) edges of
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(G : H), we can obtain a bipartite subgraph. So ϕ
(
(G : H)

)
≤ ϕu,v(G) + ϕu,v(H). By similar argument, we can show that

ϕ
(
(G : H)

)
≤ ϕ′u,v(G)+ ϕ′u,v(H) and then

ϕ
(
(G : H)

)
≤ min{ϕu,v(G)+ ϕu,v(H), ϕ′u,v(G)+ ϕ′u,v(H)}.

Conversely, suppose that by removing ϕ
(
(G : H)

)
edges of (G : H), the bipartite subgraph K is obtained from (G : H). Set

ϕ
(
(G : H)

)
= r + s, such that r and s are the number of edges of G and H that are removed from (G : H), respectively.

If u and v occur in the same partition of K , then r ≥ ϕu,v(G) and s ≥ ϕu,v(H). Hence ϕ
(
(G : H)

)
= r + s ≥ ϕu,v(G) +

ϕu,v(H). By the same argument, if u, v occur in different partitions of graph K , then ϕ
(
(G : H)

)
= r+ s ≥ ϕ′u,v(G)+ϕ′u,v(H).

Therefore

ϕ
(
(G : H)

)
≥ min{ϕu,v(G)+ ϕu,v(H), ϕ′u,v(G)+ ϕ′u,v(H)}.

This completes the proof. �

Theorem 3.2. Let G and H be two graphs. For each u, v ∈ V (G)∩ V (H) such that |E
(
(G : H)

)
| = |E(G)| + |E(H)| − 1, we have

ϕ
(
(G : H)

)
= min{ϕu,v(G)+ ϕu,v(H)− 1, ϕ′u,v(G)+ ϕ′u,v(H)}.

Proof. We can proceed analogously to the proof of Theorem 3.1. �

Lemma 3.3. Let G be a connected graph. If G0 be a bipartite subgraph of G by deleting ϕ(G) edges, then G0 is connected.

Proof. Suppose there exists a bipartite diconnected subgraph G0 of G by removing ϕ(G) edges. The subgraph G0 has at least
two components, sayG1 andG2, such that there exists an edge e ofG connectingG1 andG2. Notice thatG1 andG2 are bipartite.
Therefore G0 + e is bipartite, contradict by maximality of G0. �

Theorem 3.4. Let G and H be two graphs and a, b ∈ V (G), c, d ∈ V (H). Then

(i) If
(
ϕa,b(G) = ϕ(G), ϕc,d(H) = ϕ(H)

)
or
(
ϕ′a,b(G) = ϕ(G), ϕ′c,d(H) = ϕ(H)

)
, then

ϕ
(
(G ≈ H)(a, b : c, d)

)
= ϕ(G)+ ϕ(H).

(ii) If
(
ϕa,b(G) = ϕ(G), ϕ′c,d(H) = ϕ(H)

)
or
(
ϕ′a,b(G) = ϕ(G), ϕc,d(H) = ϕ(H)

)
, then

ϕ
(
(G ≈ H)(a, b : c, d)

)
= ϕ(G)+ ϕ(H)+ 1.

Proof. (i) Suppose that ϕa,b(G) = ϕ(G), ϕc,d(H) = ϕ(H), then there is a bipartite subgraph G0 of G (by deleting
ϕa,b(G) = ϕ(G) edges) such that a, b lie in the same partition and similarly there is a bipartite subgraph H0 of H (by deleting
ϕc,d(H) = ϕ(H) edges) such that c, d lie in the same partition. By Lemma 3.3 G0 and H0 are connected. Notice that distances
between a, b and c, d are even. Then there are paths P1 and P2 with even lengths as follows P1 : a = x0, x1, . . . , x2n = b and
P2 : d = y1, y2, . . . , y2m = c . The cycle

C1 : a = x0, x1, . . . , x2n = b, d = y1, y2, . . . , y2m = c, a,

is even cycle. Then any new odd cycle is not added in (G0 ≈ H0)(a, b : c, d). Hence the graph (G0 ≈ H0)(a, b : c, d) does not
have odd cycle. Then

ϕ
(
(G ≈ H)(a, b : c, d)

)
= ϕ(G)+ ϕ(H).

Now if ϕ′a,b(G) = ϕ(G) and ϕ′c,d(H) = ϕ(H), then by similar argument we can see that there is a bipartite subgraph G0 of G
(by deleting ϕ′a,b(G) = ϕ(G) edges) such that a, b belong in the different partitions and similarly there is a bipartite subgraph
H0 of H (by deleting ϕ′c,d(H) = ϕ(H) edges) such that c, d lie in the different partitions. Suppose that dG0(a, b) = 2n − 1
and dH0(c, d) = 2m− 1, then the cycle

C2 : a = x0, x1, . . . , x2n−1 = b, d = y1, y2, . . . , y2m−1 = c, a,

has even length. Except the odd cycles in the copies of G and H , there is no odd cycle in (G ≈ H)(a, b : c, d). Therefore

ϕ
(
(G ≈ H)(a, b : c, d)

)
= ϕ(G)+ ϕ(H).

(ii) Suppose ϕa,b(G) = ϕ(G) and ϕ′c,d(H) = ϕ(H), then there exists a bipartite subgraph G0 of G (by deleting ϕa,b(G) = ϕ(G)
edges) such that a, b belong in the same partition and a bipartite subgraph H0 of H (by deleting ϕ′c,d(H) = ϕ(H) edges) such
that c, d lie in the different partition. Since the distance between a, b in G0 is even and the distance between c, d in H0 is
odd, we assume dG0(a, b) = 2n and dH0(c, d) = 2m− 1. Then the cycle

C3 : a = x0, x1, . . . , x2n = b, d = y1, y2, . . . , y2m−1 = c, a,
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Fig. 2. The molecular graph of a polybuckyball.

has odd length. Hence except deleted edges (ϕ(G) + ϕ(H) edges), we must delete an edge of C3 for obtaining a bipartite
subgraph of (G ≈ H)(a, b : c, d). Then

ϕ
(
(G ≈ H)(a, b : c, d)

)
= ϕ(G)+ ϕ(H)+ 1.

In the same manner, we can see that if
(
ϕ′a,b(G) = ϕ(G), ϕc,d(H) = ϕ(H)

)
, then

ϕ
(
(G ≈ H)(a, b : c, d)

)
= ϕ(G)+ ϕ(H)+ 1. �

For the sake of completeness, we mention here a theorem of Došlić and Vukičevićas follows:

Theorem 3.5. Let Cn be an icosahedral fullerene on n = 20(i2 + ij+ j2) vertices. Then ϕ(Cn) = 6(i+ j).

For fullerene C60, it is easy to see that i = j = 1, then ϕ(C60) = 12.

Example 3.6. In this example the bipartite edge frustration of a polybuckyball is computed, Fig. 2. The molecular graph of a
polybuckyball is instructed by operations link or double link on the same IPR fullerene graphs on 60 vertices. We can obtain
the bipartite edge frustration of polybuckyball by using Theorems3.4 and 3.5. The bipartite edge frustration of polybuckyball,
that is made by n copies of C60 by operations link or double link is equal to ϕ(C60)+ · · · + ϕ(C60) = nϕ(C60) = 12n.

Definition 3.7. Let G and H be two connected graphs on disjoint vertex sets, and let a ∈ V (G) and b ∈ V (H). An n-link of G
and H is a graph obtained by connecting the vertices a and b by a path of length n so that each of these vertices is identified
with one of the terminal vertices of Pn. We denote n-link of G and H by (G∼nH)(a, b).

Theorem 3.8. Let G and H be two connected graphs with disjoint vertex sets. For each a ∈ V (G) and b ∈ V (H), the bipartite
edge frustration of n-link of G and H are obtained as follows:

ϕ
(
(G∼nH)(a, b)

)
= ϕ(G)+ ϕ(H).

Definition 3.9. Let G and H be two simple and connected graphs with disjoint vertex sets. For given vertices a, b ∈ V (G)
and c, d ∈ V (H), a (m, n)-link of G and H is defined as the graph (G≈m,nH)(a, b : c, d) obtained by joining a and c by a path
of lengthm and b and d by another path of length n, see Fig. 3.

The following theorem can be proved in much the same way as Theorem 3.4. So the proof of next theorem is left for the
reader.

Theorem 3.10. Let G and H be two graphs and a, b ∈ V (G), c, d ∈ V (H). Then
(i) If

(
ϕa,b(G) = ϕ(G), ϕc,d(H) = ϕ(H)

)
or
(
ϕ′a,b(G) = ϕ(G), ϕ′c,d(H) = ϕ(H)

)
and m+ n be an even number, then

ϕ
(
(G≈m,nH)(a, b : c, d)

)
= ϕ(G)+ ϕ(H).

(ii) If
(
ϕa,b(G) = ϕ(G), ϕc,d(H) = ϕ(H)

)
or
(
ϕ′a,b(G) = ϕ(G), ϕ′c,d(H) = ϕ(H)

)
and m+ n be an odd number, then

ϕ
(
(G≈m,nH)(a, b : c, d)

)
= ϕ(G)+ ϕ(H)+ 1.

(iii) If
(
ϕa,b(G) = ϕ(G), ϕ′c,d(H) = ϕ(H)

)
or
(
ϕ′a,b(G) = ϕ(G), ϕc,d(H) = ϕ(H)

)
and m+ n be an even number, then

ϕ
(
(G≈m,nH)(a, b : c, d)

)
= ϕ(G)+ ϕ(H)+ 1.
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Fig. 3. The (m, n)-double link.

(iv) If
(
ϕa,b(G) = ϕ(G), ϕ′c,d(H) = ϕ(H)

)
or
(
ϕ′a,b(G) = ϕ(G), ϕc,d(H) = ϕ(H)

)
, and m+ n be an odd number, then

ϕ
(
(G≈m,nH)(a, b : c, d)

)
= ϕ(G)+ ϕ(H).
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