expected, TX is the most convenient treatment, as regards cost-effectiveness estimates. PD is also preferred to HD. National Health System authorities should, therefore, favor PD over HD. If that is the case, a Budget Impact Analysis would help to assess to which extent such approach would be worthy.

PUK8

FESOTERODINE IS COST-EFFECTIVE FOR THE TREATMENT OF OVERACTIVE BLADDER: RESULTS OF AN ECONOMIC MODEL

Kelleher C,2 Snedecor SJ, Botteman MF,3 Lee R,3 Najib H,3 Weinstein D,2 Trocio JN

1 St.Thomas’ Hospital, London, UK, 2Pharmerit North America, LLC, Bethesda, MD, USA, 3Weill Medical College of Cornell University, New York, NY, USA, 4Pfizer Ltd, Surrey, UK, 5Pfizer France, Paris, France, 6Pfizer Inc, New York, NY, USA

OBJECTIVES: Health economic analyses are used routinely to evaluate a number of types of health care interventions and are required for all new pharmaceuticals by many national and regional health authorities. These analyses assess the implications of projected outcomes and costs of a new drug treatment and are often used as a tool to guide decisions about pharmaceutical development and consumption. As an illustrative example, an overview of the components and construction of an economic model is presented here using the costs and outcomes associated with fesoterodine (FESO), a new antimuscarinic that has been shown to be safe, tolerable, and effective for the management of overactive bladder (OAB) in adults. METHODS: Economic evaluations comparatively assess the costs in terms of resources consumed and consequences of drug (eg, FESO therapy). The type of analysis illustrated is a cost utility analysis (CUA), which focuses particular attention on the costs and incremental health improvement attributable to fesoterodine. The costs of treatment are measured in monetary units and include medical costs purchased by the health care system, including physician visits, diagnostic and laboratory tests, hospitalizations, and so forth. Other costs consist of the patient’s out-of-pocket expenses for goods and services outside of the medical sector, such as incontinence pads. Unpublished resources consumed by patients with OAB include lost productivity while at work or lost time from work owing to the condition. Health improvement due to FESO is measured by quality-adjusted life years (QALYs, pronounced “qualies”). The QALY is a measure of health outcome, which assigns to each period of time a weight, ranging from zero (death) to one (perfect health) corresponding to the quality of life during that period. The need for incorporating QALYs, rather than life years or expectancy, is due to the observation that many medical interventions, such as those for OAB, are not associated with premature death but with changes in morbidity and quality of life. Finally, the central outcome in a CUA is the cost utility ratio, the difference in the costs of the 2 alternatives divided by the difference in QALYs. This ratio is essentially the cost of an additional QALY when using 1 intervention compared with an alternative. RESULTS: A CUA was created examining the costs and benefits of FESO demonstrated in a 12-week, randomized, double-blind, placebo- and active-controlled clinical trial. Comparators were FESO 4 mg/d, FESO 8 mg/d, extended-release tolterodine 4 mg/d (TOL), and solifenacin (SOL). SOL was not included in the clinical trial, therefore efficacy data were obtained from the published literature. Medical costs of OAB (antimuscarinic drugs, physician visits, laboratory tests, and OAB-related comorbidities), patient out-of-pocket costs (incontinence pads), and productivity costs (lost productivity at work and lost time from work) were all considered. Health-related quality of life data were collected during the trial via the King’s Health Questionnaire (KHQ). Using a published algorithm, responses to the KHQ were transformed into QALYs. The time frame of the analysis was extended from the 12-week trial period to 52 weeks, and the total expected costs and the expected QALYs for each intervention were used in 2-way comparisons. The QALYs gained were 0.0111, 0.0115, 0.0124, and 0.0143 for TOL, SOL, FESO 4 mg, and FESO 8 mg, respectively. The overall costs were £1294, £1344, £1362, and £1424 for FESO 8 mg, SOL, FESO 4 mg, and TOL, respectively. CONCLUSIONS: Economic analyses are used by decision makers in conjunction with clinical and other information to decide which drug therapy provides the best economic value. The results of our economic analysis suggest that FESO may result in fewer overall costs and greater QALYs gained than treatment with TOL or SOL for the management of patients with OAB and incontinence.

PUK9

COST OF OVERACTIVE BLADDER IN THE UNITED STATES

Ganz ML1, Smalarz AM1, Anger JT2, Krupski TL3, Hu JC4, Wittrup-Jensen KU5, Pashos CL1

1 Abt Bio-Pharma Solutions, Inc, Lexington, MA, USA, 2David Geffen School of Medicine, UCLA, Los Angeles, CA, USA, 3Duke Medical Center, Raleigh, NC, USA, 4Bingham and Women’s Hospital, Boston, MA, USA, 5Bayer Schering Pharma AG, Berlin, Germany

OBJECTIVES: Existing projections of the cost of overactive bladder (OAB) in the United States (US) are incomplete and outdated. We sought to determine the cost of OAB in the US from a societal perspective, incorporating direct medical, direct non-medical, and indirect costs. METHODS: We developed a prevalence-based model with data on age- and sex-specific OAB prevalence, health care utilization, other components of care, and productivity. Using data from the five most recent years of medical literature, practice guidelines, Medicare and managed care fee schedules, and expert panel input, we calculated the annual per capita and total US costs. Direct costs were calculated as the product of the age/sex-specific probability that a care component is used, the age/sex-specific number of units used, and its unit price. Indirect costs (lost productivity) were calculated based on the human capital model and governmental census data. We applied current age/sex-specific prevalence rates, treatment patterns, and costs to US census population projections to project costs of OAB in 2015 and 2020. RESULTS: Mean total annual per capita cost in 2007 was $1991, comprised of $1500 (direct medical), $66 (direct non-medical), and $426 (indirect). Given that about 34 million people in the US have OAB, the total national cost is $68.2 billion (B) ($51.4B direct medical, $2.3B direct non-medical, and $14.6B indirect). Mean total annual per capita costs in 2015 and 2020 would be $2010 and $2036 respectively. Given projections of ~39 million and 42 million people with OAB in 2015 and 2020, total national costs would be $78.8B and $85.4B, respectively. CONCLUSIONS: These data suggest that the economic burden of OAB is about five-fold higher than older, non-comprehensive estimates. Inasmuch as 75% of this cost is for direct medical care, it is important that opportunities be explored to improve the value of available therapies.

PUK10

ECONOMIC IMPACT OF A LOW-PROTEIN DIET AIMING TO DELAY THE HAEMODIALYSIS TREATMENT IN PATIENTS WITH CHRONIC-RENAL-FAILURE

de Portu S,1 Cianciaruso B,2 Pota A,2 di Miccio L1, Di Palma A1, Pisani A1, Mantovani LG1

1 Faculty of Pharmacy, University Federico II, Naples, Italy, 2School of Medicine, University Federico II, Naples, Italy

OBJECTIVES: Chronic kidney disease is a progressive condition that results in significant morbidity and mortality. Dietary