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1. Introduction and preliminary results

Deterministic neutral differential equations were introduced by Hale and Meyer [2] and discussed in Hale et al. (see
references in [3]) and Kolmanovskii and Nosov (for details see also references in [6,7]), among others. Motivated by the
chemical engineering systems in which the physical and chemical processes are distinguished by their complexity, as well
as by the theory of aeroelasticity in which aeroelastic efforts present an interaction between aerodynamic, elastic and iner-
tial forces, Kolmanovskii and Nosov [6] incorporated a Gaussian white noise excitation in deterministic cases by describing
stochastic versions of deterministic neutral functional differential equations taking into account stochastic perturbations.
Having in mind that the Gaussian white noise is mathematically described as a formal derivative of a Brownian motion
process, mathematical models of such phenomena are represented by various types of neutral stochastic functional differ-
ential equations of the Ito type. Obviously, investigations of such stochastic equations are of great interest. However, since
they describe dynamical systems with their past states, which make them more realistic but more complex, they cannot
be effectively solved in all cases. The main interest in the field has often been directed to the existence, uniqueness and
stability of the solutions, as well as to the study of their qualitative and quantitative properties. We refer the reader to
papers [8,9] by X. Mao et al., to papers and books [11–15] by X. Mao, as well as to [6,16], among others.

It is well known that the classical and powerful technique applied in the study of stability is based on a stochastic
version of the Lyapunov direct method. However, as Lyapunov functionals, now required instead of Lyapunov functions, can
be difficult to find when applying the above method, some other more applicable criteria are needed in order to verify the
required type of stability. Some of the criteria related to the pth moment exponential stability of the solutions to neutral
stochastic functional differential equations are considered in [5,17]. Recall that the conditions guaranteeing this type of
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stability are very restrictive for the coefficients of the equations. In the present paper we apply a special technique – the
Razumikhin technique – which is completely different from those used in [5,17]. Razumikhin developed this technique in
[18,19] to study the stability of deterministic systems with a delay. There is a number of papers which apply this technique
to various deterministic functional systems to solve some problems in applications, [1,10], for example. X. Mao incorporated
Razumikhin’s approach in stochastic functional differential equations [13] and in neutral stochastic functional differential
equations [14]. Crucially, this approach requires that some of the conditions hold on a restriction of the considered function
spaces instead on the whole function spaces. In the present paper we generalize the results from paper [14] by X. Mao
referring to the exponential stability in mean square and to the almost sure exponential stability. In this sense, the assertions
in Sections 2 and 3 are reduced for p = 2 to the ones from paper [14]. It should be pointed out that this generalization is
made possible by applying an elementary inequality basically different from the ones treating similar subjects.

The paper is organized as follows. In the remainder of this section we introduce some basic notions and notations,
mainly from [5] and [14], and we present the neutral stochastic functional differential equation which will be the topic of
our investigation. In Section 2 we present the main results, the conditions inspired by the Razumikhin’s approach, under
which the trivial solution is the pth moment exponentially stable. This approach also makes it possible the study of almost
sure exponential stability, while the technique in [5,17] does not. The results from Section 2 are extended in Section 3 to
neutral stochastic differential delay equations. Note also that the approach in [5,17] could not be applied to this type of
equations, which points to the importance of the Razumikhin technique, both theoretically and in applications. We conclude
the paper with some examples to illustrate the previous theory.

In general, we require that all random variables and processes are defined on a complete probability space (Ω, F ,

{Ft}t�0, P ) with a natural filtration {Ft}t�0 generated by the standard m-dimensional Brownian motion w = {w(t), t � 0},
w(t) = (w1(t), w2(t), . . . , wm(t))T , i.e. Ft = σ {w(s),0 � s � t}. Let the Euclidean norm be denoted by | · |. For simplicity,
let us take trace[AT A] = |A|2, where T stands for transpose of a matrix or vector. Let also ‖A‖ be the operator norm of a
matrix A, where ‖A‖ = sup{|Ax|: |x| = 1, x ∈ Rn}.

Let C([−τ ,0]; Rn), where τ = const > 0, be the family of continuous functions ϕ from [−τ ,0] to Rn with the norm
‖ϕ‖ = sup−τ�θ�0|ϕ(θ)|. Let also L p

F ([−τ ,0]; Rn) be the family of all F -measurable C([−τ ,0], Rn)-valued random variables
φ = {φ(θ),−τ � θ � 0} such that sup−τ�θ�0 E|φ(θ)|p < ∞. In that manner, C([−τ ,0]; Rn) ⊂ L p

F ([−τ ,0]; Rn) is valid.
In this paper we study the following n-dimensional neutral stochastic functional differential equation

d
[
x(t) − G(xt)

] = f (t, xt)dt + g(t, xt)dw(t), t � 0 (1)

with initial data x0 = ξ = {ξ(θ),−τ � θ � 0} ∈ L p
F0

([−τ ,0]; Rn), where Ft = F0, −τ � t � 0. The coefficients of this equa-
tion,

G : C
([−τ ,0]; Rn) → Rn,

f : R+ × C
([−τ ,0]; Rn) → Rn, g : R+ × C

([−τ ,0]; Rn) → Rn×m

are continuous functionals and xt = {x(t + θ),−τ � θ � 0} is a C([−τ ,0]; Rn)-valued stochastic process.
An Ft -adapted process x = {x(t),−τ � t < ∞} is said to be the solution to Eq. (1) if it satisfies the initial condition and

the corresponding integral equation holds a.s., that is, for every t � 0,

x(t) − G(xt) = ξ(0) − G(ξ) +
t∫

0

f (s, xs)ds +
t∫

0

g(s, xs)dw(s) a.s. (2)

Kolmanovskii and Nosov [6] proved the basic existence-and-uniqueness theorem under the following conditions:

– For a constant k ∈ (0,1) and for all φ1, φ2 ∈ L2
F ([−τ ,0]; Rn), let

E
∣∣G(φ1) − G(φ2)

∣∣2 � k sup
−τ�θ�0

E
∣∣φ1(θ) − φ2(θ)

∣∣2
.

– The functionals f and g are uniformly Lipschitz continuous in the second argument, or they are locally Lipschitz con-
tinuous and satisfy the linear-growth condition (for more details see [6,15,16], among others).

Moreover, if ξ ∈ L p
F0

([−τ ,0]; Rn), then there exists the pth moment of the solution x(t; ξ). In the sequel, we assume,
with no emphasis on conditions, that there exists a unique solution to Eq. (1) satisfying sup−τ�t�T E|x(t; ξ)|p < ∞ for all
T > 0, and that all the Lebesgue and Ito integrals further employed are well defined.

As we mentioned above, the following inequalities will be used in our investigation: Let p � 1, x, y ∈ Rn . Then:
For α > 0,

|x + y|p � (1 + α)p−1
(

|x|p + |y|p

p−1

)
. (3)
α
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For 0 < ε < 1,

|x + y|p � |x|p

(1 − ε)p−1
+ |y|p

εp−1
. (4)

The inequality (3) can be found in Mao [15, Lemma 4.1], while (4) is obtained from (3) by putting α = ε/(1 − ε).

2. Main results

As usual, let G(0) = 0, f (t,0) ≡ 0, g(t,0) ≡ 0, which yields that Eq. (1) admits a trivial solution x(t;0) ≡ 0. Recall that
the trivial solution to Eq. (1) is said to be the pth moment exponentially stable if there exists a pair of positive constants γ
and M such that

E
∣∣x(t; ξ)

∣∣p � Me−γ t sup
−τ�θ�0

E
∣∣ξ(θ)

∣∣p
, t � 0, (5)

or equivalently,

lim sup
t→∞

1

t
ln E

∣∣x(t; ξ)
∣∣p � −γ (6)

for all ξ ∈ L p
F0

([−τ ,0]; Rn). Likewise, the trivial solution to Eq. (1) is said to be almost surely exponentially stable if there
exists a positive constant γ such that

lim sup
t→∞

1

t
ln

∣∣x(t; ξ)
∣∣ � −γ a.s. (7)

for all ξ ∈ L p
F0

([−τ ,0]; Rn).
In this section, we will prove the main result of the present paper, that is, the Razumikhin-type theorem, showing that

the trivial solution to Eq. (1) is the pth moment exponentially stable, where p � 2. Remember that the pth moment expo-
nential stability and almost sure exponential stability do not imply each other in general. However, our main result makes
it possible to prove that, under some conditions, the pth moment exponential stability implies almost sure exponential
stability.

Theorem 1. Let there exist a constant k ∈ (0,1) such that

E
∣∣G(φ)

∣∣p � k sup
−τ�θ�0

E
∣∣φ(θ)

∣∣p
, (8)

for all φ ∈ L p
F ([−τ ,0]; Rn). Let q > (1 − k

1
p )−p and let there exist λ > 0 so that

E

{
p

2

∣∣φ(0) − G(φ)
∣∣p−4(∣∣φ(0) − G(φ)

∣∣2[
2
(
φ(0) − G(φ)

)T
f (t, φ) + ∣∣g(t, φ)

∣∣2] + (p − 2)
∣∣(φ(0) − G(φ)

)T
g(t, φ)

∣∣2)}
� −λE

∣∣φ(0) − G(φ)
∣∣p

(9)

for all t � 0 and those φ ∈ L p
F ([−τ ,0]; Rn) satisfying

E
∣∣φ(θ)

∣∣p
< qE

∣∣φ(0) − G(φ)
∣∣p

, −τ � θ � 0. (10)

Then, for every ξ ∈ L p
F0

([−τ ,0]; Rn) the solution x(t; ξ) of Eq. (1) satisfies

E
∣∣x(t; ξ)

∣∣p � q
(
1 + k

1
p
)p

e−γ t sup
−τ�θ�0

E
∣∣ξ(θ)

∣∣p
, t � 0, (11)

where

γ = min

{
λ,

1

τ
ln

q

(1 + (kq)
1
p )p

}
> 0, (12)

that is, the trivial solution to Eq. (1) is the pth moment exponentially stable.

Theorem 1 points to the difference between the usual technique in investigating sufficient conditions on the pth mean
stability. In fact, the essence of the Razumikhin technique is to weaken the condition (9) in the sense that it can be valid
not for all φ ∈ L p

F ([−τ ,0); Rn), as before, but only for those satisfying (10).
For simplicity, this theorem will be proved gradually, with the help of the forthcoming lemmas. We shall also use the

notation x(t) instead of x(t; ξ) to denote the solution to Eq. (1) for a given initial data ξ ∈ L p
F0

([−τ ,0]; Rn).
The first lemma is an auxiliary result and it is of an independent interest, but it will be important in our analysis.
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Lemma 1. Let the condition (8) be satisfied for some k ∈ (0,1). Then,

E
∣∣φ(0) − G(φ)

∣∣p �
(
1 + k

1
p
)p

sup
−τ�θ�0

E
∣∣φ(θ)

∣∣p

for all φ ∈ L p
F ([−τ ,0]; Rn).

Proof. The proof holds straightforwardly by using (8) and by applying the inequality (3) for α = k
1
p . Then,

E
∣∣φ(0) − G(φ)

∣∣p �
(
1 + k

1
p
)p−1(

E
∣∣φ(0)

∣∣p + k− p−1
p E

∣∣G(φ)
∣∣p)

�
(
1 + k

1
p
)p−1

(
E
∣∣φ(0)

∣∣p + k · k− p−1
p sup

−τ�θ�0
E
∣∣φ(θ)

∣∣p
)

�
(
1 + k

1
p
)p

sup
−τ�θ�0

E
∣∣φ(θ)

∣∣p
. �

Lemma 2. Let the condition (8) be satisfied for some k ∈ (0,1). Let x(t) be a solution to Eq. (1) and ρ � 0, 0 < γ < − 1
τ ln k so that,

for all 0 � t � ρ ,

eγ t E
∣∣x(t) − G(xt)

∣∣p �
(
1 + k

1
p
)p

sup
−τ�θ�0

E
∣∣x(θ)

∣∣p
. (13)

Then,

eγ t E
∣∣x(t)∣∣p � (1 + k

1
p )p

(1 − (keγ τ )
1
p )p

sup
−τ�θ�0

E
∣∣x(θ)

∣∣p
, 0 � t � ρ. (14)

Proof. Let ε ∈ (0,1) and 0 � t � ρ . By applying the inequality (4) and the assumption (8), one can derive

E
∣∣x(t)∣∣p � 1

(1 − ε)p−1
E
∣∣x(t) − G(xt)

∣∣p + k

εp−1
sup

−τ�θ�0
E
∣∣x(t + θ)

∣∣p
.

Then, by using (13) it follows, for all 0 � t � ρ , that

eγ t E
∣∣x(t)∣∣p � 1

(1 − ε)p−1
sup

0�t�ρ

[
eγ t E

∣∣x(t) − G(xt)
∣∣p] + k

εp−1
sup

0�t�ρ

[
eγ t sup

−τ�θ�0
E
∣∣x(t + θ)

∣∣p]
� (1 + k

1
p )p

(1 − ε)p−1
sup

−τ�θ�0
E
∣∣x(θ)

∣∣p + keγ τ

εp−1
sup

−τ�t�ρ

[
eγ t E

∣∣x(t)∣∣p]
.

This inequality also holds for all −τ � t � 0 and, therefore,

sup
−τ�t�ρ

[
eγ t E

∣∣x(t)∣∣p]
� (1 + k

1
p )

p

(1 − ε)p−1
sup

−τ�θ�0
E
∣∣x(θ)

∣∣p + keγ τ

εp−1
sup

−τ�t�ρ

[
eγ t E

∣∣x(t)∣∣p]
.

Considering keγ τ < εp−1 < 1, we see that

sup
−τ�t�ρ

[
eγ t E|x(t)|p]

� (1 + k
1
p )

p

(1 − ε)p−1

(
1 − keγ τ

εp−1

)−1

sup
−τ�θ�0

E
∣∣x(θ)

∣∣p
.

Since keγ τ < (keγ τ )
p−1

p , it is easy to obtain the desired result letting ε = (keγ τ )
1
p . �

Lemma 3. Let the conditions of Theorem 1 be satisfied. Then, for every γ ∈ (0, γ ) and t � 0,

eγ t E
∣∣x(t) − G(xt)

∣∣p �
(
1 + k

1
p
)p

sup
−τ�θ�0

E
∣∣ξ(θ)

∣∣p
. (15)

Proof. For every ξ ∈ L p
F0

([−τ ,0]; Rn), we can assume, without loss of generality, that sup−τ�θ�0 E|ξ(θ)|p > 0.

Since q > (1 − k
1
p )−p , then q/(1 + (kq)

1
p )p > 1, which implies that γ > 0. Then, for an arbitrary γ ∈ (0, γ ) we see that

0 < γ < min

{
λ,

1
ln

1
}
.

τ k
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Since h(x) = x/(1 − (kx)
1
p )p increases when kx < 1, one can choose q such that

q >
eγ τ

(1 − (keγ τ )
1
p )p

>
1

(1 − (keγ τ )
1
p )p

>
1

(1 − k
1
p )p

. (16)

Let us prove (15) by contradiction. If (15) does not hold for every t � 0, Lemma 1 yields that there exists ρ � 0 so that

eγ t E
∣∣x(t) − G(xt)

∣∣p � eγρ E
∣∣x(ρ) − G(xρ)

∣∣p = (
1 + k

1
p
)p

sup
−τ�θ�0

E
∣∣ξ(θ)

∣∣p
(17)

for all 0 � t � ρ . There is also a sequence {tk}k�1, tk ↓ ρ , that satisfies

eγ tk E
∣∣x(tk) − G(xtk )

∣∣p
> eγρ E

∣∣x(ρ) − G(xρ)
∣∣p

. (18)

By applying Lemma 2 to (17) we find for all −τ � t � ρ that

eγ t E
∣∣x(t)∣∣p � (1 + k

1
p )p

(1 − (keγ τ )
1
p )p

sup
−τ�θ�0

E
∣∣x(θ)

∣∣p = eγρ

(1 − (keγ τ )
1
p )p

E
∣∣x(ρ) − G(xρ)

∣∣p
.

In particular, if we put t = ρ + θ for all −τ � θ � 0, and then use (16), we see that

E
∣∣x(ρ + θ)

∣∣p � eγ τ

(1 − (keγ τ )
1
p )p

E
∣∣x(ρ) − G(xρ)

∣∣p
< qE

∣∣x(ρ) − G(xρ)
∣∣p

.

Further, if we take φ = xρ in (9), that is φ(θ) = x(ρ + θ), φ(0) = x(ρ), we find that

E

{
p

2

∣∣x(ρ) − G(xρ)
∣∣p−4(∣∣x(ρ) − G(xρ)

∣∣2[
2
(
x(ρ) − G(xρ)

)T
f (ρ, xρ) + ∣∣g(ρ, xρ)

∣∣2]
+ (p − 2)

∣∣(x(ρ) − G(xρ)
)T

g(ρ, xρ)
∣∣2)}

� −λE
∣∣x(ρ) − G(xρ)

∣∣p
.

Since γ < λ and since f , g and G are continuous, we have for all sufficiently small h > 0 and ρ � t � ρ + h,

E

{
p

2

∣∣x(t) − G(xt)
∣∣p−4(∣∣x(t) − G(xt)

∣∣2[
2
(
x(t) − G(xt)

)T
f (t, xt) + ∣∣g(t, xt)

∣∣2] + (p − 2)
∣∣(x(t) − G(xt)

)T
g(t, xt)

∣∣2)}
� −γ E

∣∣x(t) − G(xt)
∣∣p

.

On the other hand, the application of the Ito formula to eγ t |x(t) − G(xt)|p yields

eγ (ρ+h)E
∣∣x(ρ + h) − G(xρ+h)

∣∣p − eγρ E
∣∣x(ρ) − G(xρ)

∣∣p

= E

ρ+h∫
ρ

eγ t
[
γ

∣∣x(t) − G(xt)
∣∣p + p

2

∣∣x(t) − G(xt)
∣∣p−4(∣∣x(t) − G(xt)

∣∣2[
2
(
x(t) − G(xt)

)T
f (t, xt) + ∣∣g(t, xt)

∣∣2]

+ (p − 2)
∣∣(x(t) − G(xt)

)T
g(t, xt)

∣∣2)]
dt + E

ρ+h∫
ρ

peγ t
∣∣x(t) − G(xt)

∣∣p−2(
x(t) − G(xt)

)T
g(t, xt)dwt .

Since the last integral is equal to zero, on the basis of (9) we derive that

eγ (ρ+h)E
∣∣x(ρ + h) − G(xρ+h)

∣∣p − eγρ E
∣∣x(ρ) − G(xρ)

∣∣p � 0.

However, this is a contradiction with respect to (18) and, therefore, the assumption (15) is valid. �
It is now easy to prove Theorem 1.

Proof of Theorem 1. Since (15) holds, we can apply Lemma 2 and (16) to conclude that

eγ t E
∣∣x(t)∣∣p � (1 + k

1
p )p

(1 − (keγ τ )
1
p )p

sup
−τ�θ�0

E
∣∣ξ(θ)

∣∣p � q
(
1 + k

1
p
)p

sup
−τ�θ�0

E
∣∣x(θ)

∣∣p

for all t � 0. What now remains is to take γ → γ , which completes the proof. �
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Let us now introduce some conditions which, combined with the Razumikhin’s approach, show that the pth moment
exponential stability implies the almost sure exponential stability of the trivial solution to Eq. (1). Before that, we must
prove the following lemma.

Lemma 4. Let there exist a constant k ∈ (0,1) such that∣∣G(ϕ)
∣∣p � k sup

−τ�θ�0

∣∣ϕ(θ)
∣∣p

(19)

for all ϕ ∈ C([−τ ,0]; Rn). For a continuous function z : [−τ ,0] → Rn let us denote that zt = {z(t + θ),−τ � θ � 0} for t � 0. Let
0 < γ < − 1

τ ln k and H > 0. If∣∣z(t) − G(zt)
∣∣p � He−γ t for all t � 0, (20)

then

lim sup
t→∞

1

t
ln

∣∣z(t)∣∣ � −γ

p
. (21)

Proof. Let keγ τ < εp−1 < 1. Then, by applying the inequality (4) and the conditions (19) and (20), we find for any T > 0
that

sup
0�t�T

[
eγ t

∣∣z(t)∣∣p]
� 1

(1 − ε)p−1
sup

0�t�T

[
eγ t

∣∣z(t) − G(zt)
∣∣p] + 1

εp−1
sup

0�t�T

[
eγ t

∣∣G(zt)
∣∣p]

� H

(1 − ε)p−1
+ keγ τ

εp−1
sup

−τ�t�T

[
eγ t

∣∣z(t)∣∣p]
.

Since (
1 − keγ τ

εp−1

)
sup

0�t�T

[
eγ t

∣∣z(t)∣∣p]
� H

(1 − ε)p−1
+ keγ τ

εp−1
sup

−τ�t�0

∣∣z(t)∣∣p
,

the required relation (21) holds straightforwardly. �
Theorem 2. Let (8) hold for a constant k ∈ (0,1) and let there exist a constant K > 0 such that

E
(∣∣ f (t, φ)

∣∣p + ∣∣g(t, φ)
∣∣p)

� K sup
−τ�θ�0

E
∣∣φ(θ)

∣∣p
(22)

for all t � 0 and φ ∈ L p
F ([−τ ,0]; Rn). Let also the trivial solution to Eq. (1) be the pth moment exponentially stable, that is, there

exists a pair of constants γ and M such that (5) holds. Then, the trivial solution to Eq. (1) is almost surely exponentially stable, that is,

lim sup
t→∞

1

t
ln

∣∣x(t; ξ)
∣∣ � −γ

p
a.s., (23)

where γ = min{γ ,− 1
τ ln k}. In particular, if (8), (9) and (22) hold, then the trivial solution to Eq. (1) is almost surely exponentially

stable.

Proof. As before, for a fixed ξ let us simply take x(t) instead of the solution x(t; ξ). By applying the elementary inequality
|∑s

k=1 ak|p � sp−1 ∑s
k=1 |ak|p , p � 1, the Hölder inequality and the well-known Burkholder–Davis–Gundy inequality [4,15],

as well as (22), we find for every n ∈ N that

E sup
0�θ�τ

∣∣x(nτ + θ) − G(xnτ+θ )
∣∣p � 3p−1 E

∣∣x(nτ ) − G(xnτ )
∣∣p + 3p−1 K

(
τ p−1 + cpτ

p
2 −1) (n+1)τ∫

nτ

sup
−τ�θ�0

E
∣∣x(s + θ)

∣∣p
ds.

In view of (23) and (8) we derive

E sup
0�θ�τ

∣∣x(nτ + θ) − G(xnτ+θ )
∣∣p � 3p−1M

[
2p−1(1 + k)e−γ (nτ−τ )

+ K
(
τ p−1 + cpτ

p
2 −1) (n+1)τ∫

e−γ (s+θ) ds

]
sup

−τ�θ�0
E
∣∣ξ(θ)

∣∣p
.

nτ
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Since e−γ (s+θ) � e−γ (s−τ ) for nτ � s � (n + 1)τ and −τ � θ � 0, we conclude that

E sup
0�θ�τ

∣∣x(nτ + θ) − G(xnτ+θ )
∣∣p � Ce−γnτ ,

where C is a generic constant independent of n. Then, for an arbitrary ε ∈ (0, γ ),

P
{
ω: sup

0�θ�τ

∣∣x(nτ + θ) − G(xnτ+θ )
∣∣p � e−(γ −ε)nτ

}
� Ce−εnτ .

The application of the Borel–Cantelly lemma yields that there exists an n0(ω) so that, for almost all ω ∈ Ω ,

sup
0�θ�τ

∣∣x(nτ + θ) − G(xnτ+θ )
∣∣p � e−(γ −ε)nτ

holds whenever n � n0(ω). Moreover,∣∣x(t) − G(xt)
∣∣p � e−(γ−ε)(t−τ ) a.s. for t � n0τ .

Since |x(t) − G(xt)|p is a.s. finite on [0,n0τ ], there exists an a.s. finite number H = H(ω) such that∣∣x(t) − G(xt)
∣∣p � He−(γ −ε)t for t � 0.

Recall that C([−τ ,0]; Rn) ⊂ L p
F ([−τ ,0]; Rn). Since the condition (8) implies (19), the application of Lemma 4 yields

lim sup
t→∞

1

t
ln

∣∣x(t)∣∣ � −γ − ε

p
a.s.

Therefore, what remains is to let ε → 0. �
3. Some consequences

The pth moment exponential stability of solutions to a more general class of neutral stochastic functional differential
equations was recently discussed in paper [5] by S. Janković and M. Jovanović. However, this problem can also be discussed
by employing the Razumikhin-type technique. Precisely, we will consider the following equation

d
[
x(t) − G(xt)

] = [
f1

(
t, x(t)

) + f (t, xt)
]

dt + g(t, xt)dw(t), t � 0, (24)

with initial data x0 = ξ , where G, f , g and ξ are defined as before, and f1 : R+ × Rn → Rn , f1(t,0) ≡ 0. Recall that in [13]
by X. Mao sufficient conditions on the mean square exponential stability of the solution to this equation are also discussed
by using the Razumikhin’s approach. In fact, the following theorem represents an extension relative to the results from [13].

Theorem 3. Let (8) be valid and let there exist positive constants λ1 and λ2 such that

E

{
p

2

∣∣φ(0) − G(φ)
∣∣p−4(∣∣φ(0) − G(φ)

∣∣2[
2
(
φ(0) − G(φ)

)T (
f1

(
t, φ(0)

) + f (t, φ)
) + ∣∣g(t, φ)

∣∣2]
+ (p − 2)

∣∣(φ(0) − G(φ)
)T

g(t, φ)
∣∣2)}

� −λ1 E
∣∣φ(0)

∣∣p + λ2 sup
−τ�θ�0

E
∣∣φ(θ)

∣∣p
(25)

holds for all t � 0 and φ ∈ L p
F ([−τ ,0]; Rn). If

0 < k <
1

2p
, λ1 >

λ2

(1 − 2k
1
p )p

, (26)

then the trivial solution to Eq. (24) is the pth moment exponentially stable.

Proof. It is easy to check from (26) that there exists q > 0 satisfying

1

k
> q >

1

(1 − k
1
p )p

, λ1 >
λ2q

(1 − (kq)
1
p )p

. (27)

Since Eq. (24) can be rewritten as Eq. (1) by putting f̂ (t, φ) = f1(t, φ(0)) + f (t, φ) for all t � 0 and φ ∈ C([−τ ,0]; Rn), it is
necessary to verify the condition (9) to prove this assertion.
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First, let (10) hold for a chosen q satisfying (27) and for every t � 0 and φ ∈ L p
F ([−τ ,0]; Rn), that is, let

E
∣∣φ(θ)

∣∣p
< qE

∣∣φ(0) − G(φ)
∣∣p

, −τ � θ � 0. (28)

On the other hand, by applying the inequality (4) and the conditions (8) and (28), we find for any ε ∈ (0,1) that

E
∣∣φ(0) − G(φ)

∣∣p � 1

(1 − ε)p−1
E
∣∣φ(0)

∣∣p + 1

εp−1
E
∣∣G(φ)

∣∣p � 1

(1 − ε)p−1
E
∣∣φ(0)

∣∣p + kq

εp−1
E
∣∣φ(0) − G(φ)

∣∣p
,

and hence

−E
∣∣φ(0)

∣∣p � −(1 − ε)p−1
(

1 − kq

εp−1

)
E
∣∣φ(0) − G(φ)

∣∣p
. (29)

Let ε = (kq)
1
p . By using the estimates (28) and (29), we find from (25) that

E

{
p

2

∣∣φ(0) − G(φ)
∣∣p−4(∣∣φ(0) − G(φ)

∣∣2[
2
(
φ(0) − G(φ)

)T (
f1

(
t, φ(0)

) + f (t, φ)
) + ∣∣g(t, φ)

∣∣2]
+ (p − 2)

∣∣(φ(0) − G(φ)
)T

g(t, φ)
∣∣2)}

= −[
λ1

(
1 − (kq)

1
p
)p − λ2q

]
E
∣∣φ(0) − G(φ)

∣∣p
.

Since (27) implies λ1(1 − (kq)
1
p )p − λ2q > 0, the condition (9) is also satisfied, so that the desired conclusion follows from

Theorem 1. �
To compare Theorem 3 with the appropriate results from [5], let us introduce the family W ([−τ ,0]; R+) of Borel-

measurable bounded non-negative functions η(θ), −τ � θ � 0, such that
∫ 0
−τ η(θ)dθ = 1 (weighting function) and empha-

size the conditions:

(i) There exist a constant k ∈ (0,1) and a function η1 ∈ W ([−τ ,0]; R+) such that

∣∣G(ϕ)
∣∣p � k

0∫
−τ

η1(θ)
∣∣ϕ(θ)

∣∣p
dθ (30)

for all ϕ ∈ C([−τ ,0]; Rn).
(ii) There exist constants λ1, λ2 � 0 and a function η2 ∈ W ([−τ ,0]; R+) such that

p

2

∣∣ϕ(0) − G(ϕ)
∣∣p−4(∣∣ϕ(0) − G(ϕ)

∣∣2[
2
(
ϕ(0) − G(ϕ)

)T (
f1

(
t,ϕ(0)

) + f (t,ϕ)
) + ∣∣g(t,ϕ)

∣∣2]
+ (p − 2)

∣∣(ϕ(0) − G(ϕ)
)T

g(t,ϕ)
∣∣2)

� −λ1
∣∣ϕ(0)

∣∣p + λ2

0∫
−τ

η2(θ)
∣∣ϕ(θ)

∣∣p
dθ (31)

for all t � 0 and ϕ ∈ C([−τ ,0]; Rn).

Then, the assertion that follows is valid.

Theorem 4. (See [5].) Let the conditions (30) and (31) hold for a constant k ∈ (0,1) and for some functions η1, η2 ∈ W ([−τ ,0]; R+).
If 0 � λ2 < λ1 , then the trivial solution to Eq. (24) is the pth moment exponentially stable.

Note that the requirement λ1 > λ2 is much sharper than (26). Likewise, the conditions (30) and (31) are more restrictive
than the conditions of Theorem 3. For instance, Theorem 3 can be applied to the study of the pth moment exponential
stability for neutral stochastic differential delay equations, while Theorem 4 cannot. To see this, let

d
[
x(t) − Ḡ

(
x(t − τ )

)] = f̄
(
t, x(t), x(t − τ )

)
dt + ḡ

(
t, x(t), x(t − τ )

)
dw(t) (32)

be a neutral stochastic differential delay equation with initial data x0 = ξ ∈ L p
F0

([−τ ,0]; Rn), where w(t) is an m-di-

mensional Brownian motion and Ḡ : Rn → Rn , f̄ : R+ × Rn × Rn → Rn , ḡ : R+ × Rn × Rn → Rn×m are Borel-measurable
functions satisfying Ḡ(0) ≡ 0, f̄ (t,0,0) ≡ 0, ḡ(t,0,0) ≡ 0. We also assume that they are smooth enough so that there exists
a global unique solution x(t; ξ) to Eq. (32). The following assertions hold directly from Theorem 3.
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Corollary 1. Let there exist a constant k ∈ (0,1) such that∣∣Ḡ(x)
∣∣ � k

1
p |x|, x ∈ Rn. (33)

In addition, let there exist positive constants λ1 and λ2 such that

p

2

∣∣x − Ḡ(y)
∣∣p−4(∣∣x − Ḡ(y)

∣∣2[
2
(
x − Ḡ(y)

)T
f̄ (t, x, y) + ∣∣ḡ(t, x, y)

∣∣2] + (p − 2)
∣∣(x − Ḡ(y)

)T
ḡ(t, x, y)

∣∣2)
� −λ1|x|p + λ2|y|p

for all t � 0 and x, y ∈ Rn. If (26) holds, then the trivial solution to Eq. (32) is the pth moment exponentially stable.

The proof follows straightforwardly from Theorem 3 since Eq. (32) can be rewritten as Eq. (24), by putting

G(ϕ) = Ḡ
(
ϕ(−τ )

)
, f1(t, x) = f̄ (t, x,0),

f (t,ϕ) = − f̄
(
t,ϕ(0),0

) + f̄
(
t,ϕ(0),ϕ(−τ )

)
,

g(t,ϕ) = ḡ
(
t,ϕ(0),ϕ(−τ )

)
for all t � 0, x ∈ Rn and ϕ ∈ C([−τ ,0]; Rn).

As usual, let L p
F (Ω; Rn) be a family of Rn-valued F -measurable random variables X such that E|X |p < ∞.

Theorem 5. Let the condition (8) be satisfied for a constant k ∈ (0,1) and let q > (1 − k
1
p )

−p
. If there exists a constant λ > 0 such

that

E

{
p

2

∣∣X − Ḡ(Y )
∣∣p−4(∣∣X − Ḡ(Y )

∣∣2[
2
(

X − Ḡ(Y )
)T

f̄ (t, X, Y ) + ∣∣ḡ(t, X, Y )
∣∣2] + (p − 2)

∣∣(X − Ḡ(Y )
)T

ḡ(t, X, Y )
∣∣2)}

� −λE
∣∣X − Ḡ(Y )

∣∣p
(34)

for all t � 0 and those X, Y ∈ L p
F (Ω; Rn) satisfying E|Y |p < qE|X − Ḡ(Y )|p

, then the trivial solution to Eq. (32) is the pth moment
exponentially stable. Moreover, if there exists a constant K > 0 such that∣∣ f̄ (t, x, y)

∣∣p + ∣∣ḡ(t, x, y)
∣∣p � K

(|x|p + |y|p)
(35)

for all t � 0 and x, y ∈ Rn, then the trivial solution to Eq. (32) is almost surely exponentially stable.

Since Eq. (32) can be transformed into Eq. (1) by putting

G(ϕ) = Ḡ
(
ϕ(−τ )

)
, f (t,ϕ) = f̄

(
t,ϕ(0),ϕ(−τ )

)
, g(t,ϕ) = ḡ

(
t,ϕ(0),ϕ(−τ )

)
for all t � 0 and ϕ ∈ C([−τ ,0]; Rn), the proof follows directly from Theorems 1 and 2.

Example. By applying Theorem 5, let us determine stability conditions under which the trivial solution to the following
neutral stochastic differential delay equation

d
[
x(t) − Ḡ

(
x(t − τ )

)] = −ax(t) + ḡ
(
t, x(t), x(t − τ )

)
dw(t), t � 0, x0 = ξ,

is the pth moment and almost surely exponentially stable. We assume that w(t) is an m-dimensional Brownian motion, the
functions Ḡ : Rn → Rn and ḡ : R+ × Rn × Rn → Rn×m are Borel-measurable, Ḡ(0) ≡ 0, ḡ(t,0,0) ≡ 0 and∣∣Ḡ(y)

∣∣ � α|y| for all y,
∣∣ḡ(t, x, y)

∣∣ � b|y| for all t, x, y,

where 0 < α < 1 and a,b are positive constants. Since E|Ḡ(Y )|p � αp E|Y |p for all Y ∈ L p
F (Ω; Rn), the condition (8) holds

with k = αp < 1.
The condition (34) yields, for any ε > 0,

L = E

[
p

2

∣∣X − Ḡ(Y )
∣∣p−4(∣∣X − Ḡ(Y )

∣∣2[
2
(

X − Ḡ(Y )
)T

(−aX) + ∣∣ḡ(t, X, Y )
∣∣2] + (p − 2)

∣∣(X − Ḡ(Y )
)T

ḡ(t, X, Y )
∣∣2)]

� E

[
p

2

∣∣X − Ḡ(Y )
∣∣p−2(−2a

∣∣X − Ḡ(Y )
∣∣2 − 2a

(
X − Ḡ(Y )

)T
G(Y ) + (p − 1)b2|Y |2)]

� p

2

[
(−2a + εa)E

∣∣X − Ḡ(Y )
∣∣p +

(
aα2

ε
+ (p − 1)b2

)
E
(∣∣X − Ḡ(Y )

∣∣p−2|Y |2)].
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For p > 2, the application of the Hölder inequality to the last term yields, letting μ = p/(p − 2), ν = p/2, 1/μ + 1/ν = 1,

L � p

2

[
(−2a + εa)E

∣∣X − Ḡ(Y )
∣∣p +

(
aα2

ε
+ (p − 1)b2

)(
E
∣∣X − Ḡ(Y )

∣∣p) p−2
p

(
E|Y |p) 2

p

]
.

Then, for those X, Y ∈ L p
F (Ω; Rn) satisfying E|Y |p < qE|X − Ḡ(Y )|p

, where q > (1 − α)−p , we have

L <
p

2

[
−2a + εa +

(
aα2

ε
+ (p − 1)b2

)
q

2
p

]
E
∣∣X − Ḡ(Y )

∣∣p
.

Having in mind (34), we will require that

2a > εa +
(

aα2

ε
+ (p − 1)b2

)
q

2
p ≡ f (ε),

that is, 2a > minε>0 f (ε). Since minε>0 f (ε) = f (αq
1
p ) = 2aαq

1
p + (p − 1)b2q

2
p and since q > (1 − α)−p , the pth moment

exponential stability condition has the form

2a(1 − α)(1 − 2α) > (p − 1)b2, (36)

where 0 < α < 1/2. Then,

L <
p

2

[−2a + f
(
αq

1
p
)]

E
∣∣X − Ḡ(Y )

∣∣p = p

2

[−2a + 2aαq
1
p + (p − 1)b2q

2
p
]

E
∣∣X − Ḡ(Y )

∣∣p
(37)

and, therefore, lim supt→∞ 1
t ln E|x(t)|p � −γ , where, from (12) and (37),

γ = min

{
− p

2

[−2a + 2aαq
1
p + (p − 1)b2q

2
p
]
,− 1

τ
ln

q

(1 + αq
1
p )

p

}
.

Moreover, from Theorem 2 it follows that the trivial solution is also almost surely exponentially stable, i.e.,

lim sup
t→∞

1

t
ln

∣∣x(t)∣∣ � − γ̃

p
, where γ̃ = min

{
γ ,− p

τ
lnα

}
.

Consequently, it is easy to see that the condition (36) is also valid for p = 2.
Note that if Ḡ(y) = αy and ḡ(t, x, y) = by, then (36) is the stability condition of the autonomous linear neutral stochastic

differential delay equation.
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