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Abstract

This paper is motivated by a link between algebraic proof complexity and the representation
theory of the 'nite symmetric groups. Our perspective leads to a new avenue of investigation in
the representation theory of Sn. Most of our technical results concern the structure of “uniformly”
generated submodules of permutation modules. For example, we consider sequences {Wn}n∈N of
submodules of the permutation modules M (n−k;1k ) and prove that if the sequence Wn is given in
a uniform (in n) way – which we make precise – the dimension p(n) of Wn (as a vector space)
is a single polynomial with rational coe:cients, for all but 'nitely many “singular” values of n.
Furthermore, we show that dim(Wn)¡p(n) for each singular value of n ≥ 4k. The results have
a non-traditional <avor arising from the study of the irreducible structure of the submodules
Wn beyond isomorphism types. We sketch the link between our structure theorems and proof
complexity questions, which are motivated by the famous NP vs. co-NP problem in complexity
theory. In particular, we focus on the complexity of showing membership in polynomial ideals,
in various proof systems, for example, based on Hilbert’s Nullstellensatz. c© 2001 Elsevier
Science B.V. All rights reserved.

MSC: 20C30; 05E10; 68Q15; 13Cxx

1. Introduction and motivation

Consider the question whether there exists a proof of the Riemann conjecture which
uses less than k printed pages? Or consider the same question for the Poincare con-
jecture? This kind of question is not only well de'ned (if the “proof” is within some
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'xed axiomatization of ZFC), but may seem trivial in the sense that it only involves
checking 'nitely many possibilities, i.e. it is a so-called 'nite decision problem, and
in that sense, is no diKerent in spirit than asking: is there a group of order n with
a speci'c algebraic property? However, we can now ask whether this search – for a
proof of length n in ZFC for varying input conjectures, and varying values of n, or for
a group of order n with a well-de'ned algebraic property – can be carried out feasibly
by a computer. This can be seen as a version of the famous P vs. NP question. This and
other questions about the complexity of 'nite decision problems play a substantial role
in the foundations of contemporary computer science. Moreover, they are generally
considered among the deepest mathematical problems for the next century (see, for
example, [15]).

1.1. Hilbert’s Nullstellensatz and algebraic proofs

All 'nite decision problems in NP (not just the earlier example about ZFC proofs)
require decisions about the existence of short “proofs”, in an elementary proof system.
These proofs are not to be confused with the ZFC proofs in the example, and are alter-
natively also called “easily checkable witnesses, or certi'cates”. As a result, the study
of lengths and complexity of proofs in elementary proof systems draws considerable
motivation from another famous problem: the NP vs. co-NP problem. In terms of the
examples given above, one version of this problem is to ask whether there is a short
proof – in an appropriate proof system – of the non-existence of a group of order n
with some algebraic property, or of the fact that a ZFC proof of size n does not exist
for an input conjecture.
One class of proof systems that have been intensely studied in this context in the

last few years are the so-called algebraic proof systems. The systems we will consider
were 'rst introduced in [4]. These systems arise from the following observation. All
NP decision problems can be phrased as deciding the existence of 0=1 solutions to
systems of (multilinear) polynomial equations. As in the examples given earlier, if
the decision problems are parametrized by n, then the resulting polynomial systems
are also parametrized by n. We can think of NQn as, for example, the 'nite system of
polynomial equations corresponding to the question about the existence of groups of
size n with some algebraic property. If we include the polynomials x2 − x in NQn (one
for each variable x), we see (as also observed in [4]) that the constant polynomial
1 belongs in the ideal generated by NQn if and only if there is no group of size n
possessing the speci'c algebraic property.
This suggests (and this was indeed suggested in [4]) that we consider elemen-

tary, algebraic proof systems designed for proving ideal membership. As mentioned
earlier, an elementary proof system should provide easily checkable certi'cates wit-
nessing the fact being proved. One natural way of witnessing ideal membership of
a polynomial R in the ideal generated by the polynomials Q1; Q2; : : : ; Ql, denoted
(Q1; Q2; : : : ; Ql), is to provide a list of multiplying polynomials Pj; j ∈ {1; 2; : : : ; l}
such that

∑l
j=1 PjQj = R. Such a list of polynomials constitute what is now called
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a Nullstellensatz proof (NS-proof ) of R ∈ (Q1; Q2; : : : ; Ql). The complexity of the
proof is re<ected in the size=degree of the polynomials Pj; j ∈ {1; 2; : : : ; l}. See also
[5] for bounds on this degree. The degree of the NS-proof is usually de'ned as the
maximal degree of the polynomials Pj; j ∈ {1; 2; : : : ; l}. This proof system is too weak
for results about NS-proof complexity to have any direct impact on the NP vs. co-NP
problem. Other related algebraic proof systems (for example the so-called polynomial
calculus proof system) are in general preferable, and can be shown to be stronger
than NS-proofs. Although results of this paper are applicable to most algebraic proof
systems, in order to illustrate our main points, it su:ces to focus on NS-proofs.
It should be mentioned that another important reason for studying algebraic proof

systems is that many automated theorem provers are based on some elementary proof
system for proving ideal membership, and there seems little doubt that computer
assisted proofs will play a considerable role in future mathematics.

1.2. Link to symmetric group representations

The link to representation theory is inspired (but technically independent of) the
pioneering work by Ajtai [1–3]. Independently, our paper is strongly motivated by
an earlier result by the authors in [13], which considers a large class of 'nite de-
cision problems which includes all of the examples given earlier. These problems
have the form: “is there a model or 'nite structure of size n satisfying a given ex-
istential second-order sentence  ?” Hence, it is natural to study the algebraic proof
complexity of showing non-existence of models of size n satisfying this type of
sentence  .
Furthermore, a translation method developed in [13] shows a 1–1 correspondence

between the models of  of size n and 0=1 points in special algebraic varieties Vn; ,
given by systems of polynomial equations NQn; , which are closed under the action of
the symmetric group Sn and, moreover, are uniformly given in n. While we shall not
dwell on this 1–1 correspondence here, it should be emphasized that it is su:ciently
direct that one can read oK the models from the 0=1 points on the variety Vn; .
To study the complexity of algebraic proofs showing non-existence of models of size

n for  , as discussed in the last subsection, one can study, for example, the degree
of Nullstellensatz multiplying polynomials that witness that the constant function 1 be-
longs to the ideal ( NQn; ). Now, since the variety Vn; is closed under the action of Sn,
so is the ideal (Qn; ). This, not surprisingly, aKects the degree of Nullstellensatz multi-
plying polynomials or indeed the complexity of any algebraic proof of 1 ∈ (Qn; ), and
thereby closely links algebraic proof complexity questions to natural questions about
symmetric group representations that are of independent interest. Most of this paper
directly addresses these latter representation theory questions, although their bearing on
algebraic proof complexity issues is brie<y sketched in Section 7.

Note. Since the motivating application of our results concerns polynomial ideals (closed
under the action of the 'nite symmetric groups), we 'nd it natural to use the language
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of polynomial rings to phrase all of our results on Sn representations. Hence, for exam-
ple, permutation modules and their submodules will be viewed as consisting of certain
polynomial expressions. However, it is important to note that our perspective diKers
signi'cantly from that of standard (and constructive) invariant theory: instead of con-
sidering polynomials that are invariant under the action of the symmetric group Sn

(for 9xed n) on the variable indices, we consider sequences of polynomial systems
obtained by closing under the natural action of (the sequence of) symmetric groups Sn

on the variable indices.

1.3. Brief summary of results

In this section, we present a series of theorems that illustrate the <avor of the
technical results in the paper. Readers unfamiliar with the terminology used in the
representation theory of Sn may refer to Section 2 and [9].
Fix a 'eld F of characteristic 0. For each n ∈ N, consider the space Qn;d of poly-

nomials of degree at most d in the ring F[x11; x12; : : : ; x1n; x21; : : : ; xnn], i.e. F[xij: 1 ≤
i; j ≤ n]. For convenience, usually, we 'rst state and prove results for the larger vector
space Vn;d of formal, non-commutative polynomials in these variables of degree ≤ d.
In a formal polynomial, monomials like xijxkl and xklxij are considered distinct.
We let the symmetric group Sn act on Vn;d in the natural way. If, for example,

P = x12x34 − 3x23 + 1 and � ∈ Sn we let �(P) = x�(1) �(2)x�(3) �(4) − 3x�(2) �(3) + 1. In
other words, we can consider Vn;d as an FSn-module.
Recall that a FSn-submodule of Vn;d is a linear subspace W ⊆Vn;d which is closed

under Sn. In this paper, we will mainly be concerned with such FSn-submodules.
Notice that �n;d is a quotient FSn-module of Vn;d, obtained by identifying formal,
non-commutative monomials (like xijxkl and xklxij) which de'ne the same monomial.
First we show (using standard results from the representation theory of the symmetric
group):

Theorem 1A. For any d ∈ N; there exists a 9nite collection Ad of functions f : N→
N such that for any n and any FSn-submodule W ⊆Vn;d; (or ⊆�n;d); there is f ∈ Ad

such that the dimension of W (as a linear vector space) is given by f(n).
Furthermore for any d ∈ N; all the functions f in Ad are actually polynomial

functions with rational coe=cients.

Corollary. Let {Wn}n∈N where Wn ⊆Vn;d (or ⊆�n;d) be an arbitrary sequence
(in n) of submodules. Then there exists an in9nite set B⊆N and a single polynomial
function p ∈ Q[z] such that dim(Wn) = p(n) for all n ∈ B.

Theorem 1A expresses two remarkable facts: (1) there exists a constant Cd such
that for any n, the linear subspaces W ⊆Vn;d (or ⊆�n;d) which are closed under the
action of Sn have at most Cd diKerent vector space dimensions as a function of n,
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(2) these Cd diKerent dimensions can be given as polynomials in n. We note that Cd

grows super-exponentially in d. For example, C1 is 64, and a rough estimate shows
(see below) that C2 is somewhere between 10; 000; 000 and 20; 000; 000; 000.
In general, there are in'nitely many diKerent linear subspaces which have Wn closed

under the action of Sn. There are for example in'nitely many diKerent linear subspaces
Wn of polynomials of degree ≤ 2 (in variables x11; x12; : : : ; x1n; x21; : : : ; xnn) which are
closed under the action of Sn (see the example in Section 4, which shows this is the
case for n ≥ 8). Theorem 1A says that there are only 'nitely many (as it turns out
at most 20; 000; 000; 000) diKerent choices of vector space dimensions for Wn, as a
function of n. The linear spaces Wn can thus typically be “rotated” in in'nitely many
diKerent ways.
Next, we consider formal expressions obtained by formal sums over Vn0 ;d, for some

'xed n0, for example: Pexp = 1 +
∑

j x1j + 3
∑

i

∑
j x2ixj5. In this example n0 is at

least 5 because a monomial like x15 must belong to Vn0 ;d. The expression allows us to
de'ne a sequence of polynomials given by the expression

Pn = (Pexp)n = 1 +
n∑

j=1

x1j + 3
n∑

i=1

n∑
j=1

x2ixj5

for any n ≥ 5 (or ≥ n0 in general).

Note. When we refer to formal expressions such as Pexp above, we do not attach limits
to the formal summations that occur in the expressions. On the other hand, when we
refer to the corresponding (sequence of) module elements Pn, for speci'c values of n,
we attach limits (1 and n) to the summations.

We say the expression Pexp has support {1; 2; 5}, i.e. 1; 2; and 5 are the describing
indices in the expression. The support size of Pexp is 3 = |{1; 2; 5}|. We call a formal
expression Pexp ultrasmall if it has support size at most 4d. Later, we extend this de'ni-
tion of ultrasmall to other spaces than Vn;d (and �n;d). An element (here a polynomial)
E ∈ Vn;d is called ultrasmall if there exists an ultrasmall formal expression Pexp such
that E = Pn. Notice that for n¿ 4d, an ultrasmall element (polynomial) E ∈ Vn;d has
a unique ultrasmall formal expression Pexp such that E = Pn. When it is clear from
the context, sometimes we refer to the support size of Pexp also as the support size
of E.

Theorem 2A. Every submodule W ⊆Vn;d (or ⊆�n;d) is generated as an FSn-sub-
module by a collection of ultrasmall expressions.
Furthermore; the ultrasmall expressions can be chosen such that each of them

generates an irreducible submodule.

The signi'cance of Theorem 2A lies in the fact that it clari'es the structure and
decomposition of FSn-modules and not just their isomorphism types. It follows from
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existing decomposition theorems, Jordan–HTolder Theorem, and the fact that the modules
we consider in this paper are all semi-simple (when F has characteristic 0) that
1. every FSn-submodule can be uniquely (up to isomorphism) decomposed into a direct
sum of irreducible modules (isomorphic to the so-called Specht modules);

2. each Specht module is (independent of any 'eld characteristic) generated cyclically
by a so-called polytabloid.

The polytabloids generating the Specht modules have ultrasmall support size (when
de'ned in the obvious way). However, it should be noted that since an isomorphism
may not, in general, preserve the property of being generated by ultrasmalls, it is not
clear whether the actual irreducibles in the decomposition are themselves generated by
ultrasmalls. All we know from the general theory is that each irreducible is isomorphic
to an object which can be de'ned by very few (i.e. ≤ 4d) parameters. Theorem 2A
shows that each irreducible submodule is not only isomorphic to a submodule gener-
ated by ultrasmall generators (which follows from the general theory), but that each
irreducible submodule itself is generated by ultrasmall objects. We clarify this point
further using an Example in Section 3.
Now, consider the case where we are given a uniform sequence {Wn}n∈N of FSn-

submodules of Vn;d. We will de'ne “uniform” precisely later. Intuitively, this means
that each Wn only depends on n in a straightforward manner. We could, for example,
de'ne the sequence Wn by letting Wn denote the smallest FSn-module which contains
a given 'nite list of ultrasmall elements (E1)n; : : : ; (Ev)n. For example, the sequence
Wn of FSn-modules generated by En = 1 +

∑n
j=1 x1j + 3

∑n
i=1

∑n
j=1 x2ixj5 is given in

a uniform way.
From Theorem 1A, we know that there exists a 'nite collection of polynomials

Ad such that for each n ∈ N there exists p ∈ Ad such that dim(Wn) = p(n). If
the family Wn is given in a uniform way, it is tempting to conjecture that there
is a single polynomial p ∈ Ad which expresses the dimension of Wn for all n ≥
8d. Later, we give examples showing that this is not true in general. However, we
prove:

Theorem 4A. Let {Wn}n∈N be a uniformly generated sequence of FSn-submodules of
Vn;d (or �n;d). Then there exists a single polynomial p ∈ Q[z] and a 9nite set B⊆N
such that
(1) dim(Wn) = p(n) for all n ∈ N \ B.
(2) dim(Wn)¡p(n) for all n ∈ B for which n ≥ 8d.

In the process of proving this result, we prove various uniform versions of Theorem
2A. In particular, we employ the notion of a generalized formal expression over Vn0 ;d,
for a 'xed n0. Such expressions are formal expressions which have coe:cients in the
'eld F(z) of rational functions over F, instead of (as formal expressions do) having co-
e:cients in the 'eld F. For example, the expressions Tgen=(z2−3z+4)

∑
i

∑
j xijxj3−

(z3 + 7z2 − 3z + 2)∑j xj5 + 3zx14 and Egen = 17
∑

i xi + z
∑

j yj are both generalized
formal expressions. The support size of Tgen is 4 = |{1; 3; 4; 5}| (which is smaller than
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4d= 8) and the support size of Egen is 0, hence they are both generalized ultrasmall
expressions.

Theorem 3A. Let Wn ⊆Vn;d (or ⊆�n;d) be a uniformly generated family of FSn-
submodules. Then there exists a 9xed set !gen (independent of n) of generalized ul-
trasmall expressions such that the corresponding generalized ultrasmall elements in
!n generate Wn; for all n ≥ 8d. Furthermore; each generalized ultrasmall in !gen for
each value of n ≥ 8d is either zero or generates an irreducible module.
Moreover; for each generalized ultrasmall element E ∈ !gen there exists a 9xed

partition " such that each En (for n ≥ 8d) either is zero; or generates an irreducible
module which is isomorphic to the Specht module S(n−|"|;").
The height of the module Wn (i.e. the number of irreducible factors) is a 9xed con-

stant C for n su=ciently large. The height of Wn is bounded by C from above for all
values of n ≥ 8d. For certain singular values of n the height of Wn might drop (i.e.
take a value strictly less than C) however there are only 9nitely many such singular
values.

Essentially, combining Theorems 3A and 4A we obtain corollaries that are useful
for proving algebraic proof complexity gaps and bounds. For example:

Corollary. If a uniformly generated module sequence {Wn}n∈N is irreducible for some
su=ciently large n; then Wn is irreducible for all n ≥ 8d. Moreover; there exists a
9xed partition " with |"| ≤ 2d such that for each n ≥ 8d Wn is either zero or is
isomorphic to the Specht module S(n−|"|;").

Corollary. If a uniformly generated module sequence {Wn}n∈N is strictly contained
in the entire module Vn;d for su=ciently large n, then it is not equal to Vn;d for any
n ≥ 8d.

In a later section, we sketch the link between these results and algebraic proof com-
plexity. To strengthen this link, we consider more general methods of de'ning uniform
sequences, with similar results. Other methods give dual results. For example, the se-
quence Vn de'ned by Vn =W⊥

n , where Wn is a uniformly generated sequence (in the
sense we just considered), is not a uniformly generated sequence in general. However
the sequence Vn satis'es the obvious dual versions of Theorems 3A and 4A where the
height (as well as the vector space dimension) might increase (rather than drop) at
singular values of n. In [14], we use these results to obtain a new class of theorems that
provide gaps and lower bounds on algebraic proof complexity of propositional formulae.

2. Background on �nite symmetric group representations

Let M (n−k;1k ) be the permutation module from the representation theory of the sym-
metric group [9]. Recall that this FSn-module is the vector space over F spanned by
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tabloids for the partition: (n− k; 1; 1; : : : ; 1); with k one’s, written as (n− k; 1k). In gen-
eral, there is a permutation module M# associated with each partition # = (#1; #2; : : :)
which satis'es

∑
i #i = n and #1 ≥ #2 ≥ · · ·; and the diagram [#] is {#ij: i; j ∈ Z; 1 ≤

i; 1 ≤ j ≤ #i}; a row (or column) of the diagram corresponds to 'xing i (or j). A
#-tableau t is one of the n! lists L1; L2; : : : of ordered disjoint subsets of {1; : : : ; n},
with |Li| = #i; and a #-tabloid {t} is an equivalence class of #-tableaux obtained by
viewing the Li as unordered subsets. There are n(n− 1)(n− 2) : : : (n− k + 1) tabloids
for the partition (n− k; 1k), with (n− k)! tableaux associated with each tabloid, and Sn

acts on M (n−k;1k ) in the natural way (see [9]). There is a useful dominance (partial)
ordering D on partitions: #D & provided, for all m,

∑m
l=1 #l ≥

∑m
l=1 &l.

The permutation module M (n−k;1k ) can be viewed as the vector space spanned by
the vectors {ei1 ;i2 ;:::;ik : i1; i2; : : : ; ik ∈ {1; 2; : : : ; n} distinct}. The action of a permutation
� ∈ Sn is given by �(ei1 ;i2 ;:::;ik ) = e�(i1);�(i2);:::;�(ik ).
For any partition # (except # = (n)), and for any 'eld F of any characteristic, the

permutation module M# is reducible and can be written as a Specht series whose
factors are isomorphic to the Specht modules S", each of which is also associated with
a partition " and is cyclically generated by a so-called polytabloid associated with a
"-tableau. The multiplicity of isomorphic copies of a given Specht Module S" in the
Specht series of a given permutation module can be calculated by Young’s rule [9].
In this paper, we only consider the case where the 'eld F has characteristic 0, and
in this case the Specht modules are irreducible [9], and hence the Specht series is in
fact a composition series. Moreover, for characteristic 0, all modules we consider are
semi-simple, and the Jordan–HTolder decomposition [8] is not just a composition series,
but in fact a direct sum of irreducibles which is unique up to isomorphism. The total
number of irreducibles in this direct sum is called the height of W . Next, we state
three lemmas that will be used in the following sections. Lemma 1 is directly from
[9], while Lemmas 2 and 3 follow (by arguments given in the proof of Theorem 1B)
from basic results in [9].

Lemma 1. Let # and & be partitions of n. If # 4 &; then for any #-tableau t; and
any element f of S&; )tf = 0; where the signed column sum )t is the element of
the group ring or group algebra FSn; obtained by summing over permutations that
9x the columns of t; attaching the signature sign to each permutation. Furthermore;
for # = &; )tf = ±)tt is a polytabloid that generates S#. See [9] for the required
de9nitions.

It follows from the standard theory that the multiplicity of S(n−k′ ;m′
1 ;m

′
2 ; :::) in

M (n−k;m1 ;m2 ; :::) is independent of n for n ≥ 2k (for more details see the proof of
Theorem 1B). More speci'cally we have

Lemma 2. Let *n denote the partition (n − k; n2; : : : ; ns) where
∑s

j=2 nj = k; and "n

denote the partition (n − k ′; m2; : : : ; ms) where
∑s

j=2 mj = k ′. Then the multiplicity
Mult(S"n ;M*n) of S"n in the decomposition of M*n is given by Young’s rule as the
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number of semi-standard "n-tableaux of type *n (see [9]) and is independent of n for
n ≥ 2k.

The dimension of each Specht Module S"n , for F of any characteristic, can be cal-
culated by use of the hook formula: n!=(product of the hook lengths for "n) [9]. From
this we get (see the proof of Theorem 1B for details):

Lemma 3. Let "n be de9ned as in Lemma 2. There exists a polynomial p ∈ Q[z]
such that dim(S"n) = p(n) for all n ≥ 2k ′.

We will illustrate the latter two lemmas by an example which will additionally allow
us to calculate the exact number of polynomials needed in A1 and A2 of Theorem 1A,
as well as give the idea behind the proofs of Theorems 1A–1C.

Example. Following the notation in [9], and employing Young’s rule, we use the
equation [n− 2][1][1]= [n]+2[n− 1; 1]+ [n− 2; 12]+ [n− 2; 2] to express the fact that
M (n−2;12) decomposes into a direct sum of one isomorphic copy of S(n), two isomorphic
copies of S(n−1;1), S(n−2;1

2) and one copy of S(n−2;2). Thus we obtain the following:

[n− 1][1] = [n] + [n− 1; 1];

[n− 2][1][1] = [n] + 2[n− 1; 1] + [n− 2; 12] + [n− 2; 2];

[n− 3][1][1][1] = [n] + 3[n− 1; 1] + 3[n− 2; 2] + 3[n− 2; 12] + 2[n− 3; 2; 1]
+ [n− 3; 3] + [n− 3; 13];

[n− 4][1][1][1][1] = [n] + 4[n− 1; 1] + 6[n− 2; 2] + 6[n− 2; 12] + 4[n− 3; 3]
+8[n− 3; 2; 1] + 4[n− 3; 13] + [n− 4; 4] + 3[n− 4; 3; 1]
+2[n− 4; 22] + 3[n− 4; 2; 12] + [n− 4; 14]:

Using the hook formula we obtain:

dim(S(n)) = 1;

dim(S(n−1;1)) = n− 1;

dim(S(n−2;2)) = n(n− 3)=2;

dim(S(n−2;1
2)) = (n− 1)(n− 2)=2;

dim(S(n−3;3)) = n(n− 1)(n− 5)=6;

dim(S(n−3;2;1)) = n(n− 2)(n− 4)=3;

dim(S(n−3;1
3)) = (n− 1)(n− 2)(n− 3)=6;

dim(S(n−4;4)) = n(n− 1)(n− 2)(n− 7)=24;
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dim(S(n−4;3;1)) = n(n− 1)(n− 3)(n− 6)=8;

dim(S(n−4;2
2)) = n(n− 1)(n− 4)(n− 5)=12;

dim(S(n−4;2;1
2)) = n(n− 2)(n− 3)(n− 5)=8

and 'nally,

dim(S(n−4;1
4)) = (n− 1)(n− 2)(n− 3)(n− 4)=24:

Now let us calculate A1 from Theorem 1A. First, notice that we can write V1; n as a
direct sum of M (n), M (n−1;1) and M (n−2;12). These three sums arise from the constants,
the elements of V1; n spanned by xii, and the elements spanned by xij where i 
= j. This
gives us a decomposition of V1; n into three isomorphic copies of S(n), three copies
of S(n−1;1), and one copy each of S(n−2;1

2) and S(n−2;2). We take A1 to consist of
polynomials of the form

p(n) = b0 + b1(n− 1) + b2(n− 1)(n− 2)=2 + b3n(n− 3)=2;
where b0; b1 ∈ {0; 1; 2; 3} and where b2; b3 ∈ {0; 1}.
It follows using Jordan–HTolder’s Theorem [8] that there is a unique (upto isomor-

phism) decomposition of W as a direct sum of irreducible modules, and all the sub-
modules of W are embedded (up to isomorphism) as the various partial sums of these
irreducibles. Hence the polynomials in A1 su:ce to capture all submodule dimensions,
for n ≥ 2k; i.e n ≥ 4. For n ≤ 2k, some more dimensions may have to be added. In
this case, we get an upper bound of 64(=42 × 22) on the number of polynomials in
A1. An explicit check shows that all these 64 polynomials are distinct.
Now consider V2; n. This space can be written as a direct sum of M (n) (constant

polynomials) two copies of M (n−1;1) (from the polynomials xii and xjjxjj), of 8 copies
of M (n−2;12) (for xij, xiixij, xjixii, xiixji, xijxii, xiixjj, xijxij, and xijxji where i 
= j), of
6 copies of M (n−3;13) (from xiixjk ; xijxik ; xijxki; xjixik ; xjixki, and xjkxii for i; j; k distinct)
and 'nally one copy of M (n−4;14) (from xijxkl where i; j; k; l are distinct).
Thus we have a decomposition of V2; n into

[n] + 2[n− 1][1] + 8[n− 2][1][1] + 6[n− 3][1][1][1] + [n− 4][1][1][1][1]
=[n] + 2([n] + [n− 1; 1]) + 8([n] + 2[n− 1; 1] + [n− 2; 12] + [n− 2; 2])
+6([n] + 3[n− 1; 1] + 3[n− 2; 2] + 3[n− 2; 12] + 2[n− 3; 2; 1]
+ [n− 3; 3] + [n− 3; 13]) + ([n] + 4[n− 1; 1] + 6[n− 2; 2] + 6[n− 2; 12]
+4[n− 3; 3] + 8[n− 3; 2; 1] + 4[n− 3; 13] + [n− 4; 4] + 3[n− 4; 3; 1]
+2[n− 4; 22] + 3[n− 4; 2; 12] + [n− 4; 14])

=18[n] + 40[n− 1; 1] + 32[n− 2; 12] + 32[n− 2; 2]
+20[n− 3; 2; 1] + 10[n− 3; 3] + 10[n− 3; 13] + [n− 4; 4]
+3[n− 4; 3; 1] + 2[n− 4; 22] + 3[n− 4; 2; 12] + [n− 4; 14]:
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This decomposition gives an upper bound of 19× 41× 35× 35× 22× 13× 13× 4×
6× 5× 6× 4) on the number of polynomials in A2, whenever n ≥ 2k=4. To calculate
the exact number, it is necessary to determine the number of distinct polynomials
in this collection. A rough estimate shows that this number lies somewhere between
10; 000; 000 and 20; 000; 000; 000.
Again, using the same arguments as in the case of Vn;1, it follows that the poly-

nomials in A2 actually su:ce for Vn;2.

3. Dimension theorems (nonuniform case)

The ideas illustrated by the Example in the previous section allow us to prove a
more general version of Theorem 1A.

Theorem 1B. For any k; t ∈ N there exists a 9nite collection Ak; t of polynomials
p ∈ Q[z] such that for any n and any FSn-submodule W ⊆⊕t

j=1 M (n−mj;1
mj ) with

mj ≤ k; there is p ∈ Ak; t such that the dimension of W (as a linear vector space) is
given by p(n).

Proof. As explained in the previous section, for characteristic 0, the permutation
module M (n−m;1m) can be written uniquely as a direct sum of irreducible modules.
More speci'cally, we have M (n−m;1m) =

⊕&
j=1 Sj where the Sj’s are isomorphic to

Specht Modules. For each "=(n−|"′|; "′)D (n−m; 1m) the module S(n−|"′|;"′) appears
with multiplicity Mult(S";M*) given by Young’s rule. We claim (as stated in Lemma
2) that this is independent of n (as long as n ≥ 2m). The multiplicity Mult(S";M*),
for * = (n − m; 1m) is the number of semi-standard tableaux which have shape " and
which have n−m 1’s, one 2, one 3; : : : ; and one m. Since, by de'nition, semi-standard
tableaux have non-decreasing rows and increasing columns, it follows that for n ≥ 2m
the semi-standard tableaux of shape " have the following property: their second (and
subsequent) rows (whose shape is speci'ed by the 'xed "′) lie entirely“underneath”
the n− m ≥ m 1’s in the 'rst row. This means that the remaining m− |"′| entries in
the 'rst row do not in<uence the remaining rows for n ≥ 2m.
It follows that the number of such semi-standard tableaux, and therefore the

Mult(S";M (n−m;1m)) for "=(n−|"′|; "′), 'xed "′, is independent of n for n ≥ 2m. The
module

⊕t
j=1 M (n−mj;1

mj ) with mj ≤ k can also be written uniquely (up to isomor-

phism) as a direct sum of irreducible Specht modules, and Mult(S";
⊕t

j=1 M (n−mj;1
mj ))

with mj ≤ k is just
∑t

j=1 Mult(S
";M (n−mj;1

mj )). This number, which we denote c"′ is
independent of n for n ≥ 2k.
The dimension of the Specht Module S" = S(n−|"′|;"′) is given by the hook for-

mula: n!=(product of the hook lengths for "). The hook lengths for " = (n − |"′|; "′)
can be split into two disjoint groups: the hook lengths for the 'rst row of the di-
agram ", and the rest. The product of the hook lengths in the 'rst row is of the
form: (n − 2|"′|)!∏j∈B (n − j) where B⊆{0; 1; : : : ; 2|"′| − 1} have size |B| = |"′|.
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The product of the remaining hook lengths is a constant C"′ which depends only
on "′.
Thus, as claimed in Lemma 3, the dimension of S(n−|"′|;"′) is given by

p"′(n) =
n!

C"′(n− 2|"′|)!∏j∈B(n− j)

which is a polynomial in n. Now take Ak; t to be the 'nite set of polynomials (in Q[z])
of the form ∑

{"′:(n−|"′|;"′)D(n−k;1k )}
b"′p"′(n);

where 0 ≤ b"′ ≤ c"′ .
As in the example of the previous section, the partial sums, of the unique direct

sum of irreducibles gives all of its submodules up to isomorphism. This ensures that
for n ≥ 2k, the polynomials in Ak; t exactly capture the dimensions of all submodules
of a few more dimensions may have to be added for n ≤ 2k

⊕t
j=1 M (n−mj;1

mj ) with
mj ≤ k.

This theorem allows us to generalize Theorem 1A to a larger class of vector spaces
than Vn;d which has many diKerent variable types. Let �n;d(r1; : : : ; ru) denote the space
of polynomials of degree ≤ d built from u diKerent variable types x(1)i1 ;i2 ;:::;ir1

; : : :, x(u)i1 ;i2 ;:::;iru
,

where i1; i2; : : : ∈ {1; 2; : : : ; n}. These are polynomials of degree at most d in the ring
F[xj;ej : 1 ≤ j ≤ u; ej ∈ {1; : : : ; n}rj ], where F is any 'eld of characteristic 0. Clearly, the
corresponding larger vector space Vn;d(r1; : : : ; ru) – obtained by treating, for example,
the monomials x(j)ej x

(i)
ei x(i)ei x

(j)
ej as distinct – is an FSn-module under the natural action

of Sn. The space Vn;d de'ned in the introduction is thus the same as Vn;d(2). The
space Vn;d(2; 2) consists of polynomials in two types of variables: variables x(1)ij and

x(2)ij , i; j ∈ {1; 2; : : : ; n} (or simply xij and yij, i; j ∈ {1; 2; : : : ; n}).

Theorem 1C. For any d; r1; r2; : : : ; ru ∈ N there exists a 9nite collection Ad;r1 ;r2 ;:::;ru

of polynomials p ∈ Q[z] such that for any n and any FSn-submodule W ⊆
Vn;d(r1; r2; : : : ; ru) (or ⊆�n;d(r1; r2; : : : ; ru)); there is a polynomial p ∈ Ad;r1 ;:::;ru such
that the dimension of W (as a linear vector space) is given by p(n).

Proof of Theorems 1A and 1C. There is a straightforward embedding ofVn;d(r1; : : : ; ru)
(and of the quotient module �n;d(r1; : : : ; ru)) into the direct sum:

⊕t
j=1 M (n−mj;1

mj ) with
mj ≤ k, where k = dmax{r1; r2; : : : ; ru}, and where t = t(d; r1; r2; : : : ; ru) is su:ciently
large. More speci'cally, as in the previous example, we choose t large enough to ac-
count for all possible order-types of monomial indices. Thus Theorem 1C follows from
Theorem 1B. Theorem 1A is a special case of Theorem 1C.

Corollary. Let d; r1; r2; : : : ; ru ∈ N. For any sequence Wn ⊆Vn;d(r1; r2; : : : ; ru) of FSn-
submodules; there exists a polynomial p ∈ Ad;r1 ;r2 ;:::;ru ⊆Q[z] and an in9nite set B such
that dim(Wn) = p(n); for all n ∈ B.
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4. Decomposition theorems (nonuniform case)

In this section, we give decomposition theorems which have a somewhat diKerent
emphasis than standard results in the representation theory of the symmetric group. We
give an explicit characterization of all submodules W ⊆M (n−k;1k ). Not just in terms of
structure up to isomorphism, but also including a precise description of the generators
of all the submodules. We use an example to illustrate the diKerence from the traditional
analysis.

Example. Consider M (n−2;12). It can be decomposed into a direct sum of: one isomor-
phic copy of S(n), two isomorphic copies of S(n−1;1), one copy of S(n−2;1

2) and one
copy of S(n−2;2). One concrete realization of this decomposition (viewing M (n−2;12) =
span({eij: i; j ∈ {1; 2; : : : ; n}; i 
= j})) consists of the subspaces:

S(n) =

{∑
ij

#eij: # ∈ F
}

;

S ′(n−1;1) =

{∑
ij

#ieij: #i ∈ F ∧
∑

i

#i = 0

}
;

S ′′(n−1;1) =

{∑
ij

#jeij: #j ∈ F ∧
∑
j

#j = 0

}
;

S(n−2;2) =

{∑
ij

#ijeij: #ij = #ji ∧
∑

i

#ij = 0 for j = 1; 2; : : : ; n

}
;

S(n−2;1
2) =

{∑
ij

#ijeij: #ij =−#ji ∧
∑

i

#ij = 0 for j = 1; 2; : : : ; n

}
:

This decomposition is unique except that the two copies of S(n−1;1) can be “rotated”
arbitrarily. More speci'cally, for every a; b; c; d ∈ F with ad− bc 
= 0, S ′

a;b= { Nv: a Nv1 +
b Nv2, Nv1 ∈ S ′(n−1;1) ∧ Nv2 ∈ S ′′(n−1;1)} and S ′′

c;d = { Nv: c Nv1 + d Nv2, Nv1 ∈ S ′(n−1;1) ∧ Nv2 ∈
S ′′(n−1;1)} we obtain the decomposition:

M (n−2;12) = S(n) ⊕ S ′
a;b ⊕ S ′′

c;d ⊕ S(n−2;2) ⊕ S(n−2;1
2):

This shows that although the submodules of M (n−2;12) have only 'nitely many di-
mensions and isomorphism types, M (n−2;12) contains in'nitely many diKerent FSn-
submodules. However, it is straightforward (if one uses the fact that each S* is ir-
reducible) to show that any decomposition of M (n−2;12) into irreducibles is of this
form.
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Now consider the decomposition M (n−2;12) = S(n) ⊕ S ′(n−1;1) ⊕ S ′′(n−1;1) ⊕ S(n−2;2) ⊕
S(n−2;1

2). Consider the following formal expressions using formal sums over M (n0−2;12)

for some 'xed n0 ≥ 4:
E1;exp =

∑
ij

eij;

E2;exp =
∑
j

e1j −
∑
j

e2j;

E3;exp =
∑

i

ei1 −
∑

i

ei2;

E4;exp = e13 − e14 + e24 − e23 + e31 − e41 + e42 − e32

and

E5;exp = e13 − e14 + e24 − e23 − e31 + e41 − e42 + e32:

The corresponding elements Ei;n ∈ M (n−2;12) – obtained by restricting the scope of
the formal sums in Ei;exp to {1; 2; : : : ; n} – generate, respectively, S(n); S ′(n−1;1); S ′′(n−1;1);
S(n−2;2); and S(n−2;1

2). Notice that the elements Ei;n are ultrasmall because they have
support size ≤ 4 = (2k).

Remark. The above example indicates that the decomposition of M (n−2;12) into irre-
ducible submodules (not just up to isomorphism) has the property that the irreducibles
are each generated by an ultrasmall element. This is signi'cant because although it
is known that the Specht modules are generated by the so-called polytabloids which
are ultrasmall, it is not immediately clear that the property of being generated by
ultrasmalls is preserved under arbitrary isomorphisms.

Our next theorem states that in fact, this is always the case, and any irreducible
module is generated by an ultrasmall element.

Note. We extend the de'nitions of (generalized) formal expressions and (generalized)
ultrasmall formal expressions, in the natural way, to expressions constructed using
formal sums over Vn0 ;d(r1; : : : ; ru), for a 'xed n0. The corresponding (generalized) el-
ements are in Vn;d(r1; : : : ; ru)) for any n. Ultrasmall elements, in this context, have
support size at most 2dmax{r1; r2; : : : ; ru}. Furthermore, as described in the above ex-
ample, taking M (n−l;1l) = span({ei1 ;:::;il : ij ∈ {1; 2; : : : ; n}; ij 
= im for j 
= m}), we de'ne
generalized formal expressions constructed using formal sums over

⊕t
j=1 M (n0−mj;1

mj )

with mj ≤ k, where typically, k = dmax{r1; r2; : : : ; ru}, and where t = t(d; r1; r2; : : : ; ru)
is su:ciently large, with the resulting generalized elements being in

⊕t
j=1 M (n−mj;1

mj ),
for any n. Ultrasmall elements, in this context, have support size at most 2k.

Theorem 2B. For every t; k ∈ N; every FSn-submodule W of
⊕t

j=1 M (n−mj;1
mj ) with

mj ≤ k; is generated by ultrasmalls; each of which generates an irreducible submodule.
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Theorem 2C. For any d; r1; r2; : : : ; ru ∈ N; every FSn-submodule W ⊆Vn;d(r1; r2; : : : ;
ru) (or �n;d(r1; r2; : : : ; ru)) is generated by ultrasmall elements (polynomials). The
ultrasmall elements (polynomials) can be chosen such that they each generate an
irreducible submodule.

First, we re'ne the notion of support for a (generalized) formal expression Eexp (and
the corresponding sequences of elements En). We say Eexp has (a; b)-support if there
exists a set A of size ≤ a such that any individual formal sum in Eexp has at most b
parameters that are not in A.

Note. We assume from now on that any (generalized) formal expression Eexp has
corresponding generalized elements in Vn;d(r1; : : : ; ru) or

⊕t
j=1 M (n−mj;1

mj ), for mj ≤
k, with k being dmax{r1; r2; : : : ; ru}.
It is important to notice that all such (generalized) formal expressions have (0; k)-

support.
A (generalized) formal expression Eexp is ultrasmall if and only if it has (2k; 0)-

support. Notice that (a; b)-support implies (a′; b′)-support provided a′ ≥ a and b′ ≥ b.

Proof. We show Theorem 2B. The proofs of Theorem 2C (and in particular Theorem
2A) follow directly. Without loss of generality, we can assume W is irreducible (other-
wise write W=W1⊕W2⊕· · ·⊕Wr where each Wj; j=1; 2; : : : ; r is irreducible, and 'nd
ultrasmall generators for each Wj). Let En be a generator for W . Assume Eexp is the
corresponding formal expression containing formal sums. To show that W is generated
by an ultrasmall (i.e. an element of (2k; 0)-support), we 'rst show a property that even
reducible modules possess. We refer to the process behind the following lemma as
compression. The compression consists of replacing each generator by generators of
smaller support.

Lemma 2D. If any FSn-module W is generated by a set of generators that have
(a; b)-support (a ≤ n− 2; b ≥ 1); then in fact; W is generated by elements that have
(a+ 2; b− 1)-support (they continue to have (a; b) support as well).

Proof. Assume E is a generator of (a; b)-support (a ≤ n−2; b ≥ 1). It su:ces to show
that there exists a collection of generators F1; : : : ; Fu which have (a+2; b− 1)-support
and which together generate the same submodule as E. Without loss of generality, we
can assume that A= {1; 2; : : : ; a} has the property that any term H (i.e. every abstract
sum) in Eexp, the formal expression corresponding to E, contains at most b parameters
not in A.
For every i; j ∈ {a+ 1; a+ 2; : : : ; n} consider Eij = (1− (ij))E, where, as usual, (ij)

denotes a 2-cycle in Sn, and (1− (ij)) is an element of the group ring or group algebra
of Sn over F of characteristic 0. Also let E∗=

∑
3∈S{a+1; a+2; :::; n}

3E, where S{a+1; a+2; :::; n} is
the subgroup of Sn that 'xes {1; : : : ; a}. Notice that each Eij is a valid formal expression
that has (a + 2; b − 1)-support (A ∪ {i; j} is the witnessing set for this support), Eij
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continues to have (a; b) support as well, and it is not hard to see that E∗ is a valid
formal expression with (a; 0)-support.
To complete the proof of the lemma, it su:ces to show that {Eij: i; j ∈ {a+ 1; a+

2; : : : ; n}} ∪ {E∗} generates exactly the same submodule as E, and in particular, it
su:ces to show that E can be derived from or generated by {Eij: i; j ∈ {a + 1; a +
2; : : : ; n}} ∪ {E∗}.
First, notice that

(n− a)!E = E∗ +
∑

3∈S{a+1;a+2;:::; n}

(1− 3)E: (I)

Second, notice that (1 − 3) where 3 ∈ S{a+1; a+2; :::; n} can be written as a linear
combination of 3′(1− (ij)) where i; j ∈ {a+1; a+2; : : : ; n} and 3′ ∈ S{a+1; a+2; :::; n}. To
see this, write

3= (i1; j1)(i2; j2) : : : (iu; ju)

and

(1− 3) = (1− (i1j1)) + (i1; j1)(1− (i2; j2))
+ · · ·+ (i1; j1)(i2; j2) : : : (iu−1; ju−1)(1− (iu; ju)):

Substituting in (1), and dividing by (n − a)! (F has characteristic 0) we get the
required derivation of E from {Eij: i; j ∈ {a+ 1; a+ 2; : : : ; n}} ∪ {E∗}.
To complete the proof of the theorem, notice that an irreducible W is generated by a

generator of (0; k)-support. Iterating Lemma 2D k times, it follows that W is generated
by a generator of (2k; 0)-support.

Remark. To appreciate the signi'cance of the theorem, notice that not only are ultra-
smalls a natural class of generators, they are uniquely suited to the task of general
decomposition presented here. These theorems are sensitive to this de'nition of ul-
trasmalls, and the property of being generated by ultrasmalls is not preserved under
arbitrary isomorphisms. For example, Theorems 2A–2C would all fail if we did not
allow, say, expressions with sums over repeated indices such as

∑
i xii in the de'nition

of ultrasmall.

5. Decomposition theorems (uniform case)

We have shown that there exists a 'nite set p1; p2; : : : ; pv ∈ Q[z] of polynomials
such that for each sequence Wn of submodules (of one of the 'xed FSn-modules under
consideration), there is a sequence of indices j(n) ∈ {1; 2; : : : ; v} such that dim(Wn) =
pj(n)(n), for all n.
Take a 'nite collection !exp of formal expressions over

⊕t
j=1 M (n0−mj;1

mj ) with mj ≤
k, for some k; t, (or over Vn0 ;d(r1; : : : ; ru), for some r1; : : : ; ru) for some 'xed n0; for
any n, let !n be the corresponding collection of elements of

⊕t
j=1 M (n−mj;1

mj ) with
mj ≤ k, obtained from !exp.
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The module sequence Wn ⊆
⊕t

j=1 M (n−mj;1
mj ) with mj ≤ k (resp. Vm;d(r1; : : : ; ru))

generated by !n is said to be uniformly generated from !exp, or from !n, if it is clear
from the context that !n is obtained from a 'xed collection of formal expressions, !exp,
for all n. In this case, we refer to both !exp and !n as the collection of generators.
Analogously, we also de'ne module sequences that are uniformly generated by a set

of generalized formal expressions !gen.
If the sequence Wn is given thus in a uniform way, it is natural to expect that this

uniformity is re<ected in the sequence j(n). In particular, if the uniformity condition
on Wn is strong, it seems reasonable to expect that j(n) is independent of n (i.e. j(n)
is a constant).
The next example shows that this is not generally the case:

Example. Consider Vn;1(1), i.e. the linear vector space of polynomials in the variables
x1; x2; : : : ; xn of degree ≤ 1. Let Wn be the submodule generated by

E = 17x1 −
n∑

j=1

xj:

Let E1 = 1
17 (1− (12))E = x1 − x2 and let

E2 =
1

(n− 1)!
∑
3∈Sn

3(E) = (17− n)
n∑

j=1

xj:

From this it is not di:cult to see that dim(Wn)=n for n 
= 17, while dim(Wn)=n−1
for n = 17. Notice that Wn is reducible for all n 
= 17. More speci'cally, E1 and E2
show that each Wn, n 
= 17 is isomorphic to a direct orthogonal sum of two irreducible
modules which are isomorphic to S(n) and S(n−1;1). For the singular value n = 17,
the decomposition factor S(n) vanishes and W17 becomes irreducible and isomorphic to
S(16;1).

Next we give a more involved example:

Example. Consider Vn;1(1; 1). This module consists of all polynomials of degree ≤ 1
in the variables xi and yj, 1 ≤ i; j ≤ n.
Let Wn be the submodule generated by

E = 17x1 −
n∑

j=1

xj +
n∑

j=1

yj − 13y2

and

E′ = 19x1 −
n∑

j=1

xj +
n∑

j=1

yj − 23y2:
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The module Wn contains x1 − x2; and y1 − y2 each of which generate orthogonal
submodules, isomorphic to S(n−1;1). The remaining part of Wn is spanned, as a vector
space, by

E1 = (17− n)
n∑

j=1

xj + (n− 13)
n∑

j=1

yj

and

E2 = (19− n)
n∑

j=1

xj + (n− 23)
n∑

j=1

yj:

These two vectors are linearly independent except when n=18. Thus dim(Wn) = 2n
for all n 
= 18, while the dimension dim(Wn) “drops” to 2n−1 for n=18. To illustrate
what happens, notice that, for any given n, Wn is, in fact, generated by the pairwise
orthogonal module elements, G1 = x1 − x2; G2 = y1 − y2; G3 = 5

∑n
j=1 xj +

∑n
j=1 yj

and G4 = (n − 18)∑n
j=1 xj − 5(n − 18)∑n

j=1 yj. (Note that for diKerent values of n,
diKerent linear combinations of G3 and G4 that give E1 and E2.) For n 
= 18 each of
those generators generates irreducible submodules isomorphic to S(n−1;1); S(n−1;1); S(n)

and S(n) respectively. When n = 18, the generator G4 becomes zero and the “height”
of Wn drops from 4 to 3.

In each of the examples, there exists a single polynomial p(n) (=n, resp. =2n)
which gives the correct value of the dimension Wn for all but 'nitely many “singular”
values of n. In each example there was only one singular value. It turns out that
the structure of the singularities is closely related to the phenomenon of complexity
gaps in algebraic complexity theory [14]. In fact, it turns out that singular values of
n (which arise from the translations of logical propositions as we de'ned it in [13])
corresponds to values of n for which there exists an “sporadic” Nullstellensatz proof
of the proposition. Intuitively, the proof is “sporadic” in the sense that it does not fall
into the general class of proofs which essentially are all based on “proof ideas” which
are independent of n (see [14] for more details).
Each of the examples illustrates our main technical result which is a uniform version

of the decomposition in Theorem 2B: for any module sequence Wn generated uniformly
from a set of formal expressions, there exists a set of generalized ultrasmall formal
expressions which for each value of n ≥ 4k, give FSn-module elements that generate
pairwise orthogonal, irreducible FSn-modules. For all but its singular values, the set
generates Wn. At the singular values, it generates a submodule of Wn. Moreover, each
generalized generator generates submodules which are isomorphic to S(n−|"|;") for some
'xed k-partition " (which is independent of n). At each singular value, one or more of
the generators in the set generates the zero module. Whenever this happens, the height
as well as the dimension of Wn “drops” and becomes strictly smaller than p(n).
In this section, we set up the machinery needed to explain these phenomena. First,

we prove a uniform version of the compression Lemma 2D.
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Lemma 3D. Take a 9nite collection of generalized formal expressions of support size
≤ l that uniformly generate Wn ⊆

⊕t
j=1 M (n−mj;1

mj ) with mj ≤ k; (resp.
Vn;d(r1; r2; : : : ; ru)) for n ≥ l. There exists a 9xed set of generalized ultrasmall
expressions that uniformly generate Wn for each n ≥ max{2k; l + 1} (resp. n ≥
max{l+ 1; 2dmax{r1; : : : ; ru}}).

Remark. It turns out that even if the original collection were to consist of ordinary
formal expressions, the 'nal collection in Lemma 3D may have to contain generalized
ultrasmall expressions.

Proof. We prove the lemma for Wn ⊆
⊕t

j=1 M (n−mj;1
mj ) with mj ≤ k; the proof for

Wn ⊆Vn;d(r1; r2; : : : ; ru) is virtually identical.
Without loss of generality, we assume that the sequence Wn is generated by a single

generalized expression, say

E = · · ·+ p(n)
∑
m1

∑
m2

em1 ;m2 ;4;6 + · · · ;

where p is a rational function in F(z).

Note. To avoid unnecessary complications we always deal with rational functions p(n)
that are de'ned (i.e. have non-zero denominators) for n ≥ 2k. We will see that this
can always be ensured.

At start, we assume nothing about the support of E: all we know is that it has
(0; k)-support, and has support size l; without loss of generality, the support is restricted
to {1; : : : ; l}. First we show (essentially by the same argument as in the proof of
Lemma 2D) that we actually can generate the sequence Wn; n ≥ l+ 1, by generalized
expressions which are ultrasmall i.e. have support size at most 2k.
For each i; j ∈ {1; 2; : : : ; n} consider the generalized element Eij=(1− (ij))E. Notice

that Eij = 0 for i; j ≥ l+ 1 and that Eij = (j; j′)Eij′ for j; j′ ≥ l+ 1. Thus, we actually
only need to consider Eij for i; j ∈ {1; 2; : : : ; l+1} (which is independent of n as long
as n ≥ l+ 1). We also consider E5 =

∑
3∈Sn 3E. Notice that

E5 = · · ·+ (n− 2)!p(n)
[∑

m1

∑
m2

∑
m3

∑
m4

em1 ;m2 ;m3 ;m4

−
∑
m1

∑
m2

∑
m3

em1 ;m2 ;m3 ;m3

]
+ · · · :

Notice that this process is uniform in n and moreover, since E has (0; k) support, the
coe:cients of all terms in E5 acquire an additional factor of (n− j)! – for some 0 ≤
j ≤ k – by this process. Thus by dividing appropriately, i.e. taking E∗ =1=(n− k)!E5,
we ensure that it has a valid generalized formal expression with coe:cients in the
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fraction 'eld F(z):

E∗;exp =
1

(z − k)!

(
· · ·+ (z − 2)!p(z)

[∑
m1

∑
m2

∑
m3

∑
m4

em1 ;m2 ;m3 ;m4

−
∑
m1

∑
m2

∑
m3

em1 ;m2 ;m3 ;m3

]
+ · · ·

)
:

Note. Although we use factorials for conceptual clarity, it is important to note that
all the generalized formal expressions that we deal with do, in fact, have valid coef-
'cients in the fraction 'eld F(z), usually of degree no more than 2k. Moreover, the
denominators of these coe:cients do not have zeroes greater than 2k.
As in the proof of Lemma 2D, and using the above observations, we can re-

place E by the set of expressions {Eij; i; j ∈ {1; 2; : : : ; l + 1}} ∪ E∗, i.e, E and this
collection both generate exactly the same submodule (for each 'xed value of n ≥
l+ 1). All the elements of this collection have (2; k − 1)-support, and support size at
most l.
As in the proof of Lemma 2D, we repeat this procedure. After iterating the proce-

dure k times, we get generalized generators which have (2k; 0)-support, and with-
out loss of generality, their support is restricted to {1; : : : ; 2k}. At this point, no-
tice that there are 'xed, 'nitely many generalized ultrasmall expressions in this col-
lection, independent of n, and the collection generates the same module as E for
n ≥ max{l+ 1; 2k}.

To get a complete analogy of Theorem 2B, we need to show that the generalized
ultrasmall expressions obtained from Lemma 3D can, in fact, be modi'ed so that each
generates an irreducible FSn-module for all n. One cannot, as in the proof of Theorem
2B, a priori decompose Wn into irreducibles and proceed, since it is not clear that
the same irreducible decomposition extends uniformly to the next n, and whether each
irreducible in the decomposition is a member of a sequence generated uniformly in n.
Instead, we rely on a crucial observation: the collection, call it 6gen, of generalized
ultrasmall expressions given by Lemma 3D – when closed under the natural set of
operations:

7 ∈ S4k and
∑
3∈Su

n

3 (∗)

for all subgroups Su
n 'xing u⊆{1; : : : ; 2k} – generates the sequence of modules Wn in

a highly uniform manner. In particular, the next two lemmas show a remarkable fact:
for any n, all ultrasmall elements in Wn with support in {1; : : : ; 2k} are in the vector
space spanned by 6∗

gen (the closure of 6gen under the operations (*)), i.e. arbitrary
permutations from Sn are not necessary.
Lemmas 3E and 3F provide the intuition and motivation for the machinery that is

used for proving the main result of the section.
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Lemma 3E. Consider an ultrasmall element Fn (with support in {1; : : : ; 2k}) which
is generated by a collection 6gen of ultrasmall generalized expressions; for some n.
Then Fn is in fact in the linear span of 6∗

n .

Proof. Notice that if∑
G∈6gen

∑
3∈Sn

c(G)3 3Gn = Fn

with each cG3 ∈ F, then if we apply ∑*∈Su
n
* to both sides, where u⊆{1; : : : ; 2k} is the

support of Fn, then the right-hand side remains a scalar multiple of Fn. The left-hand
side, however, is an F-linear combination of elements in 6∗

n .

Consider the space G of generalized formal expressions whose corresponding ele-
ments are in

⊕t
j=1 M (n−mj;1

mj ) with mj ≤ k or Vn;d(r1; r2; : : : ; ru). As noted earlier,
these expressions have (0; k) support by de'nition. Assume further that they have sup-
port in {1; 2; : : : ; 4k}. We view G as a F(z)S4k -module. More speci'cally, we view G

as a linear vector space with each primitive expression and individual formal sum be-
ing treated as an independent basis element, and with coe:cients in the fraction 'eld
F(z) of rational functions over the 'eld F. Since F has characteristic zero, so does
F(z). Notice that G is isomorphic to a direct sum of F(z)S4k -permutation modules:⊕t

j=1 M (4k−mj;1
mj ) with mj ≤ k, for some t (resp. isomorphic to V4k;d(r1; : : : ; ru) for

some r1; : : : ; ru, where, as usual, k = dmax{r1; : : : ; ru}).
Consider two generalized expressions, say E=

∑
ijl xijl and F=(z−17)∑ijl xijl. The

generators E; F are proportional in G and thus they actually generate the same F(z)S4k
submodule (namely the submodule consisting of all expressions r(z)

∑
ijl xijl where

r(z) is a rational function). The expressions E and F generate the same FSn-submodule
sequence Wn ⊆M (n−k;1k ) except for n=17, where Fn=0. In other words, the generators
En and Fn generate the same FSn-submodule Wn (i.e. for all “non-singular” values of
n ≥ 2k, where neither En nor Fn is 0). The forward direction of the next lemma
follows from this observation, and the reverse direction follows directly from Lemma
3E.

Lemma 3F. Let 6gen and !gen be 9nite collections of generalized ultrasmall elements
of G that are closed under the operations in (∗). Then if 6gen and !gen generate
the same F(z)S4k -module; they also generate the same FSn-module for all values of n
except 9nitely many singular values. Conversely; if !gen and 6gen generate the same
FSn module for in9nitely many values of n ≥ 4k; then in fact; they generate the same
F(z)S4k -module.

Next, we de'ne a formal inner product on G. The inner product takes values in
the fraction 'eld F(z). The inner product (E; F) of two formal expression E; F ∈ G

is de'ned to be the rational function obtained from the natural inner product of their
corresponding module elements in

⊕t
j=1 M (n−mj;1

mj ) with mj ≤ k, (resp. Vn;d(r1; : : : ; ru)
with k = dmax{r1; : : : ; ru}) of En and Fn, for n ≥ 4k.
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For example, the natural inner product of the FSn module elements En and Fn corre-
sponding to the formal sums E=

∑
jk x1jk and F =

∑
ijl; i 	=j xijl is n(n−1). This in turn

de'nes a unique inner product of the formal sums E and F as the polynomial z(z−1),
an element of the base 'eld F(z) of the vector space G. By linear extension, this inner
product – thus de'ned for independent basis elements such as individual formal sums
and primitive expressions in G – extends to a unique inner product for all formal ex-
pressions in G. Notice that the inner product is S4k -invariant, i.e. (E; F)= (3E; 3F) for
each E; F ∈ G and for each 3 ∈ S4k .
We say E; F ∈ G generate orthogonal F(z)S4k -submodules if for each 3 ∈ S4k we

have (E; 3(F)) = 0, i.e. the identically zero polynomial in F(z). Orthogonal FSn-sub-
modules are de'ned in the usual way, using the natural inner product employed, for
example, in the case of En and Fn in the previous paragraph.
The next lemma shows that orthogonal F(z)S4k -modules generated by ultrasmall

generalized expressions remain orthogonal for all n, when viewed as FSn-modules. The
proof follows immediately from the de'nition of the inner product on G, and from the
fact that E and F are ultrasmall.

Lemma 3G. Let E and F be generalized ultrasmall expressions that generate orthog-
onal F(z)S4k submodules of G. Then En and Fn generate orthogonal FSn-modules for
all n ≥ 4k; where En and Fn are well-de9ned FSn-module elements (i.e. where none
of the coe=cients has a zero denominator).

Next, we formalize the notion of “singular” values and how they can be “removed”
meaningfully. We consider two types of singular values, zeroes and poles. We say that
E is a generalized expression with a zero at n = n0 when the FSn0 -module element
En0 is 0. (A collection 6gen of generalized expressions is said to have a singular value
whenever one of its elements has a singular value.) In this case, there exists r ∈ N
such that E′=(1=(n−n0)r)E is a generalized generator (with coe:cients being rational
functions) with no singularity at n0. Clearly, we can iterate this idea and remove the
(at most 'nitely many) zeroes of any generalized generator E. Equally, by multiplying
by (n− n0)r , for suitable r, we could potentially also remove poles or singular values
n0, where E becomes unde'ned – i.e. one of its coe:cients has a denominator that
becomes zero at n0. Note that we generally avoid poles altogether by assuming that our
generalized expressions give well-de'ned FSn-module elements for all n ≥ 2k. To see
this assumption is reasonable, notice that the reduction in the proof of Lemma 3D only
creates poles for n¡ 2k. Notice, however, that the reduction in the proof Lemma 3D
can very well create generalized generators which vanish at various (at most 'nitely
many) values of n. In general, there is no way of to avoid the creation of zeroes (for
n ≥ 4k) during the compression process described in the proof of Lemma 3D.
Observe that when the singular values (zeroes or poles) of E are removed to give E′,

no new zeroes or poles are created, and the two generalized expressions are proportional
(when considered as F(z)S4k -elements in G), so they generate the same submodule of
G. Thus, using Lemmas 3F and 3G we get the following.
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Lemma 3H. Let E′ be a generalized generator obtained from E after removing singu-
larities. Then E and E′ generate sequences Wn and W ′

n which are identical except for
9nitely many values of n. Similarly; if E and F are generalized ultrasmall expressions
that generate orthogonal F(z)S4k -submodules of G; then after removing singularities;
the resulting E′ and F ′ continue to generate orthogonal submodules of G; and E′

n and
F ′
n generate orthogonal FSn-modules for all n ≥ 4k.

Finally, we are ready to prove the two main lemmas which are used to manipulate
the set 6gen of generalized ultrasmall expressions obtained as a result of Lemma 3D.
These manipulations are then used to prove a the uniform version of Theorem 2B (and
Theorem 2C).

Lemma 3I. Let 6gen be a 9nite collection of ultrasmall generalized formal
expressions that generate a F(z)S4k -submodule W̃ of G; and assume that the FSn-
module elements corresponding to 6gen are all well de9ned for all values of n ≥ 4k.
Then:
1. There exists a 9nite collection !gen of ultrasmall generalized formal expressions

that generate modules that form an orthogonal irreducible decomposition of W̃ .
For all but 9nitely many singular values of !gen ; the FSn module Un generated by
!n is well de9ned and is identical to the FSn module Wn generated by 6n. At the
singular values; Un ⊆Wn.

2. There is a collection 9gen of ultrasmall generalized formal expressions that form

an orthogonal irreducible decomposition of W̃
⊥
in G; i.e. the collection !gen ∪9gen

generates an orthogonal irreducible decomposition of G which is isomorphic to
the direct sum of permutation modules

⊕t
j=1 M (4k−mj;1

mj ) with mj ≤ k; (resp.
V4k;d(r1; : : : ; ru); where k = dmax{r1; : : : ; ru}). Moreover; the collection 9gen has
no singular values; 9n generates an FSn-module that is contained in W⊥

n for each
n ≥ 4k; and for n that are non-singular for !gen ; 9n in fact generates exactly
W⊥

n .
3. For all n ≥ 4k; if all singular values have been removed from !gen ; to give !′

gen ;
the corresponding module U ′

n generated by !′
n contains Wn; moreover the collection

!′
n ∪ 9n generates an irreducible decomposition of

⊕t
j=1 M (n−mj;1

mj ) with mj ≤
k.

4. There is a collection :gen of ultrasmall generators (not necessarily pairwise ortho-
gonal) such that for each n ≥ 4k; each element of :n either generates an irre-
ducible submodule or is identically zero. Furthermore; for each n ≥ 4k (also for
singular values of :gen); :n generates exactly Wn.

Proof. Since we are working over characteristic 0, we can obtain an orthogonal irre-
ducible decomposition of W̃ using the standard process akin to Gram–Schmidt orthogo-
nalization. Using the non-uniform compression of Lemma 2D (putting n=4k), we can
compress the generator of each irreducible since it has (0; k)-support and Lemma 2D
not only applies to FSn module elements (for any 'xed n), but also to F(z)S4k -module
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elements, since F(z) is a 'eld of characteristic 0. We take the resulting collection of
ultrasmalls – that generate an irreducible decomposition of W̃ – to be !gen. By Lemma
3G, the FSn-modules generated by elements of !n continue to remain orthogonal to
each other for all values of n ≥ 4k where they are de'ned.
Moreover, the orthogonalization and the compression processes ensure that each

Fi ∈ !gen has no poles (for n ≥ 2k) and gives a well-de'ned FSn-module element Fi;n

and can be expressed as a well-de'ned F-linear combination of the elements of 6n,
for all values of n ≥ 4k. The zeroes of 6gen is contained in the set of zeroes of !gen,
and while the zeroes of !gen need not coincide with zeroes of 6gen, they do indicate
a collapse in the irreducible decomposition structure of Wn, for that speci'c n. This
collapse happens, for example, when some independent F(z)S4k -module elements in
6gen become dependent in 6n.
Vice versa, however, for certain singular values of !gen, certain Ei;n ∈ 6n may not

be expressible an F-linear combination of the elements in !n. So the most we can say
is that the module Un generated by !n is a submodule of the module Wn generated by
6n for all n ≥ 4k. However, proper containment occurs only at certain ('nitely many)
singular values of !gen, i.e. the FSn-modules Un and Wn generated by !n and by 6n

remain exactly the same for all but 'nitely many n ≥ 4k.
This proves (1).
Similarly, to prove (2), we construct an orthogonal irreducible decomposition of W̃

⊥

by 'nding a maximal set of expressions that generate F(z)S4k -modules orthogonal to
each other and to the elements in W̃ , and perform the compression of Lemma 2D on
them to make them ultrasmall. Next, we remove all singular values of these ultrasmall
expressions and call the resulting collection 9gen. The maximality of the set forces
each ultrasmall expression to generate an irreducible module, and forces the collection
9gen to generate all of W̃

⊥
. Since !gen gives an orthogonal irreducible decomposition

of W̃ and 9gen of W̃
⊥
, the entire collection !gen ∪9gen gives an orthogonal irreducible

decomposition of the complete module G, which is isomorphic to
⊕t

j=1 M (4k−mj;1
mj )

with mj ≤ k. By Lemmas 3G and 3H, and since 9gen consists of ultrasmall expres-
sions, orthogonality is preserved for all values of n ≥ 4k, and thus 9n generates an
FSn-module that is orthogonal to Wn and hence contained in W⊥

n .
To prove (3), 'rst notice that since the elements of !n∪9n are ultrasmall, by Lemmas

3G and 3H, they continue to generate orthogonal FSn-modules for all n ≥ 4k. We 'rst
show that in addition, they generate an irreducible decomposition of

⊕t
j=1 M (n−mj;1

mj )

with mj ≤ k, for all but 'nitely many singular values of !gen (9gen is constructed
without singular values). This follows from the facts:
(a) !gen ∪ 9gen generates a complete irreducible decomposition of

⊕t
j=1 M (4k−mj;1

mj ),

(b) (for n ≥ 4k), the heights of ⊕t
j=1 M (4k−mj;1

mj ), and
⊕t

j=1 M (n−mj;1
mj ) are exactly

the same when mj ≤ k,
(c) (at non-singular values n of !gen), none of the elements in !n ∪ 9n is identically

0, and 'nally,
(d) (for n ≥ 4k), the elements of !n ∪ 9n are orthogonal and hence distinct.
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Now, !′
gen ∪9gen also generates a complete orthogonal irreducible decomposition of⊕t

j=1 M (4k−mj;1
mj ) since it consists of F(z)S4k -module elements that are proportional

to those in !gen ∪ 9gen. Moreover, since !′
gen ∪ 9gen has no singular values, the same

arguments used above for !gen ∪ 9gen now hold for all n ≥ 4k. Finally, since 9n

generates a module contained in W⊥
n , it follows that the module U ′

n generated by !′
n

contains the module Wn for all n ≥ 4k.
To prove (4), we construct :gen step by step, starting with !gen and adding to it

successively at the zeroes n0 of !gen. We consider 3 cases of zeroes.
When Un0 , the module generated by !n0 is equal to Wn0 , i.e. a collapse in Wn0

coincides with a singular value of !gen at n0, (in this case, U ′
n0 , the module generated

by !′
n0 properly contains Wn0 ), no modi'cation is made to :gen.

When Un0 , the module generated by !n0 is properly contained in Wn0 , and U ′
n0 , the

module generated by !′
n0 is equal to Wn0 , the zero at n0 alone is removed from :gen, i.e.

those Fi ∈ !gen that have a zero at n0 are multiplied by 1=(n− n0)ri for an appropriate
value of ri.
When both Un0 is properly contained in Wn0 and Wn0 is properly contained in U ′

n0 ,
then there must exist, for example, Fi1 ; Fi2 ; : : : ; Fir in !gen which generate FSn0 -modules
isomorphic to the same Specht module S", such that Fi1 ;n0 ; Fi2 ;n0 ; : : : ; Fir ;n0 
∈ Wn0 , but
some F-linear combination a1Fi1 ;n0 + a2Fi2 ;n0 + · · ·+ arFir ;n0 ∈ Wn0 , and it generates an
irreducible module which is isomorphic to S".
Next, remove the zero at n0 alone from each of the elements Fi1 ; Fi2 ; : : : ; Fir ∈

!gen and denote the resulting elements F
n0
i1 ; F

n0
i2 ; : : : ; F

n0
ir . Now the generalized ultrasmall

expression a1F
n0
i1 + a2F

n0
i2 + · · ·+ arF

n0
ir is added to :gen.

Notice that the last addition destroys the orthogonality of elements in :gen, for
example, at a value of n that is non-singular for Fi1 ; Fi2 ; : : : ; Fir , the collection :n

contains all the non-zero module elements Fi1 ; Fi2 ; : : : ; Fir and a1F
n0
i1 + a2F

n0
i2 + · · ·

+ arF
n0
ir .

However, after going through all the zeroes of !gen and adding generalized ultrasmall
expressions as described above, we obtain :gen which generates exactly Wn for all n ≥
4k, and each of it members generates an irreducible for all values of n ≥ 4k.

The next lemma shows a crucial fact: not only does each ultrasmall in !n and 9n

always generate irreducible modules for all n ≥ 4k, in fact, it generates a highly
uniform sequence of irreducible modules that are isomorphic, in a sense, to the “same”
Specht module S(n−|7|; 7), for some 9xed partition 7.

Lemma 3J. Let W̃ ; 6gen ; !gen and 9gen be as in Lemma 3I. Then for each Fi ∈ !gen∪
9gen (F ′

i after removing singularities); there is a unique partition "i = (4k − |7i|; 7i);
with |7i| ≤ k; such that Fi and F ′

i generate the same FS4k -module isomorphic to the
Specht module S"i . For each n that is non-singular for Fi; both Fi and F ′

i generate
the same FSn-module isomorphic to the Specht module S"n; i ; where "n; i=(n− |7i|; 7i).
At Fi’s singular values Fi is zero; while F ′

i continues to generate an FSn-module
isomorphic to the “same” Specht module S"n; i .
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Proof. Since G is isomorphic to
⊕t

j=1 M (4k−mj;1
mj ) with mj ≤ k, and F(z) has char-

acteristic 0, each Fi ∈ !gen ∪ 9gen generates an irreducible module isomorphic to a
Specht module S"i , with "i = (4k − |7i|; 7i), where |7i| ≤ k. By Lemma 3I, at Fi’s
non-singular values, Fi generates an FSn module isomorphic to some Specht module
S"n; i , with "n; i = (n− |7n; i|; 7n; i), where |7n; i| ≤ k.
The idea of the proof is based on the following. We know from Lemma 3I that !′

gen∪
9gen generates a complete irreducible decomposition of

⊕t
j=1 M (4k−mj;1

mj ), and !′
n∪9n

gives a complete irreducible decomposition of
⊕t

j=1 M (n−mj;1
mj ) for all n. These two

decompositions have a bijective correspondence g, i.e. for each copy of some Specht
module S(n−|7|; 7) in the latter decomposition, there is a distinct corresponding copy of
the Specht module S(4k−|7|; 7) in the former decomposition, and vice versa. However, we
need to show is that the Specht modules S(n−|7n; i|; 7n; i) (generated by the Fi’s in !gen) are
all the same S(n−|7i|; 7i) (or 0), independent of n. I.e. we need to show that the bijective
correspondence g between the decompositions is very well behaved, and in fact extends
directly to the generating ultrasmalls in !′

gen∪9gen itself. I.e. the generating ultrasmalls
do not generate wildly diKerent irreducibles for diKerent n’s, or in other words, g does
not allow irreducibles to jump around among the generating ultrasmalls. To show this,
we use a simple property of Specht modules given by Lemma 1, and the structure of
generalized ultrasmalls, embodied in the following claim. The claim then allows us to
use a type of pigeon-hole principle based on the bijective correspondence g.

Claim. There are at most 9nitely many n ≥ 4k where (n− |7i|; 7i) 4 "n; i. Moreover;
for any m; there are at most 9nitely many n ≥ m where (n− |7m; i|; 7m; i) 4 "n; i.

Proof. First notice that for a "i-tableau t (corresponding to Fi in the previous para-
graph), there is an (n− |7i|; 7i)-tableau t′ (corresponding to Fn; i in the previous para-
graph) such that the signed column sums )t and )t′ are exactly the same, for any
n ≥ 4k. Thus, by Lemma 1, for any n ≥ 4k, if (n − |7i|; 7i) 4 "n; i, then the sum
)tFn; i = 0, for any "i-tableau t, since S"n; i is isomorphic to the irreducible module
generated by Fn; i. Since the coe:cients in the expression Fi are all rational functions
in n, there can only be 'nitely many values of n where )tFn; i = 0, unless )tFn; i is
identically zero, which is not the case, since by Lemma 1, )tF4k; i is isomorphic to
a polytabloid that generates S"i . Therefore, there can only be 'nitely many values of
n ≥ 4k where (n− |7i|; 7i) 4 "n; i. For all other values of n, either (n− |7i|; 7i) . "n; i, or
(n− |7i|; 7i) = "n; i. The proof of the second part of the claim goes through exactly the
same way, replacing "i by "m;i=(m−|7m; i|; 7m; i), 7i by 7m; i, and Fi by F ′

i everywhere.
This completes the proof of the Claim.

Let )t be the signed column sum of a "i-tableau t. Let Qi be the set of n ≥ 4k
where )tFn; i = 0: Clearly Qi includes all singular values of Fi. We consider 2 cases
for values of n.
Case 1: First we consider n 
∈ ⋃j:Fj∈!gen∪9gen Qj. We show that for all such n, in fact

the required property holds, i.e. "n; i=(n−|7i|; 7i), or in other words, 7i= 7n; i. Assume,
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to the contrary, that this property does not hold for some such n0. Using the de'nition
of Qi, and using the proof of the Claim, this would imply that (n0−|7i|; 7i)."n0 ;i. Since
n0 is non-singular for 9gen ∪ !gen, using Lemma 3I, we know that 9n0 ∪ !n0 gives an
irreducible decomposition of

⊕t
j=1 M (n0−mj;1

mj ) with mj ≤ k, just as 9gen∪!gen gives an

irreducible decomposition of
⊕t

j=1 M (4k−mj;1
mj ). As mentioned towards the beginning

of the proof, these two decompositions have a bijective correspondence g. But we
assumed that Fi ∈ !gen ∪9gen generates an F(z)S4k -module isomorphic to S"i=(4k−|7|; 7),
whereas Fn0 ;i generates an FSn0 -module isomorphic to S"n0 ; i , where (n0− |7i|; 7i) . "n0 ; i.
Therefore, in order to preserve the bijective correspondence g, there must be another
Fl ∈ 9gen ∪ !gen such that Fl generates an F(z)S4k -module isomorphic to a Specht
module S*1 while Fn0 ;l generates an FSn0 -module isomorphic to a Specht module S*2

where *1 4 *2, which, using the Claim, contradicts the choice of n0 to be outside the
set
⋃

j:Fj∈!gen∪9gen Qj.
Case 2: Next, we turn to n ∈ ⋃j:Fj∈!gen∪9gen Qj, and show that for all such n, the

required property holds, i.e. we show that

"n; i = (n− |7i|; 7i) (1)

if n is a non-singular value of Fi, and if n is a singular value of Fi (so Fi generates
the 0 module at n), we use Lemma 3I, take S"′

n; i to be the Specht module generated
by F ′

i after removing singularities, and show that

"′
n; i = (n− |7i|; 7i): (2)

Assume the contrary (to (1) or (2)) and let m be a counterexample value of n. Let
Q be the set of i such that Fi has a singular value at m. First, we show that for i 
∈ Q
(resp. i ∈ Q):

"m;i . (m− |7i|; 7i) (resp: "′
m; i . (m− |7i|; 7i)): (3)

Say that for some i 
∈ Q (contrary to (3)) "m;i 4 (m− |7i|; 7i). By the proof of Case
1, there are in'nitely n ≥ m with n 
∈ ⋃j:Fj∈!gen∪9gen Qj, for which in fact "n; i = (n −
|7i|; 7i), it follows that there are in'nitely many n ≥ m where (n − |7m; i|; 7m; i) 4 "n; i,
contradicting the second part of the Claim. This shows (3) for i 
∈ Q. The same proof
of (3) goes through for i ∈ Q, due to the following reason. We know that F ′

i and
Fi generate the same F(z)S4k -module due to which "′

i = "i = (4k − |7i|; 7i). Therefore
the proof of Case 1 goes through also for "′

n; i. I.e. for n 
∈ ⋃j:Fj∈!gen∪9gen Qj, we have
"′
n; i = "n; i = (n− |7i|; 7i).
Now we continue with the proof Case 2 by contradiction, recalling that m is a

counterexample value of n ∈ ⋃j:Fj∈!gen∪9gen Qj and Q is the set of j such that Fj has a
singular value at m.
From the proof of Lemmas 3I and 3J, it follows that the set {F ′

i : i ∈ Q} ∪
{Fi: i 
∈ Q} (takes the place of !′

gen ∪ 9gen and) gives an irreducible decomposition
of
⊕t

j=1 M (4k−mj;1
mj ) with mj ≤ k, just as {F ′

m; i: i ∈ Q} ∪ {Fm;i: i 
∈ Q} gives an
irreducible decomposition of

⊕t
j=1 M (m−mj;1

mj ). Now, as in the proof of Case 1, we
exploit the bijective correspondence g between the two irreducible decompositions. I.e.
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we conclude that if there is one i 
∈ Q with "m;i . (n− |7i|; 7i), or if there is an i ∈ Q
with "′

m; i . (n − |7i|; 7i), then in fact there must be another l 
∈ Q (resp. l ∈ Q) with
"m;l 4 (m − |7l|; 7l) (resp. "′

m;l 4 (m − |7l|; 7l)), which would cause a contradiction
to (3).

We are now ready to state the main result of the section, whose proof follows
directly from Lemmas 3D, 3I and 3J.

Theorem 3B (resp. 3C). For any k; t; take a 9nite collection of generalized formal
expressions of support size ≤ l that uniformly generate Wn ⊆

⊕t
j=1 M (n−mj;1

mj ) with
mj ≤ k (resp. Vn;d(r1; r2; : : : ; ru)) for n ≥ l. There exists a 9xed set !gen of generalized
ultrasmall expressions such that the corresponding generalized ultrasmall elements
!n generate Wn for each n ≥ max{4k; l + 1} (resp. n ≥ max{l + 1; 4dmax{rj; j =
1; 2; : : : ; u}}).
Furthermore; for each n ≥ max{4k; l + 1} (resp. ≥ max{l + 1; 4dmax{rj; j =

1; 2; : : : ; u}}) each generalized ultrasmall in !n generates either zero or an irreducible
module.
If we drop the condition of !n having to generate Wn for singular values of n; we can

choose !gen such that the generators in !gen generate pairwise orthogonal; irreducible
FSn-submodules (for each n ≥ max{4k; l + 1} (resp. ≥ max{l + 1; 4dmax{rj; j =
1; 2; : : : ; u}}).
In both cases; for each generator Fi ∈ !gen ; there exists a unique 7i with |7i| ≤ k

such that Fn; i generates either 0 or an FSn-module that is isomorphic to the Specht
module S"n; i ; where "n; i = (n− |7i|; 7i).

The following corollaries are straightforward.

Corollary 3K. Let Wn be as in Theorem 3B. If Wn is irreducible for some su=ciently
large n; then Wn is irreducible (or zero) for each n ≥ 4k. Moreover; there exists a
9xed partition 7 with |7| ≤ k such that each Wn is either zero or is isomorphic to the
Specht module S(n−|7|; 7).

Corollary 3L. Let Wn be as in Theorem 3B. If it is strictly contained in the entire
module

⊕t
j=1 M (n−mj;1

mj ) with mj ≤ k; i.e. it does not take maximal dimension for
su=ciently large n then it is does not take maximal dimension for any n ≥ 4k.

6. Dimension theorems (uniform case)

Now we are ready to prove our main Dimension theorem.

Theorem 4B (resp. 4C). For any k; t; take a 9nite collection of generalized formal
expressions of support size ≤ l that uniformly generate Wn ⊆

⊕t
j=1 M (n−mj;1

mj ) with
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mj ≤ k (resp. Vn;d(r1; r2; : : : ; ru) or ⊆�n;d(r1; r2; : : : ; ru)) for n ≥ l. There exists a
single polynomial p ∈ Q[z]; and a 9nite set B⊆N such that
(1) dim(Wn) = p(n) for all n ∈ N \ B.
(2) dim(Wn)¡p(n) for all n ∈ B; for which n ≥ 4k (resp. n ≥ 2dr).

Proof. By Theorem 3B, we know that there is a collection !gen of generalized ultra-
small expressions Fi that generate a sequence of pairwise orthogonal (and hence dis-
tinct) irreducibles isomorphic to Specht modules S(n−|7i|; 7i), where 7i depends only on
i (not on n), for all but 'nitely many singular values of n. Furthermore, for these
non-singular values, !n generates exactly Wn. Now (1) follows from a straightforward
application of Lemma 3.
At the singular values of !gen some of the Fi’s generate the zero module. By Lemma

3I, after removing the singular values, the resulting expressions F ′
i ∈ !′

gen generate
pairwise orthogonal irreducibles isomorphic to Specht modules S(n−|7i|; 7i), for all n ≥
4k. Hence it is clear that the height of the module U ′

n generated by !′
n is constant for

all values of n ≥ 4k, and by using Lemma 3 as in (1), we see that its dimension is the
polynomial p(n) for all n ≥ 4k. Furthermore, U ′

n is the same as Wn for non-singular
values n of !gen and contains Wn for singular values. Hence the dimension and height
of Wn always drop at the singular values of !gen for n ≥ 4k.

Remark. Theorem 4B shows that the dual problem where Wn is given as the solutions
to uniformly generated homogeneous linear equations (closed under Sn) has the dimen-
sion increasing and the height increasing at singular values. An interesting corollary
(keeping our previous examples in mind) is that for uniformly generated sequences Wn

the sequence W⊥
n is in general NOT generated by generalized expressions.

7. Relationship to Nullstellensatz proofs

We now brie<y describe another method of generating uniform families Wn of
FSn-submodules of Vn;d. It will follow that Theorems 3A, 3B, 4A and 4B remain valid
for these notions of uniformity. We use this to give examples of NS-proof complexity
results.
One method of generating a uniform family Wn is to start with a 'nite collection

of generators E1n=(E1;exp)n; : : : ; Evn=(Ev;exp)n (ultrasmalls) and then de'ne Wn ⊆Vn;d

(Wn ⊆�n;d) to be the smallest submodule that contains E1n; : : : ; Evn and is closed under
other operations such as multiplication in Vn;d (or �d;n). In other words, if E ∈ Wn

and F ∈ Vn;d (∈ �n;d) are such that EF ∈ Vn;d (or ∈ �n;d), then in fact, EF ∈ Wn.
This method allows us to de'ne (in a uniform way) Wd1 ;d2 ;n ⊆Vn;d, d2 ≤ d1 ≤ d,

the module consisting of the polynomial module elements
E ∈ Vn;d2 : ∃F1n; : : : ; Fvn of degree ≤ d1 such that

v∑
j=1

EjnFjn = E


 :
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Informally, the polynomials in Wd1 ;d2 ;n consist of the collection of elements of Vn;d

that have degree ≤ d2 and that have Nullstellensatz multiplying polynomials of de-
gree ≤ d1 that witness their membership in the ideal generated by E1n; : : : ; Evn. The-
orems 3A and 4A are valid for this method of de'ning uniform families Wd1 ;d2 ; n of
FSn-submodules, by the following lemma.

Lemma 4. Fix two numbers d1; d2 with d1 ≥ d2. Let NQ be a collection of polynomials
(of degree ≤ d2) given by formal expressions. For each n; let NQn denote the closure
of the expressions NQ under Sn. Let Wd1 ;d2 ;n denote the polynomials in �d2 ; n(r1; : : : ; ru)
of degree ≤ d2 which can be proved by a NS-proof of degree ≤ d1 to belong to the
ideal ( NQn). Let :gen consists of all linear combinations of polynomial expressions
in NQ but where we also close these under multiplication by monomials (whenever
the result has degree ≤ d1). Then the space Wd1 ;d2 ; n is generated by the generating
polynomial expressions in :n.

Corollary. The sequence Wd1 ;d2 ; n as de9ned in Lemma 4 is a uniform sequence of
FSn-submodules.

This shows that we can apply our structural results to the modules Wd1 ;d2 ; n. We get:

Theorem 5. Let the sequence Wd1 ;d2 ; n be as de9ned in Lemma 4. There exists a
polynomial p with rational coe=cients such that the vector space dimension of Wd1 ;d2 ; n

is given by p(n) for all but 9nitely many values of n.

Now let us return to the examples in the introduction.

Theorem 6. Let = be any sentence in the language of ZFC (= could; for example; be
the Riemann Conjecture or the Poincare Conjecture). Let NQn ⊆�d1 ; n(r1; : : : ; ru) be an
Sn-closed system of polynomial expressions which has a solution if and only if there
is a ZFC-proof of = which uses at most n symbols. (Such a system of polynomial
expressions can be shown to exist by combining standard methods of logic with the
results in [13]:) Then for no d1; and d2 ≥ 1 does Wd1 ;d2 ; n (as de9ned in Lemma 4)
contain all polynomials of degree ≤ d2 (assuming n ≥ 2d2 max({r1; r2; : : : ; ru})).

Proof (Outline). We know from the contrapositive of Corollary 3L that if Wd1 ;d2 ; n

contains all polynomials of degree ≤ d2, i.e. if it takes maximal dimension for some
n, then it in fact contains all such polynomials for all su:ciently large values of n.
Now ZFC can prove this fact, because the results in this paper are provable in naive
set theory and thus are provable in ZFC. If there is n ≥ 2d2 max({r1; r2; : : : ; ru}) such
that Wd1 ;d2 ; n has maximal dimension, ZFC can verify this and hence ZFC can prove
the fact: “1 ∈ Wd1 ;d2 ; n for all su:ciently large values of n”. But by the de'nition of NQn

and Wd1 ;d2 ; n this means that ZFC can prove that “there is no ZFC proof of size n for
= for any value of n”, or, in other words ZFC can prove that, “there is no ZFC proof
of =”. This statement however can only be true (and this is provable in ZFC) if ZFC
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is consistent. Thus the assumption implies that ZFC can prove its own consistency.
This is in contradiction with GTodel’s second incompleteness theorem. In other words
Wd1 ;d2 ; n never takes maximal dimension.

In general, it is unclear which polynomial functions n → dim(Wd1 ;d2 ; n) can appear
in this context. Theorem 6 (which is strongly based on GTodels second incompleteness
theorem) shows that we can exclude the polynomial n → dim(�d2 ; n(r1; : : : ; ru)). Are
there other polynomials which can be excluded? Even if we only consider there case
where d2 = 2 the number of potential polynomials is enormous (somewhere between
1014 and 1020, if we work in Vn;2(2; 2)).
At the moment, we have very little understanding about which polynomial functions

occur and whether this has any signi'cance. And how robust are these questions? Is
the answer very sensitive to the exact formalization of the provability predicate within
ZFC? We believe it is quite tractable to compute (on modern computers) the concrete
polynomial function which express the vector space dimension of spaces like Wd1 ;d2 ; n.
In the next section, we pose a series of concrete questions we would 'rst like to

answer.

8. Open problems

The 'rst question relates to Theorem 3B. We would like to show that for any uni-
formly generated family Wn, there exists a family !gen of ultrasmall generalized gener-
ators generating pairwise orthogonal irreducible modules, which together generate ex-
actly Wn for each n ≥ 4k. At the moment, we have to either drop the property of orthog-
onality or have !gen generate Wn only for su:ciently large n. More speci'cally we ask:

Question. Assume we are given a 9nite collection of generalized formal expressions
that uniformly generate Wn ⊆

⊕t
j=1 M (n−mj;1

mj ) with mj ≤ k (resp. Vn;d(r1; r2; : : : ; ru)
or ⊆�n;d(r1; r2; : : : ; ru)). Is it always the case that there exists a family of ultrasmall
generalized generators that generate orthogonal irreducible modules and together
generate Wn for each n ≥ 4k?

This problem is important in getting a full understanding of the behavior of the
submodules Wn. The missing key question is: to what extent can the modules Wn be
built from irreducibles which do not “rotate” relative to the given generators.
Over 'elds of 'nite characteristic, there are still many unanswered questions. It is,

for example, not clear if the analogous versions of Theorems 1A–1C hold. However
(based on the work by Ajtai [1]) we conjecture:

Conjecture 1A. For each prime q and for each k there exists a 9nite set Aq;d of
functions f : N → N such that for any n and any FSn submodule W ⊆M (n−k;1k )

there exists f ∈ Aq;d such that dim(W ) = f(n).
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In fact, one can strengthen this conjecture.

Conjecture 1B. For each prime q and for each k there exists n0; l ∈ N and poly-
nomial functions p0; p1; : : : ; pql−1 ∈ Q[x] such that for each n ≥ n0 with n ≡
r modulo ql; and each FSn submodule W ⊆M (n−k;1k ); it holds that dim(W ) = pr(n).

In fact, we suggest that the conjecture is valid when ql ≥ k + 1. In its strongest
form we conjecture:

Conjecture 1C. Conjecture 1B is valid when ql ≥ k + 1 and when n ≥ c(q)k where
c(q) is some function which only depends on q (based on [12] we suggest that c(q)=
(7 + q2) will do).

Theorems 2A–2C all fail over 'elds of 'nite characteristics. This follows from the
fact that for q=2 the F2Sn-submodule W ={E: E=∑i¡j aijxij+bijxij where ∀i; j aij=
bij or ∀i; j aij + bij = 1} is only generated by elements of support size n (for example
E =

∑
i¡j xij). This suggests modifying and extending the de'nition of generalized

ultrasmall expressions.
Moreover, Theorems 3A–3C also fail over 'elds of 'nite characteristic. Based on

[12] we believe however that the following modi'cation is valid:

Conjecture 2A. For any k and for any uniformly generated sequence Wn ⊆M (n−k;1k );
there exists polynomial functions p0; p1; : : : ; pql−1 ∈ Q[x] (where ql ≥ k + 1) and
there exists n0 ∈ N such that for all n ≥ n0 with n ≡ r modulo ql we have
dim(Wn) = pr(n).

Conjecture 2B. Conjecture 2A is valid for n0 ≥ c(q)k.

More interesting questions remain for 'elds of characteristic 0. Is it possible to
improve the upper bound on “n su:ciently large” in Theorems 3A–3C Given an upper
bound on the smallest n that is non-singular for !gen, i.e. where Wn (in Theorems 3A–
3C) decomposes into irreducibles in the same way as it decomposes for all su:ciently
large n.
An upper bound of say 4k (or any constant times k) has profound consequences

in showing linear complexity gaps for proofs of membership in ideals generated by
general Sn-closed polynomial systems. The gaps would apply to algebraic proof systems
like the Nullstellensatz proof system and polynomial calculus proof system.

Note. The upper bound of 2k achieved in this paper implies a complexity jump from
constant degree Nullstellensatz proofs to logarithmic degree Nullstellensatz proofs.
Furthermore, Corollaries 3K and 3L provide linear complexity gaps for algebraic proofs
of ideal membership in certain classes of Sn-closed polynomial systems.
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9. Concluding remarks

In [13], we show that most natural decision problems translate to the question of de-
ciding membership in the ideals generated by uniform, Sn-closed polynomial systems.
The main theorems of this paper remain valid under a larger class of notions of unifor-
mity. In [14], we use these notions of uniformity to show gaps and lower bounds on the
complexity of algebraic proofs of ideal membership [1,7,4,6] for Sn-closed, uniformly
generated polynomial systems.
Another interesting use of the results in this paper is based on the following ob-

servation. The singularities n at which some irreducible component of a uniformly
generated module vanishes corresponds to “sporadic” algebraic proofs which use very
speci'c properties of n and which cannot be generalized to general values of n. A
similar phenomenon where certain singular (or exceptional) objects correspond to the
existence of a short (but sporadic) propositional proof was 'rst discovered in [10,11]).
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