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Ralf Lämmel2

Vrije Universiteit & Centrum voor Wiskunde en Informatica

Amsterdam, The Netherlands

Abstract

We render runtime system adaptations by design-level concepts such that running systems can
be adapted and examined at a higher level of abstraction. The overall idea is to express design
decisions as applications of design operators to be carried out at runtime. Design operators can
implement design patterns for use at runtime. Applications of design operators are made explicit
as design elements in the running system such that they can be traced, reconfigured, and made
undone.
Our approach enables Reflective Designs: on one side, design operators employ reflection to
perform runtime adaptations; on the other side, design elements provide an additional reflection
protocol to examine and configure performed adaptations. Our approach helps understanding the
development and the maintenance of the class of software systems that cannot tolerate downtime
or frequent shutdown-revise-startup cycles.
We have accumulated a class library for programming with Reflective Designs in
Squeak/Smalltalk. This library employs reflection and dynamic aspect-oriented programming.
We have also implemented tool support for navigating in a system that is adapted continuously at
runtime.

Note: This extended abstract summarises our full paper [7].
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Runtime system adaptation

Our work on Reflective Designs is concerned with adaptation of software
systems at runtime, as needed for dynamic component coordination [11], run-
time system configuration [1], dynamic service adaptation [5,6], and rapid pro-
totyping without shutdown-revise-startup cycles [12]. Runtime adaptability
is crucial for systems with strong availability demands, such as in telecom-
munications. Downtime of such systems can barely be tolerated. Software
maintenance and evolution has to be carried out in the running system.

Reflective Designs enhance object-oriented design and programming
by techniques for runtime system adaptation. There are two key notions:
design elements and design operators, which we will explain in turn.

Design elements

We contend that a program is structured according to design decisions. We re-
quire that design decisions are represented explicitly in the program. Thereby,
software design will be traceable in the program. We even require that de-
sign decisions are to be represented explicitly in the running system. We use
the term design element to denote representations of design decisions in pro-
grams. In fact, we require that design elements are amenable to reflection such
that design decisions can be observed and modified at runtime. With that,
the notion of runtime system adaptations boils down to explicit construction,
modification, and retirement of design elements.

Design elements can be examined and (re-) configured. Here, examination
and (re-) configuration are used in the sense of introspection and interces-
sion. Normal object-oriented introspection and intercession concerns the fields
and methods of objects. Design-level introspection and intercession concerns
design-level concepts such as the participants for a given design element. The
examination of participants exemplifies design-level introspection. The con-
figuration of participants and their roles exemplifies design-level intercession.
Furthermore, for each object in the running system, we can introspect effective
adaptations, i.e., the list of design elements that affect the object at hand.

Design operators

When compared to basic techniques such as the use of a metaobject proto-
col [8], the use of design elements makes runtime system adaptations more
disciplined and more manageable. To this end, we provide abstractions that
capture common design elements in a reusable manner. Applications of such
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abstractions perform system adaptations at a design level; hence, we call them
design operators. Our work, so far, has concentrated on operators that model
the realisation of common design patterns. The view ’design patterns as op-
erators’ also occurs in previous work [15,2,9,10,13,14]. The novelty of our
work is that our operators serve for runtime system adaptation, and runtime

reflection on designs.

We can distinguish at least three kinds of operators. Additive operators
superimpose additional structure or behaviour onto the running software sys-
tem. Subtractive operators define and remove slices of behaviour or structure
in the running software system. Refactoring operators revise the running sys-
tem in a semantics-preserving manner.

It is clear that design operators can only be provided in the context of
a sufficiently reflective programming system. Actual applications of design
operators result in two effects. Firstly, the corresponding design elements are
constructed. Secondly, the system’s actual structure and behaviour is adapted
as intended by the underlying design decision. Applications of design operators
can be made undone by deactivating the corresponding design element. In case
an inactive element is never ever needed again, we can let the element retire.

Implementation in Squeak/Smalltalk

We have developed the Reflective Designs framework as a class library for
Squeak/Smalltalk. The implementation makes original use of infrastructure
for reflection, method wrappers [3], and dynamic aspect-oriented programming
with AspectS [4]. The Reflective Designs framework involves several lay-
ers of abstraction, while these layers are presented as APIs to the programmer.
The idea is that layers at a higher level of abstraction perform less lower level
reflection. Using the Reflective Designs framework, we have exercised
some scenarios of runtime system adaptations.

We have also provided interactive tool support for reflective designs. Ac-
cordingly, we have extended some existing tools, such as the normal system
browser, and we have provided new tools such as a dedicated ‘reflective designs
center’. The tool extensions are particularly interesting in so far that we have
implemented them as self-applications of the Reflective Designs frame-
work, e.g., the system browser is adapted by appropriate design elements.

Concluding remarks

We believe that Reflective Designs and our prototypical implementation
of this approach provide useful input for further research on runtime system
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adaptation. Major directions for future work are the following. Firstly, the
fusion of Reflective Designs and refactoring transformations should be
completed. We note that we have focused on additive and subtractive adap-
tations in our work so far. Secondly, the robustness of Reflective Designs

should be improved by dedicated system analyses and rollback mechanisms.
Thirdly, our practical approach to reflective designs needs to be complemented
by formal support. The ultimate goal is an approach where runtime system
adaptations are as powerful and robust as static meta-programs today.
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