Available online at www.sciencedirect.com

C@k ScienceDirect Procedia

Computer Science

ﬁﬁ‘
ELSEVIER Procedia Computer Science 44 (2015) 275 — 284

2015 Conference on Systems Engineering Research

Developing Ontologies and Persona to Support and Enhance
Requirements Engineering Activities — A Case Study
Wee Wee Sim**, Dr. Peggy Brouse®

“George Mason University, The Volgenau School of Engineering, Fairfax, Virgina, 22039, USA
bGeorge Mason University, Department of Systems Engineerinsg and Operations Research, Fairfax, Virgina, 22039, USA

Abstract

This paper provides an insight into incorporating persona concept and developing ontologies to support requirements engineering
activities via a university course registration web application system case study. The objectives are to examine (1) how the
concept of persona, in the context of the concepts of viewpoint, goal, scenario, task, and requirement, may be integrated in a
unified environment to enable stakeholders and developers gain a better understanding of target users’ needs and behaviors and
identify missing requirements early in the requirements engineering process, and (2) how the concepts and their relationships
may be explicitly specified ontologically to help establish a knowledge repository and foster a shared common understanding of
target users’ needs and behaviors among developers and stakeholders during the requirements analysis and modeling activity. A
five-step iterative ontology development process is developed to help guide developers in the process of building the ontologies
for the case study. We present the persona and viewpoint documents created and the ontology specifications specified in Protégé-
Frames via applying our ontology development process.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the Stevens Institute of Technology.

Keywords: Ontology; Persona; User Profile; User Modeling; Requirements Engineering; Systems Engineering, Knowledge Engineering.

1. Introduction

It has been widely acknowledged that one of the contributing factors in requirements engineering projects’ failure
is the lack of a comprehensive shared understanding of target users’ needs and behaviors to achieve projects’
requirements'?. There is a lack of semantic agreement among users that hinders the requirements engineering
activities. Poor or inadequate understanding of users’ requirements increases the chance of not meeting users’ needs.
Focusing solely on the tasks or functionalities without considering the target users’ needs, behaviors, and goals is a
recipe for failure. Well understanding, explicit formal specification, and common sharing of users’ knowledge and
information are crucial in the success of the requirements engineering projects.

The concept of persona, originally presented by Alan Cooper® who, focused on the use of personas, their goals

* Corresponding author. E-mail address: wsim@gmu.edu.

1877-0509 © 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Peer-review under responsibility of the Stevens Institute of Technology.

doi:10.1016/j.procs.2015.03.060


http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2015.03.060&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2015.03.060&domain=pdf

276

Wee Wee Sim and Peggy Brouse / Procedia Computer Science 44 (2015) 275 — 284

and scenarios on design, is becoming a promising and an emergent new paradigm in user requirements modeling.
Personas are fictitious, specific, and concrete representations of target users®. They are constructed to resemble real
people, i.e. they contain information such as names, ages, educational backgrounds, occupations, skills, goals,
concerns, environments, usage patterns on the system, and so forth. Personas capture rich behavior model of users
and can help requirements engineers to obtain deeper understanding of the target users and make better design
decisions based on these personas.

The nature of requirements engineering involves capturing knowledge from multiple sources. The field of
knowledge representation, commonly known as ontology, is a formal representation of the entities and relationships
exist in some domain of interest. According to Gruber?, an ontology is a formal, explicit specification of a shared
conceptualization. An ontology is all about defining the domain vocabularies, the essential concepts in the domain,
their classifications, taxonomies (concept hierarchies), relationships among the concepts (including constraints), and
domain axioms related to a particular application domain. Ontologies not only offer knowledge representation and
interrelating different types of knowledge, but also provide constraint checking on the ontology and inference
mechanism to detect inconsistency and incompleteness in requirements description. Ontology-based approach thus
offers a good choice to represent knowledge about users, such as users’ behaviors, scenarios, tasks, goals, and
requirements. Over the past several years, there have been several efforts conducted by researchers on scenarios®%’
and goal®®!® modeling, as well as ontology-based scenarios and goal requirements modeling'!!2. Few researchers
have proposed techniques to identify personas and investigate their relationships with scenarios and goals!'>!%13,
Some researchers have designed Personal or User Profile ontology to represent and model user profiles'®!”. To the
best of our knowledge and as of this writing, there have been no efforts conducted in using an ontology-based
approach to provide an explicit specification and representation of personas in the context of viewpoints, scenarios,
tasks, goals, and requirements in requirements engineering on web application domain.

In our earlier research efforts, we have developed a Concept Development Process (CDP) model'® and an
Ontology-Based Persona-Driven User Requirements Modeling (OntoPersonaURM) model!®, with the goals of
examining (1) how the concept of persona, in the context of the concepts of viewpoint, goal, scenario, task, and
requirement, may be integrated in a unified environment to enable stakeholders and developers gain a better
understanding of target users’ needs and behaviors and identify missing requirements early in the requirements
engineering process and (2) how the concepts and their relationships may be explicitly specified using an ontology
approach to help establish a knowledge repository and foster a shared common understanding of target users’ needs
and behaviors among developers and stakeholders during the requirements analysis and modeling activity. The CDP
model is developed to help guide requirement engineers and developers in the development of the concepts and the
integration of concepts into the requirements engineering process. The CDP model consists of four main processes:
1-Personas Construction, 2—Viewpoints Identification and Construction, 3—Concepts Modeling, and 4—Analysis and
Evaluation. In the Concepts Modeling process of the CDP model, the OntoPersonaURM model is developed to
provide insights and help guide ontology engineers and developers into the construction of ontologies for explicit
specifications of the concept of persona in representing users’ characteristics, and the concepts of viewpoint, goal,
scenario, task, and requirement. The OntoPersonaURM model is composed of three generic interrelated ontologies:
(1) Persona Ontology: covers general concepts pertaining to person characteristics including education, abilities,
interests, knowledge, viewpoints, environments, and so forth. (2) Behavioral-GST (Goal-Scenario-Task) Ontology:
captures and defines the needs and behaviors of the personas and the system-to-be, i.e. viewpoint, goal, scenario,
and task concepts. (3) Requirements Ontology: specifies general concepts for the representation of the requirements
and their properties. We chose Protégé-Frames ontology editing tool as a concept representation environment for the
construction of ontologies, as Protégé-Frames (1) has an intuitive and easy-to-use graphical user interface that does
not demand too much learning curve, and (2) provides our research needs of defining classes (and sub-classes),
describing properties and relationships of classes, populating classes with instances, and performing queries to check
constraints on the classes. Within the OntoPersonaURM model, a five-step iterative ontology development process
has also been developed to help guide engineers in the process of building the ontologies. We strongly encouraged
readers to review both of our papers!®!® to get to know more about the CDP and OntoPersonaURM models. This
paper demonstrates the application of these models on a course registration web application system case study.

The paper is organized as follows: section 2 summarizes the ontology development process and provides
walkthroughs of the application of the ontology development process steps in the chosen case study. Section 3
demonstrates constraints checking on the developed ontologies. Finally, section 4 addresses the conclusion and
highlights future research directions.

118



Wee Wee Sim and Peggy Brouse / Procedia Computer Science 44 (2015) 275 — 284

2. Ontology Development Process

It is to be emphasized that developing a new ontology is often tedious and time consuming; it normally requires
engineers and developers to have sufficient knowledge in ontology specifications and familiar with ontology
development environment. There is no single correct ontology for any domain®. In building our ontologies for the
OntoPersonaURM model on the case study, we consulted with the guidelines suggested in 2°. We outline our five-
step iterative ontology development process in Table 1. We provide walkthroughs of the application of the ontology
development process on the chosen case study in the subsequent sub-sections.

Table 1. Ontology Development Process

271

Ontology Development

Description
Process P

Step 1:
Synthesize Information
Collected

Information gathered and described in the persona and viewpoint documents'® created through collaboration with
marketing analysts, ontology engineers, and requirement engineers during the requirements elicitation process are
analyzed and synthesized. Terms extracted from these documents are candidates for the definition of classes and
properties in the ontology(ies).

Step 2: There are extensive libraries of reusable ontologies available on the Web. For examples, the Protégé ontology library?!

Consult Existing maintains a good collection of ontologies, the DAML ontology library®?, user profile ontology'’, personal ontology'®, and

Ontologies so forth. As building a new ontology from scratch is a time consuming process, if an existing solution ontology is
available and is relevant to the application domain in hand, then it is suggested to consult with the existing ontology to
determine if we can reuse, refine, or extend existing classes and properties.

Step 3: A top-down approach is adopted to define the class hierarchy (super-sub-class), i.e. from most general concepts to

Define Classes and specialized concepts. A set of potential classes, class hierarchy, and class properties (i.e. attributes, cardinalities, and

Properties relationships with other classes) are identified, defined, and specified in the Protégé-Frames editor tool. This step
occupies the most time.

Step 4: Instances of the classes are created in the Protégé-Frames editor. Creating class instances can help to correct mistakes and

Create Instances fine-tune the classes and properties in the ontology.

Step 5: If one or more relationships exist between classes of two ontologies, the ontologies are combined by including the related

ontology into the current ontology via Protégé-Frames’ Manage Included Projects menu®. For example, in the
OntoPersonaURM model, the Persona Ontology contains classes that have relationships with classes of the Behavioral-
GST Ontology, thus the Behavioral-GST Ontology is included in the Persona Ontology. Combining related ontologies
help ontology engineers better understand the relationships of classes between ontologies, identify conflicts, and make
necessary changes. Ontology engineers may need to revisit one or more previous steps to refine the ontologies.

Combine Ontologies

2.1. Step 1: Synthesize Information Collected

This step is closely related to the Concept Development Process (CDP) model proposed in our earlier work!$,
which we recommend readers to review to get to know more detail about the CDP model. For our case study, the
primary target users are students that use the system to browse and register for courses, check course grades, review
financial aid information, pay tuition and fees, and so forth. The secondary users are the application developers and
site administrator. In this paper, we focus on the primary users. A primary persona, “Linda Rose, the busy graduate
student and software programmer” is created. We also created three documents: Persona Profile Document (PPD),
Persona Definition Document (PDD), and Viewpoint Document (VPD)!®. The PPD is a one-page narrative
description of a persona. Based on the information described in the PPD, attributes are extracted to form a PDD that
defines the persona. From the PDD
created, a VPD is created that
contains information defining one or
more views at a certain level of detail

Linda Rose,

the busy graduate student and software programmer

Llnda Rose is 30 years old and is currently a part-time graduate student pursuing a M.S. Degree in

Software ing at the C Science Department of George Mason University. Currently, Linda is d dd . . d .

in her third semester in the Software Engineering M.S. program. Linda graduated with a B.S. degree in an a reSSIHg certain GS1gn

Information Systems from George Washington University in 2000. concerns by the persona playlng a

Besides being a part-time graduate student, Linda is also currently working full-time as a Software . . .

Programmer at a local software engineering firm in Fairfax, Virginia. She has been working at her current paI‘tlcular role m a paI‘[lcular

position for 3 years. Linda has over 3+ years of experience working with various programming languages, . .
environment. The attributes are

such as Java, C++, C, and Visual Basic. Linda uses computer in a daily basis, at work and at home. She is very
comfortable using computer in various platform environments, including Unix, Linux, and Windows (XP,

Vista, 7). Linda owns a desktop at home and carries her laptop to school and work.

In her spare time, Linda likes to watch fantasy and sci-fi movies. She is a fan of Harry Potter and Alien
movies. She feels that watching fantasy and sci-fi movies bring a lot of inspiration and creative thinking in
her work. Linda speaks English and Spanish fluently. However, Linda is not good in writing in Spanish.

Linda exemplifies a real-world person who wants to go online, quickly browse for classes that interest her,
enroll for classes, and make online credit card tuition payment. Linda usually check her school activities
mactly durina lunch tima at wark Sha ic hicv in har wark and ctudv and <a dnacn’t lika #n <nand 2 Int of

Fig. 1. Persona Profile Document (PPD) sample (partial view) for primary persona Linda Rose

potential candidates for the definition
of classes in the ontologies of the
OntoPersonaURM model. The PPD,
PDD, and VPD are shown in Fig. 1, 2,
and 3 respectively.



278 Wee Wee Sim and Peggy Brouse / Procedia Computer Science 44 (2015) 275 — 284
Linda R Primary | :
inda Rose, g
the busy graduate student and software programmer Persona 3
ENDER| AGE |MARITAL HIGHEST OCCUPATIONS SOCIAL
v First | Last | Nickname | Title STATUS |[EDUCATION LEVEL Job Title Work Status [Length of Employment, Salary . LEVEL
T Linda| Rose | Rosie Female | 25-34 | Single B.S. degree Software programmer | Full-time 3 years $50K - $80K | Middle-class
E E LANGUAGE PROFICIENCY INTERESTS | ABILITIES
gg Listening speaking Writing ® Listen music Physical [
=8 |o English - English - English - good |* Play guitar Motor |Sensory-| Sensory- | Sensory- | Attention | Memory | Problem-| Reading- | Visual- | spatial
4 | Spanish—good |s Spanish—good |s Spanish~fair ® Surf the web Hearing | Speech | Visual solving | Comp. | Comp.
» Shop online Average Average | High |Average|Average
COMPUTER ROLES GOALS CONCERNS
* Software (office applications) — excellent Part-time | Browse courses with fast response ® Will the system be available for service when needed? ¢ Will
l» Hardware — good graduate e Enroll courses with ease {the public WiFi connection be available when needed? ¢ Will
ﬂ » Programming (Java, C++, Visual Basic) — student  |e Make online tuition payment with ease [the public WiFi connection be secured? ¢ Will the website
& [good linterface, layout, and information be properly presented on
E o Operating systems (Windows XP/Vista/7, : cell phone? ¢ Will the online payment function properly?
: Linux, Unix) — good g TS
: (3 Location Time of Day Duration Frequency Attitudes
= = (low: 0-5 times/wk, medium: 6-10 | (eager, skeptical, cautious, indifferent, impatient,
H Ee - times/wk, high: >10 times/wk) resentful, curious, trusting, others)
% s |nternet — good E Starbucks Mid-work day | 15 mins Medium Eager, skeptical, cautious, i
E * Social media - good = Home Evening 40 mins Medium Eager, trusting
& = USAGE PATTERNS USABILITY PREFERENCES
o Bl TooLs i i -
H DOMAIN 2 (scenarios titles) Tl
© [* UML-good |* Browse courses ¢ Register courses ¢ Laptop — — .
=1 Ontology - good | Check student schedule » Review | Desktop |* Accuracy —important e Attractiveness —not at all important
e Requirements engineering — good student records ¢ Review financial e Cell phone |* Efficiency — Importantis l.earnablllth son’ewhat important
laid » Make online payment o Tablet . Comprehen?l'blllty - |mponat|t o Clarity —important e
Rememberability — somewhat important

Fig. 2. Persona Definition Document (PDD) sample for primary persona Linda Rose

| <Linda Rose, Part-Time Graduate Student, Starbucks (mid-work day)> ["/[3"7/ Lol 'R AN T\ |

For our case study, it is

worth highlighting that the

[ SOURCES I STAKEHODLERS [ HISTORY (VP-version, date, author, changes) | ROLE
* Persona Profile Document (PPD)  Persona | * Administrators e Billing system ‘VP-vi.O, 10-27-2013, John Deer Part-time graduate student
Definition Document (PDD) o Instructors

primary persona (“Linda

« Starbucks coffee shop » Mid-day (lunch work time)  Limited available time (~15 mins) » Cell phone (internet WiFi capable) »
Heavy human traffic » Rely on WiFi

* Security and privacy issues

Rose, the busy graduate

GOALS

SCENARIOS, TASKS

« Browse courses with fast response
« Enroll courses with ease

Scenarios (titles) [

student and  software

Tasks (titles)

* Browse courses

+Find a specific course
|+ Browse course

catalog

programmer”) uses the

« Register courses

CONCERNS

« The accessibility of internet (WiFi) connection

« The security and privacy of public internet (WiFi) connection

« The availability of the system when needed

« The presentation of website interface, layout, and information on cell phone

|+Find a specific course
*Browse course registration catalog
+Add course to schedule

course registration system

* Check student schedule |
* Review student records

* Select speclflc course

to browse and register for
courses in two different

REQUIREMENTS

Functional

« The system shall enable student to query for information based upon course name, course code, instructor name, and department » The system shall display
available courses to the student based on student's query criteria  The system shall accept student’s course registrations ¢ The system shall validate based upon
course availability ¢ The system shall enable student to change course registration information e The system shall enable student to view her class schedule ¢ The

| system shall display message if student’s request does not succeed « The system shall display message if student’s course registration does not succeed

« The system shall be easy-to-use with

Non-Functional

design and self.

« The system shall display page layout and
information appropriately for smaller screen size devices such as mobile phones and tablets » The system shall ensure that all confidential information be
encrypted to maintain security ¢ The system shall conform to the security standards for mobile devices as published in “NIST Special Publication 800-124 Revision
1 o The system shall be capable of providing frequent auto-save backup and recovery information in the event of lost network connection s The system shall be
with different operating systems (Windows, Mac) and platforms (PC, Mac, mobile phone, tablets)

situations: 1) In a public
place like Starbucks coffee
shop in mid-day lunch
hour during work using

MODEDLING

3

Modeling T I pts Repi
« Ontology tool (Protégé-Frames)

 UML Class Diagram
 UML Instance Diagram

« Persona Class Diagram, Persona Instance Diagram,
GoalScenarioTask Instance Diagram, Requil
« Persona Ontology, i

Models, Ontologies

her cell phone with WiFi

k Class Diagram,

internet connection. 2) At

Class diagram,

ioTask Ontology, Requirements Ontology

Instance Diagram

Fig. 3. Viewpoint Document (VPD) sample for primary persona Linda Rose

strong and reliable internet connection. Therefore, we can identify two viewpoints,

home during evening time
using her desktop with
VPs (or Viewpoint Block,

VPB'®): VP1 as <Linda Rose, Part-Time Graduate Student, Starbucks (mid-work day)> and VP2 as <Linda Rose,
Part-Time Graduate Student, Home (evening)>. These two viewpoints have slightly different goals, concerns,
scenarios, goals, and requirements, as the environments are different: a public place where internet connection
depends on the availability and reliability of a strong WiFi connection, security and privacy issues for payment
using a credit card, and the constraint of time (during lunch work time); and a comfortable home environment where
internet connection is available and reliable, less concern for security and privacy, and there is no constraint on time.
Thus, the development team can identify crucial requirements that may not have been included in the original
requirement sets, e.g. non-functional requirements (Fig. 3) pertaining to mobile phone information presentation
layout, security, and privacy. The VPD for viewpoint VP1 < Linda Rose, Part-Time Graduate Student, Starbucks

(mid-work day)> is shown in Fig. 3.

2.2. Step 2: Consult Existing Ontologies

In constructing the ontologies for our OntoPersonaURM model on the case study, there appear to be no existing
ontologies that are similar and are readily available for reusable purpose. However, we have consulted some existing

ontologies'!16:17

class, Goal class, and Requirement class.

on the approaches in specifying some of the class properties, for examples, Persona class, Interest



Wee Wee Sim and Peggy Brouse / Procedia Computer Science 44 (2015) 275 — 284

2.3. Step 3: Define Classes and Properties

Classes || ™ Siots | E Forms | # Instances | A Queries | Ontoviz | XMLTab | </ Jess | PAL Constraints | Persona Ontologv: The
@ persona-de. Persona  (instance of :STANDARD-CLASS) Pel‘SOna OntOlOgy provides a
kil = comprehensive set of general
by e ' concepts pertaining to person
Cognitve poe—— = characteristics and environment.
Physical : - . .
concern : The concepts in the Persona
Ekcar0 Name Cardinalty Type Other Facets
|E"V"°;m=’" - age single Symbol allowed-values={Young:18-24,Young:25-34 Middle: 35-44 Middle: 45-54 Older:55-64 El OntOIOgY nOt Only Capture the
Intere: M. engagesin multiple Instance of 1 : 1
InterestCategory = ge:dzl : smz.j ls:.hol ' allowed-values=(Male Female } baSIC CharaCterl stics and
VO Knowledge = hasAbil multiple Instance of Abil inverse-slot=isAbil
Gt ||n e e rasotoman Niinwsonmi® preferences of a person such as
sl 8 hasHighestEducation  required muliple  Instance of Education inverse-siot=isHighestEducationOf 1
Web . = hasinterest mutiple Instance of Interest inverse-sloteisinterestot age, gender, name, educatl()n,
v LanguageProficienc 1 11141 -
gu:emng Y = hasKnowledge mutiple Instance of Knowledge inverse-siot=isknowledgeOf Occup athl’l, ablhtles, expertlse’
pesined = hasLanguageProficiency multiple Instance of L o " '~'-‘ L t .
S = hasOccupation mutiple: Instance of Occupation iverss.slo-isOcoupetionof nterests and SO forth’ but also the
ol . hasPersonaName single Instance of Name inverse-slot=isPersonaNameOf 1 . h . t th . t
- required single  String T 10nsni1 NnvIr
Ocoupation = marital_status single Symbol allowed-values={Single Married Divorced Separated \Widowed) A clat 0. Ships 1o € env Onme.n
B = ersonn e sinle Sting in which the person engages in.
e . persona_type single Symbol allowed-values={Primary Secondary Served,Customer } . ..
Usabitret m pecscries mitie Istance of Role iverse-st-persontedy For a detailed description of the
= social_level single Symbol allowed-values={Upper-Class Middle-Class Working-Class}
0z concepts, we suggest that readers
Fig. 4. Persona Ontology (Persona concept) — Protégé-Frames refer to our earlier paper19~ Due to

space limitation, we have omitted
showing the UML Class Diagram, which can be found in our earlier paper!®. A representative of the specification of
the Persona concept in Protégé-Frames is shown in Fig. 4. In Protégé-Frames tool, classes are specified in the “Class
Browser” (left pane of the tool) and properties are specified in the “Class Editor” (right pane of the tool).
There are three areas to highlight in regards to the Persona Ontology:

(1) The Interest class (Fig. 5) is associated with the InterestCategory e
. . . . . Interest | . 1_|InterestCategory | 1
class via aggregation, i.e. an InterestCategory class is an aggregation REmE oo haSSSbugCategnrg;
o e . . S ——— isSubCategory!
of an Interest class. As it is common that there are various interest ‘E‘aﬂg‘fﬂf‘?‘;;ggr{’ *
names that may belong to a same interest category, we chose to place a Fig. 5. Interest Class

one-to-many relationship between InterestCategory and Interest

classes, i.e. an interest category hasInterestPart one or more interests. For example, an interest category
“Entertainment” haslnterestPart “Listening music”, “Playing guitar”. For Simplicity, we chose to specify that an
interest is part of one and only one interest category. For example, an interest “Listening music” isInterestPartOf
“Entertainment”. The cardinalities between Interest and InterestCategory classes (and vice versa) is a design choice
and thus may be modified by the ontology designer.

(2) Some entities in the Persona class are represented as separate distinct classes (via associations) rather than
attributes as these entities have internal structures or complex data types that may be useful for the ontology
designer to apply validation or formatting rules to be recognized by the ontology reasoner. For examples, a person’s
name is represented as a Name class, since it contains internal structures such as first name, last name,
middlename, title, and nickname; a person’s education is represented as an Education class as it captures internal
structures such as degree year, degree title, highest education_level. If these entities (person’s name, education,
occupation) were represented as attributes of String type in the Persona class, then the internal structure of these
complex data values and their semantics could be lost and thus could not be made available in the ontology for
further processing, filtering, sorting, etc. The decision to represent an entity as a class or an attribute is a design
choice to be decided by the ontology designer, based on the application domain in hand.

(3) The Environment class is represented in the Persona Ontology rather than the Behavioral-GST Ontology, since
the Environment class is directly related with several classes in the Persona Ontology, namely, Persona, Role, and
Concern classes. Constraint check and query execution on the classes in the Persona Ontology can thus be executed
easily with an appropriate plugin tool such as PAL*.

Behavioral-GST Ontology: The Behavioral-GST Ontology captures the behavior of the system-to-be. The main
concepts are the viewpoint, goal, scenario, and task concepts. The Behavioral-GST Ontology is related to the
Persona Ontology via the Viewpoint class (Fig. 6) of the Behavioral-GST Ontology and the Requirements Ontology
via the Goal and Scenario classes (Fig. 7) of the Behavioral-GST Ontology. For a detailed description of the
properties of the classes, we suggest that readers refer to our earlier paper'®. Due to space limitation, we have
omitted showing the UML Class Diagram, which can be found in our earlier paper'®. A representative of the

279



280

Wee Wee Sim and Peggy Brouse / Procedia Computer Science 44 (2015) 275 — 284

specification of the Goal concept in Protégé-Frames is shown in Fig. 8.

|m5taknnn\der01/

|
s [ |

Viewpoint
o "
—_— [ [S—
& 7] author lo—t
DY b QT —
date_created R ]
DN o -
=
,,,,,, B e
JAEE nasemironmens ~ =~
Pefsdna ontplogy | T
. 1 5
Environment

Fig. 6. Viewpoint Class

Persona
Ontology

k] /

v nasEorocel

- & O ¥ ;i IsEpisoceOf

& J> |wns¢.,‘me Scenario
conflictsWith crtical_tevel

setnesil 7 - N EZ
seameel <) Goal I'5 S 1

—— D 2 5 escipion

L4 name ‘supports/ 2 author

T I ] M- I o dato created
oreemesrrom |+l ool Category D 3 roleae_number

Gate_ created ;

|| priority preconditions
woosrmeor | oy | memmens |1 Soseomilions
ey | e - -
% L

hasstakeholder
isStakeholder0t

System
Goal

Stakeholder | ...

hasTask
Excel

isTasior|
Scer

io
| N— | I

Fig. 7. Goal and Scenario Classes

[ © Classes | ™ Sots | = Forms | ® instances | A Queries | Ontoviz | XMLTab | Prompt | / Jess | PAL Constraints |

CLASS BROWSER N CLASS EDITOR

For Project: @ GST-defaut-new

~

% X ~

For Class: @ Goal (instance of :STANDARD-CLASS)

Class Hierarchy 7% Name Documentation
THING |Gga] ]
P O :SYSTEM.CLASS
® Action Role
¥ O actor [ concrete ® -
® Device
© Organization Template Slots
© Person Name ‘ Cardinality Type
© System 1 AND-refinesFrom  multiple Instance of Goal inverse-siot=AND-refinesinto
® Constraint ©1 AND-refinesinto  muttiple Instance of Goal inverse-slot=AND-refinesFrom
® Goal = conflictsWith muttiple Instance of Goal
v O Goallype . date_created single String
® BusinessGoal = description single String
@ PorsonGoal = goal_category  single Symbol allowed-values=(FucntionalNon-Functional}
© SystemGoal = hasConstraint muttiple Instance of Constraint  inverse-slot=isConstraintOf
© Obstacle = hasGoalType muttiple Instance of GoalType  inverse-slot=isGoalTypeOf
® Postrequisite = hasObstacle muttiple Instance of Obstacle  inverse-slot=isObstacleOf
® Prerequisite = hasStakeholder  multiple Instance of Stakeholder  inverse-slot=isStakeholderOf
¥ © Scenario - required single  String
© ExceptionScenario . isGoalOf muttiple Instance of Viewpoint  inverse-slot=hasGoal
© NormalScenario = name required single  String
© Stakeholder 1 OR-refinesFrom  multiple Instance of Goal inverse-siot=OR-refinesinto
® Task ©1 OR-refinesinto multiple Instance of Goal inverse-slot=OR-refinesFrom
® Tool = ownership multiple String
® Viewpoint W priority single Float minimum=0.0, maximum=1.0
- status single Symbol allowed-values=(Met Not-Met Partially-Met Withdrawn, Unknc
l:B o | |m supportedsy mutiple Instance of Goal inverse-slot=supports
= supports mutiple Instance of Goal inverse-slot=supportedBy

Fig. 8. Behavioral-GST Ontology (Goal concept) — Protégé-Frames

Requirements Ontology: The
Requirements Ontology contains
general  concepts  that  are
considered applicable to most
domains for the representation of
the requirements and their
properties. The central class is the
Requirement class which defines
typical yet comprehensive set of
requirement properties.
Supporting classes include
RequirementCategory class and

SRS (Systems or Software
Requirements Specification)
class. The attributes of the

Requirement class are by no
means exhaustive. For a detailed
description of the classes, we
suggest that readers refer to our
earlier paper'®. Due to space
limitation, we have omitted
showing the UML Class Diagram,

which can be found in our earlier paper'®. A representative of the specification of the Requirement concept in

Protégé-Frames is

shown in Fig. 9.

CLASS BROWSER CLASS EDITOR
For Project: @ requirements-defaul For Class: ® Requirement ~ (istance of :STANDARD-CLASS)
Class Hierarchy AN % X v | yame Documentation Constraints
THNG lRequremem ‘
> O SYSTEM-CLASS
© Requirement Role
¥ © RequirementCategory [cencma. ,‘
® Functional
@ NonFunclional Template Slots 2
® System Requiremerts Specification (SRS) e Cardnally Tve s
= conflictswith muttiple. Instance of Requirement
= constrainedBy multiple Instance of Requirement inverse-siot=constraints
= constraints mutiple Instance of Requirement inverse-siot=constrainedBy
= date_created single String
= ete_last_changed  mutiple String
= derivesFrom mutiple Instance of Requirement inverse-siot=derivesinto
- derivesinto muttiple. Instance of Requirement inverse-siot=erivesFrom
= description single String
-id required single String
. isPartOf muttiple Instance of (SRS) lot=hasPart
= isReqOt mutiple Instance of RequirementCategory inverse-siot=hasReq
= owner single String
= priorty single Float minimum=0.0, maimum=1 0
. refinesFrom muttiple. Instance of Requirement inverse-siot=refinesinto
= refinesinto muttiple. Instance of Requirement inverse-siot=refinesFrom
. release_number muttiple. String
= req_type mutiple Symbol allowed.
= requiredBy mutiple Instance of Requirement inverse-siot=requires
- requires mutiple Instance of Reqirement inverse-siot=requiredBy
- risk_level single Float
= source mutiple String
v| B8 ||mm statement single String
= - stetus single Symbol allowed. posed Pending,
STEL L) = vaiidation single Symbol allowed-values=(Validated Not-Vaiidated Pending}
‘ THNO) ‘ = verification single Symbol allowed-values=(Verified Not-Verified Pending}

Fig. 9. Requirements Ontology (Requirement concept) — Protégé-Frames



Wee Wee Sim and Peggy Brouse / Procedia Computer Science 44 (2015) 275 — 284

2.4. Step 4: Create Instances

After the classes are defined and specified in Protégé-Frames, instances of the classes are created in Protégé-
Frames tool. A representative name for an instance of a class is chosen and displayed in the “Instance Browser”. The
instance name may be selected from any one or combination of the values of the properties (or slots in Protégé-
Frames). Values for the properties are filled in in the “Instance Editor” of the Protégé-Frames tool. One or more
instances may be created for a class. In our case study, for example, we created an instance for the Persona class and
selected the value of the attribute persona_title (“Linda Rose, The Busy Graduate Student & Software Programmer”)
as the representative instance name displayed in the “Instance Browser”. An alternative for the instance name could
be the id attribute. Due to space limitation, we show in Fig. 10 the instance created for the Persona concept of the
Persona Ontology in Protégé-Frames. The instances created in Protégé-Frames for the Behavioral-GST Ontology
and the Requirements Ontology can be found in '’

INSTANCE BROWSER INSTANCE EDITOR
t: @ persona-de... Class Persona rinstance: 4 Linda Rose, The Busy Graduate Student & Software Programmer  (instance of Persona, internal name is persona_Class10002) N o X
pan Hinraeire rsona title £ VW % @ X v |ig il
THNG | [® Linda Rose, The Busy Graduate Student &9 [ pers100 |
> O SYSTEM.CLASS
v O Abiity rzona. itk e ersonifies (R PR AR
Cogritive (2 Linda Rose, The Busy Graduate Student & Software Programmer Primary v | Pant-Time Student
Physical (2 " -
Concern (5 asPersonaliame (Name & & ¢ & e e eve
Education
e @ Linda Christine Rose {Female v| |Young2s-... »| |single - ll.mlecussv
Environment (2 == 3L S !
s HashighestEducation (Educai © ¥ ¢ & hasoccupation (Occupat £ ¥ & & jesin (Environment LR R
InterestCategory (4 - |
# Bachelor's # Software Programmer @ PublicEnvironmentt2.0 Starbucks
v Knowledge
Computer (4
Domain DAY
Web (2) hasknowlodge {Know 2403
¥ O Lengusgeproficiency @ Computer Knowledge : Software (office applications) : Excellent
Listoning ) @ Computer Knowledge : Programming (Java, C++, Visusl Basic) : Good 5w €4

Spesking @ Computer Knowledge : Hardware (general) : Good

Wrting (2 @ Computer Knowledge : Operating systems (Windows XP/Vistaf?, Linux, Unix) : Good
# Domain Knowledge : UML : Good

4 Domain Knowledge : Ortology : Good

| @ Wil the public WiFi Connection be secured?
| @ Wil the system be available for service when needed?

Name (1) | @ Will be public WIFi connection be available when needed?

Occupation |
& Domein Knowledge : Requiremerts engineering : Good | @ Will the website interface, layout, and information be properly presented on cell

® Web Knowledge : Internet : Good
@ Wb Knowledge : Social media : Good

Persona (1 | @ Wil the online payment functuon properly?

Role (2)
UsabiltyPref (2

Kl I

asLanguageProfic & ¥ 4° &  hasavity (abiiity) 2> ¥ € & nasinterest (interest AR
@ Writing : English : Good @ Cogntive : Memory : Average | # Listening music

d L >1 | @ wriing : Spanish : Fair @ Cognitive : Problem-Solving : High | # Playing gutar

[ | 7| B8 | @ speaking: Engish: Excellent @ Physical : Motor : : Average | ® Surfing the Web
@ Speaking : Spanish: Good @ Physical : Other : Color recognition : Lows |

_ | # Listening : English : Excellent

Persona 4 Listening : Spanish : Good

Fig. 10. Persona Ontology — Persona instance in Protégé-Frames

2.5. Step 5: Combine Ontologies

The final step in our ontology development process is to combine related ontologies to | Broieet Code Window Colaboral
help to better understand the relationships of classes between ontologies and make |2 arcnve Gurrent Version
necessary corrections to refine the ontologies. If there exist one or more relationships | = ¥ 2 7o veser
between classes of two ontologies, then the ontologies are combined by including the
related ontology into the current ontology via the “Manage Included Projects” selection of
the “Project” menu in the Protégé-Frames tool (Fig. 11a, 11b). The included classes and
properties are displayed in Protégé-Frames as pale icons to distinguish from the classes in R,
the current ontology. An included ontology may also be merged with the current ontology Fig. 11a Project menu
to form a single ontology via the “Merge Included Projects” and all classes and properties
of the merged ontologies are then displayed as solid icons.

In our case study, for the Persona Ontology, since it contains classes that have
established relationships with classes of the Behavioral-GST Ontology, we decided to | g~
include the Behavioral-GST Ontology in the Persona Ontology. In a similar fashion, as the || | ® esviorsiost
Behavioral-GST Ontology is related with the Persona Ontology and the Requirements |
Ontology, we included the Persona Ontology and Requirements Ontology in the  Fig. 11b. Manage Included
Behavioral-GST Ontology. For the Requirements Ontology, we included the Behavioral- Projects
GST Ontology in the Requirements Ontology. Fig. 12, 13, and 14 are snapshots of the
combined ontologies for Persona Ontology, Behavioral-GST Ontology, and Requirements Ontology respectively.

Manage Included Projects...

Merge Included Projects

Configure.

Metrics.

[’ﬂ Manage Included Projects

Project Tree

281



282 Wee Wee Sim and Peggy Brouse / Procedia Computer Science 44 (2015) 275 — 284
CLASS BROWSER : CLASS EDITOR CLASS BROWSER CLASS EDITOR CLASS BROWSER CLASS EDITOR
For Project: @ Persona-GST For Class: @ Persona (instanceo  For Project: @ GST-Persona-Requirement-temp | For Class: ® Goal (instance For Project: @ Requirements-GST For Class: @ Requirement (i
s 5 AN e X v Class Hierarchy 2 W % X v | jame
ClassHie 7 ¥ & X ¥ | yame Class Hierarchy ) Name e
THNG “THING Goal Requirement
Persona SYSTEM-CLASS > SYSTEM-CLASS
P O :SYSTEM-CLASS L e Action o
> © Avity Role P Ay Rols > O actr Concrete ®
® Acton Concrete ® Constraint =S —
S Concrete ® > O Actor Gosl
> Actor Template Slots
e Concern Template Siots » GoalType jName =
Template Slots ® Constraint e ca Obstacle conflictswith multiple
Constraint o
® Education Heo Card Exhicetion ©1 AND-refinesFrom  multiple Prarecainle = constrainedBy muliple
ucati : )
- age single Environment & 5 . = constraints muttiple
® Environment - ’ " ni I ® Goal e AADenesiis  amuliple rei e date_created single
engagesin muttiple conflictswith mutiple |y © RequirementCategory -
Goal = gender single  |»  Interest dete_crested single ® Funcional oo les Sy .
X ionl ;
» GoalType . hasALN % InterestCategory % % [ dorivessirom multiple.
asAbility multiple description single ® NonFunctional = derivesinto mutiple
" Kr l "
© Interest . hasConcern mutiple : L“:W 90‘9: o = goal_category single (> © Scenario description single
© InterestCategory m hasHighestEducation singe -anguageProficiency = hasConstraint muliple Slekcholer: » id required
» O Knowledge = hasinterest muliple Name = hasGoalType mutiple @ System Requirements Specification (SRS) = isPartOf multiple
" ® Obstacle < Task = isReqOf Hipl
» O LanguageProficiency = hasKnowledge muttiple Secepatir M hasObstacle muttiple ol - |sReq or mullple
. g - isRequiremerts mutiple
© Name m hasLanguageProficiency multiple S hasStakoholder, ;mutipl Viewpoint s iy
Obstacle 2 4 id require
hasOccupation multiple: ® Postrequisite p 2 W operationalizedBy  muttiple
@ Occupation ) = isGoalOf mutiple
B hasPersonaName single ® Prerequisite _ - owner single
® Persona i o ety ekl riort single
id requirec Requirement o Todke priorty ol
N -
Postrequisite W isPersonaOf requirec > RequirementCategory K3 OR-refinesFrom muliple fefinssiicn) .
STorocste = marital_status single Role > [ Iemest likkipls
® i | Ingl 1 OR-refinesinto multiple release_number multiple
B persona_title single » O Scenario = ownership multiple ™ req_type multiple
> Scenario N persona_type single ©® Stakeholder priority single < L] | requiredBy mutiple
Stakeholder m personafies matiple System Requirements Specification (SRS) stk single [] 88 ||m reuires mutiple
ek = social_level single ®Task - mutiple o = risk_Jevel single
Tool ® Tool source mutiple
LB F
e upports muiple. [ THNG - statement single
© UsabiltyPref UsabilityPref
" " status single
® Viewpoint
Viewpoint = vaiidation single

Fig. 14. Combined Requirements Ontology
and Behavioral-GST Ontology — Protégé-
Frames

Fig. 12. Combined Persona Ontology and
Behavioral-GST Ontology — Protégé-Frames

Fig. 13. Combined Behavioral-GST Ontology,
Persona Ontology, and Requirements Ontology —
Protégé-Frames

3. Ontology Constraints Checking

In order to check for integrity constraints in the developed ontologies of the OntoPersonaURM model, we
employed the capability of Protégé-Frames’ PAL Constraint tab’* plugin to help us enforce semantic properties of
our ontologies specified in Protégé-Frames. In this paper, for the case study, we show selected samples of PAL
constraint statements created for the Persona Ontology and the Behavioral-GST Ontology.

Persona Ontology - PAL Constraint 1: Each name must have at most one persona.

(defrange ?name :FRAME Name)
(forall ?name (=> (and (own-slot-not-null first name ?name)
(own-slot-not-null last_ name ?name)
(own-slot-not-null middle name ?name))
(own-slot-not-null isPersonaNameOf ?name)))

Explanation: This constraint concerns all instances of
the Name class. For all names, there must have at
most one persona for each associated name. Note that
this constraint is also equivalent to setting the
cardinality of the isPersonaNameOf relationship
property of the Name class to at least one. For
illustration example, Fig. 15a shows that the isPersonaNameOf relationship property of a name instance (NAM1) is
empty, and Fig. 15b shows that a red circle warning is displayed next to the constraint title in the “Choose
Constraint” pane of the PAL Constraints tab and the violating instance (NAM]1) is displayed in the “Query
Responses” pane of the PAL Constraints tab.

| © Chsses | ™ Sots | = Forms | # mstances | A Queries | Ontoviz | XuLTab | ./ Jess | PAL Constraints | PAL Queries

For Project: @ persona-palc... | For Class: ® Name

"0 Clsses | ™ Sots | = Forms | ® Instances | A Queries | Ontoviz | XWLTab | / Jess | PAL Constrants | P
Y7 he o X

Choose Constraints Query Responses
Evalate ?| Status |

AN K ®X <~ ol

NAM1

For Instance: 4 NAM1 (instance of Name, internal name is persona_Class2) o
onstrain

# Each name must have at most one persona |

Class Hierarchy A | & NAMI

THNG & Namt |
> O SYSTEM.CLASS * naw2
> © Avity
® Concem (5
® Education (2
® Environment (2)
® nterest (4)
® interestCategory (39)
© Knowledge
© LanguageProficiency
® Name (2) T
® Occupation (1)

First Name Last Hame Middie Name

funce ) [ose W oo

IsPersonaliameOf

v

Warn about indicated constraints || Evaluate indicated constraints ]

v

Fig. 15a. Constraint Violation — Name instance (NAM1) Fig. 15b. Constraint Violation — PAL Constraints Tab



Wee Wee Sim and Peggy Brouse / Procedia Computer Science 44 (2015) 275 — 284

283

Persona Ontology - PAL Constraint 2: Each name can only have one persona (i.e. no two personas have the same

name).

(defrange ?namel :FRAME Name)
(defrange ?name2 :FRAME Name)
(forall ?namel
(forall ?name2
(=> (and (own-slot-not-null isPersonaNameOf ?name]l)
(own-slot-not-null isPersonaNameOf ?name?2))
(=> (and (= (first_name ?namel)(first name ?name?2))
(= (last_name ?namel)(last name ?name?2))
(= (middle_name ?namel)(middle name ?name2)))

(= (isPersonaNameOf ?namel )(isPersonaNameOf ?name2))))))

Explanation: This constraint concerns all
instances of the Name class. For all names,
if two name instances have the same names
(first name, last name, middle name), then
they must have the same persona.

Persona Ontology - PAL Constraint 3: An interest can only belong to one interest category.

(defrange ?interest] :FRAME Interest)

(defrange ?interest2 :FRAME Interest)

(forall ?interest1

(forall ?interest2
(=> (and (own-slot-not-null isInterestPartOf ?interest1)
(own-slot-not-null isInterestPartOf ?interest2))
(=> (= (name ?interest1)(name ?interest2))

(= (isInterestPartOf ?interest1)(isInterestPartOf ?interest2))))))

Explanation: This constraint concerns all
instances of the Interest class. For all
interests, if two interests instances have
the same interests names, then they must
have the same isInterestPartOf
relationship property (with the
InterestCategory class).

Behavioral-GST Ontology - PAL _Constraint 4: No two viewpoints can have the same persona name,
environment, and role (i.e. a viewpoint is uniquely identified by persona, environment, and role).

(defrange ?vpnamel :FRAME Viewpoint)

(defrange ?vpname2 :FRAME Viewpoint)

(forall ?vpnamel

(forall ?vpname2
(=> (and (own-slot-not-null hasPersona ?vpnamel)
(own-slot-not-null hasEnvironment ?vpnamel)
(own-slot-not-null hasRole ?vpnamel)
(own-slot-not-null hasPersona ?vpname2)
(own-slot-not-null hasEnvironment ?vpname2)
(own-slot-not-null hasRole ?vpname?))
(=> (/= (id ?vpnamel)(id ?vpname?2))
(or (/= (hasPersona ?vpnamel )(hasPersona ?vpname?2))

(/= (hasEnvironment ?vpnamel)(hasEnvironment ?vpname?2))

(/= (hasRole ?vpnamel)(hasRole ?vpname2)))))))

Explanation: this constraint concerns
all instances of the Viewpoint class.
For all viewpoints, if two viewpoint
ids are not the same, then at least one
of the relationship properties of these

two viewpoints, i.e. hasPersona,
hasEnvironment, hasRole, must be
different.

4. Conclusion and Future Works

This paper contributes towards demonstrating the application of persona concept and ontologies developed in the
OntoPersonaURM model to support and enhance the requirements engineering activities, via a course registration
web application case study. A five-step iterative ontology development process has been developed which aimed to
help guide requirement engineers, ontology engineers, and developers in the development of ontologies of the
OntoPersonaURM model on the case study. The case study demonstrated (1) how the concept of persona, in the
context of the concepts of viewpoint, goal, scenario, task, requirement, environment can be integrated in a unified



284 Wee Wee Sim and Peggy Brouse / Procedia Computer Science 44 (2015) 275 — 284

environment to help engineers and developers gain a better understanding of target users’ needs and behaviors and
identify missing requirements early (section 2.1) in the requirements engineering process, and (2) how the
relationships of the concepts can be explicitly represented ontologically to provide a shared common understanding
of target users’ needs and behaviors. Our future work includes one or more of the following: (1) To continue
developing and improving the OntoPersonaURM model with respect to the course registration system case study as
well as applying to other application domains. (2) To further conducting constraints checking on the ontologies via
the PAL?* plugin toolset. 3) To check for requirements correctness, completeness, and consistency by utilizing
inference mechanism capability of ontology via JESS plugin.

References

[1] Defense Acquisitions: Significant Challenges Ahead in Developing and Demonstrating Future Combat System's Network and Software.
(2008, March 7). http://www.thefreelibrary.com/Defense Acquisitions: Significant Challenges Ahead in Developing and...-a0178781051

[2] Verner, J, Cox, K, Bleistein, S, Cerpa, N. (2005). Requirements engineering and software project success: An industrial survey in Australia
and the US. Australian Journal of Information Systems, 13(1), 225-238.
[3] Cooper, A. (1999). The Inmates are Running the Asylum. SAMS.
[4] Gruber, T. (1993). A Translation Approach to Portable Ontology Specifications. Knowledge Acquisition, 5(2), 199-220.
[5] Alspaugh, T., Antén, A. (2008). Scenario Support for Effective Requirements. Information and Software Technology, 50(3), 198-220.
[6] Liu, L., Yu, E. (2004). Designing Information Systems in Social Context: A Goal and Scenario Modeling Approach. Information Systems,
29(2), 187-203.

[7] Sutcliffe, A.G., Maiden, N.A.M., Minocha, S., Manuel, D. (1998). Supporting Scenario-Based Requirements Engineering. Software
Engineering, IEEE Transactions on, 24(12), 1072-1088.

[8] Antdn, A. (1996). Goal-Based Requirements Analysis. International Conference on Requirements Engineering (ICRE’96), Colorado Springs,
Colorado, USA, April 1996, pp. 136-144.

[9] Dardenne, A., Lamsweerde, A. Fickas, S. (1993). Goal-Directed Requirements Acquisition. Science of Computer Programming, 20, 3-50.

[10] Rolland, C., Souveyet, C., Achour, B. (1998). Guiding Goal Modeling Using Scenarios. IEEE Transactions on Software Engineering,
Special Issue on Scenario Management, 24(12), 1055-1071.

[11] Shibaoka, M., Kaiya, H., Saeki, M. (2007). GOORE: Goal-Oriented and Ontology Driven Requirements Elicitation Method. ER Workshops,
225-237.

[12] Kaiya, H., Horai, H., Saeki, M. (2002). AGORA: Attributed Goal-Oriented Requirements Analysis Method. Paper presented at the meeting
of the International Conference on Requirements Engineering, Essen, Germany.

[13] Pruitt, J., Grudin, J. (2003). Personas: Practice and Theory. Conference on Designing for User Experiences, San Francisco, CA. 1-15.

[14] Aoyama, M. (2007). Persona-Scenario-Goal Methodology for User-Centered Requirements Engineering. Proc. IEEE RE’07, pp. 185-194.

[15] Castro, J., Acua, S.T., Juristo, N. (2008). Integrating the Personas Technique into the Requirements Analysis Activity. Computer Science,
Mexican International Conference on, pp. 104-112.

[16] Katifori, A., Vassilakis, C., Daradimos, 1., Lepouras, G., Ioannidis, Y., Dix, A., Poggi, P., Catarci, T. (2008). Personal Ontology Creation
and Visualization for a Personal Interaction Management System. Workshop on The Disappearing Desktop: Personal Information
Management 2008. CHI2008, Florence, Sth & 6th April 2008.

[17] Golemati, M., Katifori, A., Vassilakis, C., Lepouras, G., Halatsis, C. (2007). Creating an Ontology for the User Profile: Method and
Applications. In Proceedings of the First International Conference on Research Challenges in Information Science (RCIS), April 23-26,
2007, Ouarzazate, Morocco.

[18] Sim, W. W, Brouse, S. P. (2014). Empowering Requirements Engineering Activities with Personas. In: 12th Annual Conference on Systems
Engineering Research (CSER 2014), Procedia Computer Science, 28, 237-246. http://dx.doi.org/10.1016/j.procs.2014.03.030

[19] Sim, W. W., Brouse, S. P. (2014). Towards an Ontology-Based Persona-Driven Requirements and Knowledge Engineering. In:
Conference on Complex Adaptive Systems (2014), Procedia Computer Science, 36, 314-321. http://dx.doi.org/10.1016/j.procs.2014.09.099

[20] Noy, N., McGuinness, D. (2000). Ontology Development 101: A Guide to Creating Your First Ontology. Stanford University, 2000.

[21] Protégé Ontology Library. http://protegewiki.stanford.edu/wiki/Protege_Ontology Library

[22] DAML Ontology Library. http://www.daml.org/ontologies/

[23] Protégé-Frames User’s Guide. http://protege.stanford.edu/overview/protege-frames.html

[24] Protégé Axiom Language (PAL). http://protege.stanford.edu/plugins/paltabs/pal-quickguide/



