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Abstract 

Renewable energies are increasingly integrated in electric distribution networks and will cause severe overvoltage issues. Smart
grid technologies make it possible to use coordinated control to mitigate the overvoltage issues and the optimal power flow (OPF)
method is proven to be efficient in the applications such as curtailment management and reactive power control. Nonconvex 
nature of the OPF makes it difficult to solve and convex relaxation is a promising method to solve the OPF very efficiently. This 
paper investigates the geometry of the power flows and the convex-relaxed power flows when high penetration level of 
renewables is present in the distribution networks. The geometry study helps understand the fundamental nature of the OPF and 
its convex-relaxed problem, such as the second-order cone programming (SOCP) problem. A case study based on a three-node 
system is used to illustrate the geometry profile of the feasible sub-injection (injection of nodes excluding the root/substation 
node) region. 
© 2016 The Authors. Published by Elsevier Ltd. 
Peer-review under responsibility of the organizing committee of CPESE 2016. 
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1. Introduction 

The integration of more and more renewable energies, such as wind power (WP) and solar power (SP), into 
distribution networks becomes a big challenge to distribution system operations. The impacts on the distribution 
networks due to high penetration of these distributed generators (DG) include overvoltage and overloading issues. 
Extensive research has been carried out to deal with these issues. In [1], a local voltage control method based on 
voltage sensitivity to reactive power injection was proposed. The development of information communication 
technologies for smart grid enables the voltage control methods based on centralized coordination. In [2], two 
coordinated control methods, i.e. the rule based method and the optimal power flow (OPF) based method, were 
proposed. The OPF based method has better economic efficiency because it tries to minimize the active power 
curtailment of the DGs and the power losses of the network. The OPF problems are difficult to solve to the global 
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optimum due to the non-convexity. In order to solve the OPF problem for optimal curtailment of DGs, linear 
approximations were made based on sensitivity analysis in [3].  

More accurate methods are needed for solving the OPF problems formed for applications of energy management 
in distribution networks, such as the congestion management due to DGs and/or flexible demands including electric 
vehicles (EV) and heat pumps (HP). The convex relaxation method for solving the AC OPF was first presented in [4] 
as a second-order cone programming (SOCP) for radial networks and in [5] as a semidefinite programming (SDP) 
for meshed networks. In [6], a sufficient condition which has requirements on the upper limit of the active and 
reactive power injections was proposed for the convex relaxation of the OPF problem to be exact. Another sufficient 
condition proposed in [7] ensures the exactness of the convex relaxation and the convexity of the feasible sub-
injection (the injection of the nodes excluding the root node of the network) region when the active reverse power 
flow is not heavy. However, neither of these sufficient conditions is valid for the applications discussed in [1]–[3] 
where heavy active reverse power flows are present. 

In this paper, the OPF for applications with heavy active reverse power flows will be investigated. The main 
contributions of this paper include: (a) Visualize the geometry boundary of the feasible sub-injection of the OPF 
through a case study based on a three-node system; (b) Visualize the geometry boundary of the feasible sub-
injection region of the convex-relaxed OPF; (c) Show that the sub-injection region is nonconvex when the reverse 
power flow is heavy.  

The paper is organized as follows. Section 2 introduces the formulation of the OPF problem and its convex 
relaxation. Section 3 presents the methodology for visualizing the geometry boundary of the sub-injection for both 
the original OPF and the convex-relaxed one. A case study based on a three-node system is described in Section 4, 
followed by conclusions. 

2. Optimal power flow and concept of sub-injection region 

2.1. Optimal power flow based on branch flow model 

OPF problems can be employed for applications such as minimizing the curtailment of the renewables or 
equivalently maximizing the sub-injection. An OPF based on the branch flow mode [8] is written as (1)-(7). Notice 
that the distribution network operates in tree configuration. The substation is deemed as the root node, denoted as 0, 
of the tree. An edge, denoted as ( , )i j  or i j , of the tree is a segment of the feeder and the direction is pointing to 
the root, implying that i  is a child node of j .

OPF: 
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where ic is the coefficient, is is the sub-injection at node i , including the net active and reactive power injected at 
the node, S is the branch flow, v is the square of the voltage magnitude, i is the square of the current magnitude, 
z is the impedance, 0s is the injection of the root node, i.e. the injection from the bulk grid, is the set of edges, 

is the set of nodes excluding the root node.  
The objective function (1) is to maximize the sub-injection (let ic =1), i.e. minimize the curtailment of 

renewables. Constraints (2)-(5) are the load flow equations. Constraint (6) gives the limits of the net sub-injections. 
Constraint (7) presents the voltage limits. 

Its convex relaxation as an SOCP is shown below [8]. The nonlinear equation (5) is modified to be a conic 
inequality (8), which makes the OPF an SOCP. 

SOCP: 

 (1)  

s.t.

 (2)-(4), (6)-(7), and 

2

, ( , )ij

ij
i

S
i ji

v . (8) 

2.2.  Concept of sub-injection 

The concept of the feasible sub-injection region is introduced in [7]. As shown in [9], [10], the feasible 
set defined below, known as the feasible injection region, is normally non-convex. However, if the focus is put on 
the feasible injection region of p  (active power injection of plus nodes , Re( )p s ), the feasible set can be 
proven to be convex under the condition proposed in [7]. This partial injection region can be named as the feasible 
sub-injection region, . Set is an orthogonal projection of to the subspace of vector p .

{
0, :p p (2)-(7)}, 

{ :p (2)-(7)}, 

where 
0 0Re( )p s and Re( )p s .

3. Methodology of visualizing the feasible sub-injection region 

For linear objective functions, such as (1), in the OPF problems, it is important to know the boundary of the 
feasible set because the optimal solutions are on the boundary. Numerical methods are employed in this paper to 
investigate the boundary. The focus will be given to the boundary of the sub-injection, since the objective function is 
only depending on the sub-injection.  

In order to determine the boundary of the sub-injection, samples are taken from the boxing area defined by (6). 
The net injection s  is considered to be positive, since this paper focuses on the heavy reverse power flow situation. 
The sample sub-injection s  is employed to calculate the voltage profile through power flow analysis tools, such as 
Newton-Raphson method. Node 0 is chosen to be the slack node and its voltage is 1 p.u. After determining the 
voltage profile, the voltage at the end of the feeder is compared with the upper limit defined by(7). If the voltage 
fulfils (7), the sample sub-injection is in the feasible region; otherwise, it is outside of the feasible region. The 
boundary is determined after processing enough samples. 

For the SOCP, the boundary is determined through changing the coefficient 0ic  and solving the corresponding 
SOCP, since the optimal solution must be located on the boundary. Due to the convex nature of the boundary for the 
SCOP, it is possible to determine the boundary by taking large number of samples of the coefficient ic and solve the 
corresponding SOCPs. 

4. Case study  

The case study is carried out with a three-node system, which can ease the view of the geometry boundary of the 
sub-injection. Although it is a special case of the general distribution networks, the results of the three-node system 
can illustrate the geometry of the power flows of general distribution networks.  

The three-node system is shown in Fig. 1. Node 0 is the root node, or the substation, and 0s is the injection from 
the bulk grid. The subscripts of ijz , iji , ijS are shorted as iz , ii , iS without causing confusion since the parent node 
is always unique for a given child node in a tree graph. The positive direction of the current and power flow is 
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pointing towards the root node. The impedance is chosen to be 1 2[ , ]z z z =[1.76+0.52j, 4+2.4j] ohm. The per-unit 
(p.u.) system is employed in the calculation. The base voltage is 11 kV and the base power is 11 MVA. Voltage of 
node 0 is 1 p.u. and the upper limit of the voltage is 1.05 p.u. 

Fig. 1 A three-node system. Node 0 is the root node, or the substation, and 0s is the injection from the bulk grid. 

4.1. Case study results  

Matlab is employed to perform the power flow analysis to determine the geometry boundary of the sub-injection 
for the original OPF. Matlab/CVX is employed to solve the SOCP and determine the boundary of the sub-injection 
of the convex-relaxed power flow. 

4.1.1. Case One 
Case One is the base case. The reactive power is chosen to be 1 2[ , ]q q q =[0.1j, 0.1j]. The active power 1p is 

varying between zero and the upper limit with small steps. The corresponding active power 2p is determined such 
that the voltage at node 2, which is the critical node for overvoltage issues, is the upper limit 1.05 p.u. The boundary 
can be drawn through many such pairs 1 2[ , ]p p , shown as the solid line in Fig. 2. The feasible sub-injection is 
formed by joining the solid line and the two axes (left axis of 1p and the bottom axis of 2p ).  

By connecting the two vertexes with a straight line, shown as the dashed line in Fig. 2, it can be seen that the 
feasible sub-injection region is concave in this case. The dashed line, combining the axis of 1p and 2p , forms the 
convex hull of the sub-injection region. In order to determine the convex-relaxed boundary, the method described in 
Section 3 is employed. It is worthwhile to mention that the current magnitude is limited between zero and the 
maximum current magnitude in the process of determining the boundary for the original OPF. Otherwise, the 
convex-relaxed boundary would be too large and become less useful. The final convex-relaxed boundary is shown 
as the dotted line in Fig. 2. It can be seen that the convex-relaxed boundary of the sub-injection for the SOCP is not 
the same as the convex hull.  

Fig. 2. Results of Case One. 
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4.1.2. Case Two 
In Case Two, the reactive power injection is the same as the base case, but the resistance is modified to be half of 

the base case such that the R/X ratio is decreased. This means the new impedance (2) 0.5 jz r x , where 
jz r x is the impedance of the base case. 

The results are shown in Fig. 3. It can be seen that the feasible sub-injection region becomes larger because of the 
reduced resistance. On the other hand, the sub-injection becomes more concave compared to the base case. 

4.1.3. Case Three 
In Case Three, the reactive power injection is the same as the base case. The impedance is modified to be 

(3) 0.5 j2z r x , such that the R/X ratio is further decreased. The results are plotted in Fig. 4. It can be seen that the 
size of the feasible sub-injection region doesn’t change much compared to Case Two, because the active power 
injection isn’t sensitive to the change of the reactance as long as the R/X ratio is not too small, such as the R/X ratio 
for transmission lines. It can also be seen that the feasible sub-injection region becomes even more concave. 

Fig. 3 Results of Case Two. 
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Fig. 4 Results of Case Three. 

4.1.4. Case Four 

In Case Four, the impedance is the same as Case Two, i.e. (4) 0.5 jz r x . But the reactive power injection 
becomes negative, i.e. (4)q q , implying that the customers at node 1 and 2 are consuming reactive power. The 
boundaries are calculated and shown in Fig. 5. It can be seen that the maximum allowed 1p and 2p , inside of the 
feasible sub-injection region, is improved compared to Case Two. This is because the reactive consumption helps 
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reduce the node voltages and therefore ease the overvoltage issue caused by the renewables. On the other hand, the 
concaveness of the sub-injection region is similar to Case Two.  

4.1.5. Case Five 
In Case Five, the impedance is the same as Case Three, i.e. (5) 0.5 j2z r x . The reactive power is the same as 

Case Four, i.e. (5)q q . The results are shown in Fig. 6. Similar conclusions can be made through the comparison 
of Case Five and Case Three, and the comparison of Case Four and Case Two. The size of the feasible sub-injection 
region is improved; however, the concaveness is similar, compared to Case Three. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

p1 (p.u.)

0

0.05

0.1

0.15

0.2

0.25
p2

 (
p.

u.
)

actual boundary
convex hull
relaxation boundary

Fig. 5. Results of Case Four. 

Fig. 6. Results of Case Five. 

4.2. Discussion  

Through the above case studies, some general statements can be made regarding the geometry of the power flows. 
First of all, the feasible sub-injection region is not convex when there are heavy reverse power flows. Second of all, 
when R/X ratio is high, the boundary of the sub-injection is very close to its convex hull. For the special case of the 
three-node system, the convex hull consists of linear combinations of extreme sub-injections. The extreme sub-
injections are achieved by letting all but one active power injection be zero. At last, the convex-relaxed boundary is 
always larger than the convex hull. Therefore, caution must be made when employing the SOCP to solve the 
original OPF. 
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5. Conclusion 

This paper has investigated the geometry of the power flows and the convex-relaxed power flows of distribution 
networks through numerical methods. It is observed from the case studies that the sub-injection of the original OPF 
is not convex. The boundary of the sub-injection is close to its convex hull but has a big gap to the convex-relaxed 
boundary. In the future, improvements will be made before the SOCP method can be employed to solve the OPF 
problems when heavy reverse power flows are present in the distribution networks. 
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