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Abstract

The purpose of this paper is to introduce new parametric families of complex Hadamard matrices in
two different ways. First, we prove that every real Hadamard matrix of order N ≥ 4 admits an affine
orbit. This settles a recent open problem of Tadej and Życzkowski [W. Tadej, K. Życzkowski, A concise
guide to complex Hadamard matrices, Open Syst. Inf. Dyn. 13 (2006) 133–177], who asked whether a real
Hadamard matrix can be isolated among complex ones. In particular, we apply our construction to the only
(up to equivalence) real Hadamard matrix of order 12 and show that the arising affine family is different from
all previously known examples listed in [W. Tadej, K. Życzkowski, A concise guide to complex Hadamard
matrices, Open Syst. Inf. Dyn. 13 (2006) 133–177]. Second, we recall a well-known construction related to
real conference matrices, and show how to introduce an affine parameter in the arising complex Hadamard
matrices. This leads to new parametric families of orders 10 and 14. An interesting feature of both of our
constructions is that the arising families cannot be obtained via Diţă’s general method [P. Diţă, Some results
on the parametrization of complex Hadamard matrices, J. Phys. A 37 (20) (2004) 5355–5374]. Our results
extend the recent catalogue of complex Hadamard matrices [W. Tadej, K. Życzkowski, A concise guide to
complex Hadamard matrices, Open Syst. Inf. Dyn. 13 (2006) 133–177], and may lead to direct applications
in quantum-information theory.
c© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

In the past few decades complex Hadamard matrices have been extensively studied since
it turned out that they are related to many interesting combinatorial and important physical
problems. However, despite many years of research only moderate results are known, e.g. the
problem of finding all complex Hadamard matrices even of small orders is still open. The first
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significant result is due to Haagerup [5], who managed to classify all complex Hadamard matrices
up to order 5 in 1997. Only partial results are known about matrices of order 6. Besides some
affine families listed in [11], all self-adjoint (Hermitian) complex Hadamard matrices of order 6
were classified by Beauchamp and Nicoara [1], and a symmetric non-affine family was found by
Matolcsi and Szöllősi very recently [7].

First, there was an interest in particular examples of (permutation) inequivalent complex
Hadamard matrices of low order. However, due to a recent discovery of Diţă [3] the situation
has changed dramatically. His powerful method leads to the construction of parametric families
of Hadamard matrices in composite dimensions. This method was subsequently rediscovered
by Matolcsi, Réffy and Szöllősi [8] who used a spectral set construction from [6], and then
used another spectral set construction to obtain new families of complex Hadamard matrices. An
entirely different approach for parametrization was described in the monument paper of Tadej
and Życzkowski [11] who introduced the method of “linear variation of phases”, obtaining affine
Hadamard families. They successfully obtained all maximal affine Hadamard families stemming
from the Fourier matrices FN for N ≤ 16. Thus, one is interested in the inequivalent classes of
parametric families of Hadamard matrices nowadays.

The aim of this paper is to describe two general constructions which lead to new parametric
families of complex Hadamard matrices in certain dimensions; these matrices arise due to a
natural construction from real Hadamard and real conference matrices. We prove that they are
non-Diţă-type, which subsequently leads to new results in the sense that they were not included
in the recent catalogue. The main point of this paper is to show that these matrices always admit
an affine orbit, thus we can introduce new parametric families of complex Hadamard matrices of
order 10, 12 and 14. With the aid of our results we can supplement the incomplete catalogue of
complex Hadamard matrices of small orders in [11].

2. Preliminaries

First let us introduce some formal definitions and recall previous results from [3,8,11].

Definition 2.1. An Hadamard matrix H is a square complex matrix of order N with |Hi, j | = 1
for i, j = 1, 2, . . . , N , satisfying H H∗

= N I , where I is the identity matrix and H∗ denotes
the Hermitian transpose of H .

Definition 2.2. A complex (real) Hadamard matrix H of order N is dephased (normalized) if
H1,i = Hi,1 = 1 for every i = 1, 2, . . . , N . In a given dephased matrix H , the lower right
(N − 1) × (N − 1) submatrix is called the core of H .

Definition 2.3. Two Hadamard matrices, H1 and H2, are equivalent if there exist diagonal
unitary matrices D1 and D2 and permutation matrices P1 and P2 such that H1 = D1 P1 H2 P2 D2.

It is clear that every complex Hadamard matrix is equivalent to a dephased one.
Next we recall Diţă’s general method of constructing complex Hadamard matrices (his

subsequent results on families with some free parameters follow easily from this formula as
described very well in his paper [3]).

Construction 2.1. Let M be a complex Hadamard matrix of order k, and N1, N2, . . . , Nk are
complex Hadamard matrices of order n. Then
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K :=


m11 N1 · · m1k Nk

· · · ·

· · · ·

mk1 N1 · · mkk Nk

 (1)

is a complex Hadamard matrix of order nk.

Definition 2.4. A complex Hadamard matrix K is called Diţă-type if it is equivalent to a matrix
arising from formula (1).

Definition 2.5. A parametric family of complex Hadamard matrices is called affine if the phases
of the entries are sums of a constant and a linear function of the parameters. A family is maximal
affine, if it is not properly contained in any other affine family.

Remark 2.2. When we say that H admits an affine orbit, we mean that there exists an affine
family stemming from a dephased form of H , consisting purely of dephased complex Hadamard
matrices. Since the first row and column entries are fixed at some chosen values, the members of
the family cannot be obtained, one from another, by multiplication by unitary diagonal matrices.

Several affine families are listed in [11]. For an example of an affine family in this paper the
reader might want to jump ahead to formulas (7)–(9).

In general, deciding whether two Hadamard matrices are equivalent or not is a nontrivial
task. However, recently Matolcsi et al. introduced a powerful method, which easily establishes
if an Hadamard matrix is a Diţă-type one. In fact, it turned out that it is worth investigating
the corresponding log-Hadamard matrix (A square matrix L is log-Hadamard if the entrywise
exponential matrix, [e2π iL i, j ], L i, j ∈ [0, 1), is Hadamard.). The following definition and
Lemma 2.3 summarize the corresponding results from [8].

Definition 2.6. Let L be an N × N real matrix. For an index set I = {i1, i2, . . . , in} ⊂ {1, 2,

. . . , N } two rows (or columns) s and q are called I -equivalent, in notation s ∼I q, if the positive
fractional part of the entrywise differences, si − qi mod 1, are the same for every i ∈ I . Two
rows (or columns) s and q are called (d)-n-equivalent if there exist n-element disjoint sets of
indices I1, . . . , Id such that s ∼I j q for all j = 1, . . . , d.

Lemma 2.3. Permutation of rows and columns, or adding a constant to a row or a column does
not change (d)-n-equivalence.

By formula (1), the structure of an N × N Diţă-type matrix L (where N = nk) implies for the
corresponding log-Hadamard matrix log L that there exists a partition of indices into n-element
sets I1, . . . , Ik and k-tuples of rows R j = {r j

1, . . . , r j
k } ( j = 1, . . . , n) such that any two rows in

a fixed k-tuple are equivalent with respect to any of the Im’s. Naturally, the same holds for the
transpose of a Diţă-type matrix, with the role of rows and columns interchanged.

The following observation is a trivial consequence of their result:

Lemma 2.4. Let H be a dephased complex Hadamard matrix of order N, and suppose that
Hi, j 6= 1 for every 1 < i, j ≤ N, i.e. there is no 1 in the core of H. Then H is not of Diţă-type.

Proof. We argue by contradiction. Assume that H is Diţă-type. Using the notation of the previous
paragraph we can arrange (after relabelling the index sets if necessary) that {1} ⊆ I1 and (after
permuting the columns of H if necessary) that {1, 2} ⊆ I1. There must be a row r of log H which
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is I1-equivalent to the first row. However, as all entries in the first row and first column are 0’s,
this would imply that r contains a 0 in its second coordinate, a contradiction. �

3. Constructing complex Hadamard matrices from real ones

In this section we investigate the structure of real Hadamard matrices. First we prove that they
cannot be obtained using Diţă’s method in certain dimensions. Next we introduce a somewhat
natural construction for obtaining new, parametrized complex Hadamard matrices from real
ones. In fact, it was asked in [11] whether all real Hadamard matrices of order N ≥ 4 can
be parametrized and, by Theorem 3.5, we answer this question in the positive. Before doing so
we first recall a folklore

Lemma 3.1. Let p ≥ 3 be an arbitrary odd number. Suppose that the first four rows of a real
{−1, 1} matrix of order 4p have the following form (note that every real Hadamard matrix is
easily seen to be equivalent to one having exactly the same first three rows as the matrix below):

(s)
(t)
(u)

(v)


1p 1p 1p 1p

1p 1p (−1)p (−1)p

1p (−1)p 1p (−1)p

1p (−1)p (−1)p 1p

 , (2)

where 1p means p one’s in a row. Then this matrix cannot be extended with a further {1, −1}

row being orthogonal to all previous ones.

Proof. Suppose, to the contrary, that (2) can be extended by a further row w. Let us denote
by a, b, c and d the number of 1’s in w in the first-, second-, third- and fourth quarter, i.e.
w =

(
1a, (−1)p−a, 1b, (−1)p−b, 1c, (−1)p−c, 1d , (−1)p−d

)
, 0 ≤ a, b, c, d ≤ p. Since w is

orthogonal to all of the rows s, t, u and v, we get the following four equations by straightforward
computation

a − (p − a) + b − (p − b) + c − (p − c) + d − (p − d) = 0 (3)

a − (p − a) + b − (p − b) − c + (p − c) − d + (p − d) = 0 (4)

a − (p − a) − b + (p − b) + c − (p − c) − d + (p − d) = 0 (5)

a − (p − a) − b + (p − b) − c + (p − c) + d − (p − d) = 0. (6)

By simple algebra one can check that the solution to equations (3)–(6) is a = b = c = d =
p
2

and, since p is odd by assumption, this is a contradiction. �

Now we are ready to state our first

Theorem 3.2. Let p be an odd prime and suppose that H4p is a real Hadamard matrix of order
4p. Then H4p is not of Diţă-type.

Proof. We will use the notation of the paragraph following Lemma 2.3 with the exception that
instead of taking log H we apply the notion of I -equivalence to the rows of H itself in a natural
way.

Assume, to the contrary, that H4p is of Diţă-type. In this case the only possible values for n
are 2, 4, p and 2p (with k being 2p, p, 4 and 2 respectively). Suppose that H4p is dephased, and
let us again denote the rows of (2) by s, t, u and v respectively. There are four cases to consider
according to the choices of n and k:
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Case 1. Assume n = 2p, k = 2. In this case there should be a partition of indices to
2p-element sets I1, I2 such that in H4p 2p pairs of rows are equivalent with respect to I1 and I2.
After permutation of rows and columns it is trivial to achieve that the first three rows of H4p are
s, t and u, respectively, and s and t form a pair. (First we permute the rows so that the companion
of row 1 becomes the second row and then we permute the columns so that the position of 1’s
and −1’s is exactly as in (2).) Then I1 = {1, 2, . . . , 2p} and I2 = {2p+1, 2p+2, . . . , 4p}. Now
consider u. If it formed a pair, then its companion’s first 2p entries would have to be exactly the
same as those in u. However, by orthogonality, the last 2p entries in u and its companion must
be opposite. Thus the companion of u must be exactly v, which is a contradiction since there is
no such a row in H4p due to Lemma 3.1 (by our assumptions, of course, H has at least 12 rows).

Case 2. Now assume n = p, k = 4. In this case the partitions of indices are p-element sets
I1, I2, I3 and I4, such that in H4p there exist p 4-tuples of rows, such that any two rows in a
fixed 4-tuple are equivalent with respect to them. We can suppose that I1 = {1, 2, . . . , p}, I2
= {p + 1, p + 2, . . . , 2p}, I3 = {2p + 1, 2p + 2, . . . , 3p} and I4 = {3p + 1, 3p + 2, . . . , 4p}.
Now observe, since s contains only 1’s, any row equivalent to it with respect to I1, I2, I3 and I4
must be one of t, u or v. However, we need three rows being equivalent to s, thus we need all
four rows of (2), which is a contradiction again.

Case 3. Now assume n = 4, k = p. In this case the partitions of indices are 4-element sets
I1, I2, . . . , Ip such that in H4p there exist 4 disjoint p-tuples of rows such that any two rows in a
fixed p-tuple are equivalent with respect to them. Again, we would like to find a companion to s.
Observe that since every row (different from s) contains 2p 1’s and 2p (−1)’s it is impossible to
split their entries into odd (p) number of disjoint sets containing exactly the same values. Hence
we cannot choose a companion to s, equivalent to it with respect to the index sets.

Case 4. Finally assume that n = 2, k = 2p. Again (by permuting the columns of H4p if
necessary), we can suppose that I1 = {1, 2}, I2 = {3, 4}. Since H4p is a real Hadamard matrix,
we can suppose that (after permuting some rows if necessary) its first three columns are exactly
the same as the transpose of the first three row of (2). Now observe that the first 2p and the
second 2p rows have to belong to a common tuple. To preserve equivalence with respect to I2,
one can see that the fourth column of H4p has to be exactly the transpose of the fourth row of the
matrix in (2). And this is a contradiction again. �

Corollary 3.3. H12 is not of Diţă-type.

Now we turn to the parametrization of real Hadamard matrices. It is well known that H4
admits a 1-parameter orbit. In [11] a 5-parameter, while in [8] a 4-parameter maximal affine orbit
was constructed for H8 (these orbits are essentially different, but they intersect each other at H8).
In general it is not clear how to introduce affine parameters to an arbitrary complex Hadamard
matrix. The authors of [11] admit that the “linear variation of phases” method becomes a serious
combinatorial problem already for N = 12, so it cannot effectively be used for higher order
matrices. Now we introduce a general method for parametrization which always works for real
matrices and, in some cases, for complex matrices too. The main observation is contained in the
following

Lemma 3.4. Let H be an arbitrary dephased complex Hadamard matrix of order N ≥ 4.
Suppose that H has a pair of columns, say u and v, with the following property: ui = vi or
ui + vi = 0 holds for every i = 1, 2, . . . , N. Then H admits an affine orbit.

Proof. Consider H satisfying the conditions of Lemma 3.4, and take every pair of coordinates
(ui , vi ) for which ui + vi = 0 holds. Multiply these elements by eit , i.e. modify (ui , vi ) to
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(ui eit , vi eit ). Now we proceed to show that the arising parametric matrix H (1)(t) is Hadamard.
To do this let us consider a pair of rows in H (1)(t). It is easy to see that after taking the inner
product of these rows, the parameter (if it existed in at least one of them) vanishes, therefore
H (1)(t) is Hadamard independently of the exact value of t . Finally, if H (1)(t) is not dephased
(i.e. we have chosen the first column of H to be either u or v), one should multiply some rows
by e−it to get a dephased matrix, and it is clear that t will not vanish whenever N ≥ 4. �

With the aid of Lemma 3.4 we can prove the main theorem of this section. We prove that there
is no isolated matrix among real Hadamard matrices except for orders 1 and 2 (the cases N = 4
and N = 8 were mentioned in the paragraph preceding Lemma 3.4).

Theorem 3.5. Let H be a real Hadamard matrix of order N ≥ 12. Then H admits an
( N

2 + 1
)
-

parameter affine orbit.

Proof. Let N ≥ 12, and let us take an arbitrary dephased real Hadamard matrix of order N , say
H . It is clear that when considering any two columns of H , there will be exactly N

2 rows, where
the entries of these columns differ, and another N

2 rows, where the entries of these columns are
the same, so the conditions of Lemma 3.4 hold. Now we apply the construction described in the
proof of Lemma 3.4.

Clearly, we can further assume, that H has the following “canonical” form: H2,1 = H2,2
= · · · = H2,N/2 = 1 so H2,N/2+1 = H2,N/2+2 = · · · = H2,N = −1 and H3,3 = H3,4 = 1
and H3,2 = H3,N−1 = H3,N = −1. Consider the following set containing pairs of indices:
T = {(2i −1, 2i) : i = 1, 2, . . . , N

2 }. Every element of T represents a pair of columns in H . Now
the construction is the following: for every i = 1, 2, . . . , N

2 take the respective element of T , and
consider the rows of the corresponding pair of columns. If the entries in a row are different then
multiply them by eixi (again: there are exactly N

2 such rows). This yields an N
2 -parameter family,

stemming from H . However, it is not dephased, so one has to multiply some rows by e−ix1 to get
a dephased Hadamard matrix. Since H3,3 = H3,4 we can see that these entries, after parametriza-
tion and dephasing the matrix, depend only on x1, so x1, x2, . . . , xN/2 are independent parame-
ters in the dephased matrix. For convenience, we can substitute x1 by −x1. Now taking a look at
the first two rows of H (which are still independent, after parametrization, of any of the xi ’s) one
can multiply the last (differing) N

2 entries of these by e−ixN/2+1 , the arising matrix thus being still
Hadamard. Again, it is not dephased, but observe that after dephasing the matrix (multiplying
the last N

2 columns by eixN/2+1 ), since H3,N−1 = H3,N these entries after parametrization depend
only on x1 and on xN/2+1. Note that this last operation left unchanged both the parametrized
H3,3 and H3,4 which still depend only on x1. This completes the proof. �

Remark 3.6. The same construction also works when we replace “rows” by “columns” and vice
versa.

Remark 3.7. It is easy to see (by taking the inner product of u and v) that Lemma 3.4 can only be
applied in even orders. However, the conditions of this lemma hold for many non-real Hadamard
matrices, too. For example, the Fourier matrix FN in even orders has two columns in which
the entries are either the same or of opposite sign. Other examples are the matrices S8, S12 and
S16 in [8] which also satisfy the conditions of Lemma 3.4. Thus, this lemma can be used for
parametrizing a wide class of complex Hadamard matrices.

Now we give an example. The following matrix is the only real Hadamard matrix of order 12
(up to equivalence). We note that it can be constructed from a skew-symmetric conference matrix
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(see Section 4).

H12 =



1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 −1 −1 −1 −1 −1 −1
1 −1 1 1 −1 −1 1 1 −1 1 −1 −1
1 −1 1 −1 1 −1 −1 1 1 −1 1 −1
1 −1 −1 1 −1 1 −1 1 1 −1 −1 1
1 1 1 −1 −1 −1 1 −1 1 −1 −1 1
1 1 −1 −1 1 −1 −1 1 −1 1 −1 1
1 1 −1 1 −1 −1 −1 −1 1 1 1 −1
1 −1 1 −1 −1 1 −1 −1 −1 1 1 1
1 1 −1 −1 −1 1 1 1 −1 −1 1 −1
1 −1 −1 −1 1 1 1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 1 −1 −1 −1 1 1



. (7)

By Theorem 3.5 we can easily construct a 7-parameter family stemming from H12. The
notation here is exactly the same as that in [11,8]. We denote by ◦ the Hadamard product of two
matrices (i.e. [H1 ◦ H2]i, j = [H1]i, j · [H2]i, j ), while the symbol EXP stands for the entrywise
exponential operation (i.e. [EXPH ]i, j = exp(Hi, j )).

H (7)
12 (a, b, c, d, e, f, g) = H12 ◦ EXP

(
i · R

H (7)
12

(a, b, c, d, e, f, g)
)

(8)

where

R
H (7)

12
(a, b, c, d, e, f, g)

=



• • • • • • • • • • • •

• • • • • • • • • • • •

• • a a a a a + g a + g a + e + g a + e + g a + g a + g

• • a + b a + b a + c a + c a + d + g a + d + g a + e + g a + e + g a + f + g a + f + g

• • a + b a + b a + c a + c a + d + g a + d + g a + e + g a + e + g a + f + g a + f + g

• • b b • • d + g d + g e + g e + g f + g f + g

• • • • c c d + g d + g e + g e + g f + g f + g

• • b b • • g g g g f + g f + g

• • a + b a + b a + c a + c a + g a + g a + e + g a + e + g a + g a + g

• • • • c c g g g g f + g f + g

• • a a a a a + d + g a + d + g a + g a + g a + g a + g

• • a + b a + b a + c a + c a + d + g a + d + g a + g a + g a + g a + g



.

(9)

According to Corollary 3.3, H12 is not of Diţă-type, so it admits only non-Diţă-type matrices
in a small neighbourhood of it, since the set of Diţă-type matrices is closed as shown in the
following

Proposition 3.8. The set of all N × N Diţă-type matrices is closed in the space of all N × N
matrices.

Proof. Let Tl → T be a convergent sequence of Diţă-type matrices. We need to show that T is
also Diţă-type.
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By definition there exist permutation matrices P(l)
1 , P(l)

2 and diagonal unitary matrices

D(l)
1 , D(l)

2 such that P(l)
1 D(l)

1 Tl D(l)
2 P(l)

2 = Kl , where Kl arises in formula (1). Each Kl can
be characterized by the values of k, m11, . . . , mkk , and the matrices N1, . . . , Nk in (1) (each
depending on l, of course, which we left out to simplify the notation). Since the number of
possible permutation matrices and the number of possible choices for k is finite, and all other
parameters such as D(l)

1 , D(l)
2 , mi j , Ni take values in compact spaces, there exists a subsequence

lh along which the permutation matrices and the value of k are constant and all other parameters
converge, i.e. D(lh)

1 → D1, D(lh)
2 → D2, mlh

i j → ri j , N lh
i → Qi . By taking the limit it is clear

that T is equivalent to the Diţă-type matrix K characterized by the values k, r11, . . . , rkk , and the
matrices Q1, . . . , Qk in (1). �

As a consequence, we have

Corollary 3.9. The family H (7)
12 (a, b, c, d, e, f, g) contains only non-Diţă-type matrices in a

small neighbourhood around H12.

Now we show that H12 is inequivalent to any of the order 12 matrices appearing in [11,8].
First we recall a result from Haagerup, who introduced the following set ΛH = {hi j hklhk j hil :

(i, j, k, l) ∈ {1, . . . , N }
×4

} for H of order N . In [5] he claims that this set is invariant under the
equivalence preserving operations, see Definition 2.3.

Lemma 3.10. Two complex Hadamard matrices, say H1 and H2, are inequivalent, if they have
different ΛH -sets.

Now we are ready to prove1 the following

Lemma 3.11. H12 is inequivalent to any of the 12 × 12 matrices listed in [11,8].

Proof. The proof relies on the Haagerup condition. First observe that ΛH12 = {1, −1}. Now
consider the seven families of order 12 in [11] stemming from F12, and notice that e2π i/8

∈ ΛF12

for any matrix of any of these families stemming from F12, independently of the values of the
parameters. Secondly, observe that e2π i/3

∈ ΛS12 for any matrix stemming from S12 in [8], again
independently of the actual values of the parameters. These observations can be easily verified
by taking h11 = h1 j = hi1 = 1, and taking an appropriate element hi j for every matrix in the
families stemming from F12 and from S12. Since H12 and matrices from these families possess
different Λ-sets, they cannot be equivalent. There are several other families of order 12 listed
in [11], however those families were obtained by Diţă’s construction (and thus consist purely
of Diţă-type matrices), therefore they cannot contain a non-Diţă-type matrix such as H12. This
completes the proof. �

Proposition 3.12. The family H (7)
12 (a, b, c, d, e, f, g) is locally inequivalent to the families

presented in [11,8]. �

Proof. This clearly follows from the fact, that the invariant set Λ changes continuously. If we
change some entries in H12 from ±1 to eit with 0 < |t | < ε or 0 < |t − π | < ε (for ε being
small) then neither e2π i/8 nor e2π i/3 will arise in the Λ-set of the modified matrix. Finally, by
Proposition 3.8, it is clear that we can choose ε small enough to obtain non-Diţă-type matrices
only. �

1 The author is grateful to M. Matolcsi who suggested the proof of Lemma 3.11.
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Finally, we consider dimension 16. The situation here is more complicated since there are 5
inequivalent real Hadamard matrices of that order. Therefore, with the aid of our construction
(described in the proof of Theorem 3.5) we can obtain 5, locally inequivalent, parametrized
families of complex Hadamard matrices. The fact that parametric families stemming from
inequivalent Hadamard matrices are locally inequivalent can be proved by the same argument
as in Proposition 3.8.

It is known that the orbit of the Fourier matrix F16 passes through one of the 5 inequivalent
real Hadamard matrices, namely the matrix F2 ⊗ F2 ⊗ F2 ⊗ F2. Unfortunately we do not know
how the other 4 real Hadamard matrices are related to F16 or to the recently constructed “spectral
set” matrix S16 in [8]. However, as we mentioned before, H8 can be parametrized in at least two
essentially different ways, and that is exactly why we conjecture that the parametrized complex
Hadamard matrices constructed by Theorem 3.5 are, at least locally, new.

4. Constructing complex Hadamard matrices from conference matrices

The aim of this section is to describe another general method for constructing parametrized
complex Hadamard matrices. First we recall a well-known and widely studied class of matrices:

Definition 4.1. A conference matrix of order N is a square N × N matrix C , satisfying
CCT

= CTC = (N − 1)I , Ci i = 0, i = 1, 2, . . . , N and Ci j ∈ {−1, 1} for i 6= j .

It is easy to see that for a given conference matrix C either multiplying any row or
column by −1, or permuting the rows and columns of C with the same permutation matrix
P (i.e. considering PC PT instead of C) we get a conference matrix again. Conference matrices
related in these two ways are called equivalent. It is a well-known fact that real conference
matrices lead to an obvious construction of Hadamard matrices. Whenever C is a real symmetric
conference matrix, then ‘H = I + iC’ is a complex Hadamard matrix. (For skew-symmetric
conference matrices the formula ‘H = I − C’ is used.) In the rest of this paper we will refer to
the ‘H = I + iC’ construction as the conference matrix construction. It is clear that equivalent
conference matrices give rise to equivalent Hadamard matrices. For a survey on conference
matrices see e.g. [2] or [4]. There are infinitely many orders for which a symmetric conference
matrix exists, however it is still an open problem to give a full characterization of them; it is well
known that the order of a conference matrix must be even, moreover the order of a symmetric
conference matrix must be N = 4k + 2 for some nonnegative integer k. However this condition
is not sufficient due to a negative result proved by Raghavarao in [9]. In particular, if N is the
order of a symmetric conference matrix, then N − 1 must be the sum of two squares. For a more
or less up-to-date list of the orders of the known conference matrices see the last sections of [10].

Next we prove a general method for introducing an affine parameter to every complex
Hadamard matrix arising from the conference matrix construction. We denote this class of
complex Hadamard matrices by D, as D6 in [11] is exactly a matrix arising from a symmetric
conference matrix of order 6. The following statements are analogous to Theorems 3.2 and 3.5.

Theorem 4.1. Complex Hadamard matrices arising from the conference matrix construction are
not of Diţă-type.

Proof. After dephasing H = I + iC , the core of the resulting matrix will contain −1’s in the
main diagonal and ±i’s otherwise, therefore the statement follows from Lemma 2.4. �
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Theorem 4.2. Every complex Hadamard matrix DN arising from the conference matrix
construction admits an affine orbit, i.e. there exists an affine family of complex Hadamard
matrices of at least one parameter which contains DN .

Proof. The proof is completely elementary, but requires many cases to consider. Let DN be any
matrix arising from the conference matrix construction, of order N . Further, we can arrange that
it be both symmetric and dephased (of course, after parametrization, DN can be transformed
back to the original form I + iC , and this transformation clearly does not affect the presence
of parameters). In [3,11] D(1)

6 (t) appeared, as a parametric family of order 6, so we restrict
our attention to the next order N = 4k + 2, and we suppose that N ≥ 10. We show that one
parameter can be introduced independently of what a conference matrix C was used to construct
DN . Indeed, consider its second (u) and third (v) rows. Because DN is Hadamard, there are
exactly N−2

2 places where the entries of u and v differ only by a sign. Multiply these entries
by eit . Now consider the second and the third column of DN , and multiply those entries by e−it

which differ by a sign row-wise. We prove that the obtained 1-parameter matrix D(1)
N (t) will still

be Hadamard. We show that the modified rows of DN are orthogonal to each and every other row
of D(1)

N (t) independently of t . There are many trivial cases, but there are two which require some
extra considerations:

Case 1: We proceed to show that both u and v are orthogonal to any unchanged row. After
permuting the rows and the columns of D(1)

N (t), we can suppose that it has the following

(symmetric) form as beneath; it is also clear, that (by taking the Hermitian transpose of D(1)
N (t) if

it is necessary and, again, permuting) the imaginary elements in the upper left 3×3 submatrix are
i’s. Now consider any unchanged row, other than the first row of D(1)

N (t); its first three elements
could be either (1, i, i) or (1, −i, −i) respectively. We consider the first case, the other could be
treated exactly in the same way. Below in the figure one can see a sketch of D(1)

N (t).

(u)

(v)



1 1 1 1 1 . . . 1 1 . . . 1 1 . . . 1 1 . . . 1
1 −1 i i i . . . i ieit . . . ieit

−ieit . . . −ieit
−i . . . −i

1 i −1 i i . . . i −ieit . . . −ieit ieit . . . ieit
−i . . . −i

1 i i −1 a b c d e f g h
1 i i −1
.
.
.

.

.

.

.

.

.
. . .

1 i i −1
1 ie−it

−ie−it
−1

.

.

.

.

.

.

.

.

.
. . .

1 ie−it
−ie−it

−1
1 −ie−it ie−it

−1
.
.
.

.

.

.

.

.

.
. . .

1 −ie−it ie−it
−1

1 −i −i −1
.
.
.

.

.

.

.

.

.
. . .

1 −i −i −1


In the figure above the fourth row is marked as the one considered. In this row, starting with

(1, i, i), let a, c, e and g denote the number of i’s, while b, d, f and h denote the number of −i’s
in the corresponding “cells”. Note that by taking the inner product of the first three rows of DN ,
one can calculate how many vertical pairs (i, i), (i, −i), (−i, i) and (−i, −i) there can be in rows
(u, v). The following equations are necessary and sufficient conditions for the orthogonality of
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the first three rows of D(1)
N (t), independently of t .

b =
N − 2

4
− 2 − a (10)

d =
N − 2

4
− c (11)

f =
N − 2

4
− e (12)

h =
N − 2

4
− g. (13)

The number of i’s is N−2
2 in every row, so we have

a + c + e + g =
N − 2

2
− 2. (14)

Since D(1)
N (0) is Hadamard the fourth row is orthogonal to u, prior to modification, and we

get

2 + a − b + c − d − e + f − g + h = 0. (15)

Now put (10)–(13) into (15), yielding

a + c = e + g − 2. (16)

Similarly, the fourth row of D(1)
N (0) is orthogonal to v, prior to modification, and we get

2 + a − b − c + d + e − f − g + h = 0. (17)

Substituting (10)–(13) into (17) implies

a + e = c + g − 2. (18)

Finally, use (14) in (16) and (18) to obtain

a + c = a + e

(
=

N − 10
4

)
. (19)

This last equation implies that c = e, and from (11) and (12) d = f immediately follows.
Now it is only a matter of simple computation, to show that both u and v are orthogonal to the
chosen row of D(1)

N (t), independently of the value of t .

Case 2: We need to prove that a row with e−it -type parameters is orthogonal to both u
and v. Consider a row starting with (1, ie−it , −ie−it ) (the case (1, −ie−it , ie−it ) can be treated
similarly). The columns of D(1)

N (t) can be permuted so that it takes the form:

(u)

(v)

 1 1 1 1 1 . . . 1 1 1 1 1 1 1 1 1 1
1 −1 i ieit i . . . i ieit . . . ieit

−ieit . . . −ieit
−i . . . −i

1 i −1 −ieit i . . . i −ieit . . . −ieit ieit . . . ieit
−i . . . −i

1 ie−it
−ie−it

−1 a b c d e f g h


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where the fourth row is the one under consideration, and a, b, c, d, e, f, g and h have the same
meaning as in Case 1. Again, we express the orthogonality of the first three rows of D(1)

N (t) as:

b =
N − 2

4
− 1 − a (20)

d =
N − 2

4
− 1 − c (21)

f =
N − 2

4
− e (22)

h =
N − 2

4
− g. (23)

And the allowed number of i’s is

a + c + e + g =
N − 2

2
− 1. (24)

Again, as u and v are orthogonal to the considered parametrized row for t = 0, one gets

a − b + c − d − e + f − g + h = 0 (25)

and

2 + a − b − c + d + e − f − g + h = 0. (26)

By substituting (20)–(23) into (25) and (26) we get

a + c = e + g − 1 (27)

and

a + e = c + g − 1. (28)

Again, use (24) in (27) and (28) to obtain

a + c = a + e

(
=

N − 6
4

)
. (29)

This last equation implies c = e and from (21) and (22) d = f −1 follows. By applying these
identities it is only a matter of simple computation that the considered eit -type row is orthogonal
to u and v, independently of t .

Other cases: Considering any other pair of rows in D(1)
N (t) it is trivial to show that they are

orthogonal to each other. This completes the proof. �

The last theorem allows introduction of one parameter for every complex Hadamard matrix
arising from the conference matrix construction. However the following more complex method
seems to be working in general. In some sense this is a natural generalization of Theorem 3.5.

Construction 4.3. Take an arbitrary dephased, symmetric complex Hadamard matrix D arising
from the conference matrix construction, of order N. Use Theorem 4.2 method, involving a pair
of rows (and the corresponding columns), to introduce a free parameter in D. Then select another
pair of “suitable” rows (and the corresponding columns), if possible, in order to use Theorem 4.2
again to introduce another parameter. A “suitable” pair of rows must satisfy two conditions:
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(i) all its vertical pairs of entries are formed (taking into account already existing parameters,
if any) either by identical entries or entries being negative with respect to each other (except
for the inevitable (−1, ∗) and (∗, −1) pairs);

(ii) it has a vertical pair (i, −i) or (−i, i), not yet parametrized.

If a suitable pair of rows is found, introduce a new parameter in it (and in the corresponding
columns) in the manner analogous to that of Theorem 4.2, i.e. multiplying pairs of opposite
entries by e±it . Repeat this procedure as long as there exist suitable pairs of rows.

The two conditions above seem to be necessary in the following sense. Condition (i)
guarantees that the first row of D and the rows of a newly parametrized pair are all orthogonal
to each other, while condition (ii) is required to ensure that the newly introduced parameter does
not depend on earlier ones. It is not clear, however, that they are indeed sufficient, i.e. we do
not have a formal proof that the arising parametric matrices remain Hadamard. Also, if several
suitable pairs of rows exist at one stage then it is not clear which pair to favour over the others.
The maximal number of parameters that can be introduced in this way is N

2 − 1 (because the
first row definitely does not have a companion to make a pair with). We used this construction
to obtain the families stemming from D10 and D14 below, and the well-known family D(1)

6 (t)
of [11] also arises in this way. These examples suggest the following

Conjecture 4.4. Construction 4.3 leads to Hadamard matrices after each step, and for N ≥ 14
the maximum number, N

2 − 1, of parameters can be introduced.

Remark 4.5. The construction yields only N
2 − 2 parameters for D6 and D10, because condition

(ii) fails to hold due to the matrices being “too small”.

In the recent catalogue [11] only Diţă-type matrices were considered in dimensions N = 10
and 14. In view of Theorems 4.1 and 4.2 we can now present new parametric families of complex
Hadamard matrices of these orders. Our first example is the matrix D10 which is constructed from
the only (up to equivalence) conference matrix of order 10.

D10 =



1 1 1 1 1 1 1 1 1 1
1 −1 −i −i −i −i i i i i
1 −i −1 i i −i −i −i i i
1 −i i −1 −i i −i i −i i
1 −i i −i −1 i i −i i −i
1 −i −i i i −1 i i −i −i
1 i −i −i i i −1 −i −i i
1 i −i i −i i −i −1 i −i
1 i i −i i −i −i i −1 −i
1 i i i −i −i i −i −i −1


. (30)

We have already seen that D10 is a non-Diţă-type matrix and according to Theorem 4.2 it has
an affine orbit stemming from it. Moreover, by Construction 4.3 we could introduce 3 parameters
(we chose the “suitable” pairs of rows by an ad hoc method, as follows: (2, 10), (3, 9) and (5, 7)).

D(3)
10 (a, b, c) = D10 ◦ EXP

(
i · R

D(3)
10

(a, b, c)
)

(31)
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where

R
D(3)

10
(a, b, c) =



• • • • • • • • • •

• • a − b a −c • −c a a − b •

• −a + b • b −c • −c b • −a + b
• −a −b • • • • • −b −a
• c c • • • • • c c
• • • • • • • • • •

• c c • • • • • c c
• −a −b • • • • • −b −a
• −a + b • b −c • −c b • −a + b
• • a − b a −c • −c a a − b •


. (32)

We checked with a computer that D(3)
10 (a, b, c) is indeed Hadamard. The defect (in the sense

of [11]) of D10 is 16, so we cannot be sure that D(3)
10 (a, b, c) is maximal affine (the defect is an

upper bound for the dimensionality of a family stemming from D10). It is possible that further
parameters can be introduced.

Now we turn to N = 14. Our starting point Hadamard matrix, constructed from the only (up
to equivalence) conference matrix of order 14, is the following D14.

D14

=



1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 −1 i −i i i −i −i −i −i i i −i i
1 i −1 i −i i i −i −i −i −i i i −i
1 −i i −1 i −i i i −i −i −i −i i i
1 i −i i −1 i −i i i −i −i −i −i i
1 i i −i i −1 i −i i i −i −i −i −i
1 −i i i −i i −1 i −i i i −i −i −i
1 −i −i i i −i i −1 i −i i i −i −i
1 −i −i −i i i −i i −1 i −i i i −i
1 −i −i −i −i i i −i i −1 i −i i i
1 i −i −i −i −i i i −i i −1 i −i i
1 i i −i −i −i −i i i −i i −1 i −i
1 −i i i −i −i −i −i i i −i i −1 i
1 i −i i i −i −i −i −i i i −i i −1



. (33)

Again, this is a non-Diţă-type matrix, and a 6-parameter affine family stems from it (which
we constructed with the aid of Construction 4.3; the considered “suitable” pairs of rows were
(2, 3), (4, 5), (6, 9), (7, 13), (8, 12) and (11, 14)). The defect of the matrix is 36 so it might be
possible to introduce further parameters. We do not claim that all the matrices contained in the
family stemming from D14 are non-Diţă-type, but it is obviously true in a small neighborhood
of it.

D(6)
14 (a, b, c, d, e, f ) = D14 ◦ EXP

(
i · R

D(6)
14

(a, b, c, d, e, f )
)

(34)
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where

R
D(6)

14
(a, b, c, d, e, f )

=



• • • • • • • • • • • • • •

• • • a − b a − b −c a −e −c • a −e a a

• • • a − b a − b −c a −e −c • a −e a a

• b − a b − a • • b b −e b • − f −e b − f

• b − a b − a • • b b −e b • − f −e b − f

• c c −b −b • c − d c • • • c c − d •

• −a −a −b −b d − c • d − e d − c • d − f d − e • d − f

• e e e e −c e − d • −c • − f • e − d − f

• c c −b −b • c − d c • • • c c − d •

• • • • • • • • • • • • • •

• −a −a f f • f − d f • • • f f − d •

• e e e e −c e − d • −c • − f • e − d − f

• −a −a −b −b d − c • d − e d − c • d − f d − e • d − f

• −a −a f f • f − d f • • • f f − d •



.

(35)

To summarize the cases N = 10, 14 we conclude that

Corollary 4.6. The families D(3)
10 (a, b, c) and D(6)

14 (a, b, c, d, e, f ) are locally inequivalent to
the families contained in [11].

Remark 4.7. Note that D10 and D14 are unique in the sense that according to [4] the number
of inequivalent symmetric conference matrices is 1 for orders N = 2, 6, 10, 14 and 18, while
already for order N = 26 there exist 4 inequivalent symmetric conference matrices. This implies
that in higher dimensions it may be possible to construct locally inequivalent families stemming
from inequivalent starting point matrices. Recall that there is no conference matrix of order 22
and 34 due to Raghavarao’s theorem [9].

Let us summarize our results. In this paper we have described two general constructions of
parametric families of complex Hadamard matrices. We have presented new matrices of order
10, 12 and 14, thus we have supplemented the recent catalogue of complex Hadamard matrices
of small orders [11]. We pointed out that certain real Hadamard matrices cannot be constructed
using Diţă’s formula, so in order to find all inequivalent complex Hadamard matrices of a given
order one should look for and resort to other construction methods.

It would be interesting to see whether the hereby presented families can be extended with
further parameters. It also remains to be checked whether Construction 4.3 leads indeed to
parametric families of complex Hadamard matrices in general.
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