A note on D-spaces and infinite unions

Liang-Xue Peng

College of Applied Science, Beijing University of Technology, Beijing 100022, China

Received 11 September 2006; received in revised form 12 January 2007; accepted 22 January 2007

Abstract

It is shown that if X is a countably compact space that is the union of a countable family of D-spaces, then X is compact. This gives a positive answer to Arhangel’skii’s problem [A.V. Arhangel’skii, D-spaces and finite unions, Proc. Amer. Math. Soc. 132 (7) (2004) 2163–2170]. In this note, we also obtain a result that if a regular space X is sequential and has a point-countable k-network, then X is a D-space.

© 2007 Elsevier B.V. All rights reserved.

MSC: 54F99

Keywords: D-space; k-network; Sequential space; Compact

1. Introduction

The notion of D-space was introduced by van Douwen [5]. A neighborhood assignment for a space X is a function ϕ from X to the topology of the space X, such that $x \in \phi(x)$ for any $x \in X$. A space X is called a D-space, if for any neighborhood assignment ϕ for X there exists a closed discrete subset D of X, such that $X = \bigcup \{\phi(d): d \in D\}$. By results of [3] and [4], we know that all metrizable spaces, all Moore spaces, and all strong Σ-spaces are D-spaces. From [2], we know that every space with a point-countable base is a D-space.

About the unions of D-spaces, we do not know whether the union of two D-spaces is a D-space. But we know a little about the union of special D-spaces (such as metrizable spaces or spaces with a point-countable base). In [2], Arhangel’skii and Buzyakova proved that if a space X is the union of a finite family of metrizable subspaces, then X is a D-space. In [1], Arhangel’skii proved that if a regular space X is the union of a finite family of subspaces with a point-countable base, then X is a D-space.

On the other hand, we know little about the union of countable family of special D-spaces. There exists a Hausdorff, locally compact, locally countable, separable, first countable, submetrizable, σ-discrete, countable extent space that is not a D-space (cf. [6]). So Arhangel’skii raised the following problem (cf. [1]) in 2004: Suppose X is a countably compact space that is the union of a countable family of D-spaces. Is X compact? In [8], Gruenhage proved the case of finite unions. His result is that if X is a countably compact space that is the union of a finite family of D-spaces,
then \(X \) is compact. In this note, we prove that \(X \) is also compact, if \(X \) is countably compact and is the union of an infinite family of \(D \)-spaces. So this conclusion gives a positive answer to the problem raised by Arhangel’skii.

In [2], it was shown that every space with a point-countable base is a \(D \)-space. The author proved that \(X \) is also a \(D \)-space, if \(X \) has a point-countable weak base (cf. [9]). We may know some basic property of weak base from [10] and [11]. By the Proposition 4.7 of [10], we know that if \(X \) has a point-countable weak base, then \(X \) is a sequential space with a point-countable \(k \)-network. In this note, we try to discuss the \(D \)-property of spaces which are sequential and have a point-countable \(k \)-network. We obtain the following result: If \(X \) is a regular sequential space with a point-countable \(k \)-network, then \(X \) is a \(D \)-space. In notation and terminology we will follow [7].

All the spaces in this note are at least \(T_1 \)-spaces. The set of all natural numbers is denoted by \(N \), and \(\omega \) is \(N \cup \{0\} \).

2. Main results

Recall that a space \(X \) is linearly Lindelöf if every increasing open cover of \(X \) has a countable subcover. \(X \) is countably compact if every countable open cover of \(X \) has a finite subcover. So we know that every countably compact linearly Lindelöf space is compact.

The following Lemma 1 appeared in [8].

Lemma 1. A space \(X \) is linearly Lindelöf iff whenever \(\mathcal{U} \) is an open cover of \(X \) of cardinality \(\kappa \) and \(\mathcal{U} \) has no subcover of cardinality \(< \kappa \), then \(\text{cf} (\kappa) \leq \omega \).

In [8], it is proved that if \(X \) has countable extent and can be written as the union of finitely many \(D \)-spaces, then \(X \) is linearly Lindelöf. Part of the idea appeared in the following Theorem 2 is inspired by the proof of Theorem 4.2 of [8].

Theorem 2. Suppose \(X \) is a countably compact space that is the union of a countable family of \(D \)-spaces. Then \(X \) is a compact space.

Proof. Let \(X = \bigcup \{X_i: i \in N\} \), where \(X_i \) is a \(D \)-space for each \(i \in N \). Since \(X \) is countably compact, we only need to prove that \(X \) is linearly Lindelöf. Suppose by way of contradiction that \(X \) is not linearly Lindelöf. Then by Lemma 1, there is an open cover \(\mathcal{U} = \{U_\alpha: \alpha < \kappa\} \) of some cardinality \(\kappa \) with \(\text{cf} (\kappa) > \omega \) and such that \(\mathcal{U} \) has no subcover of cardinality \(< \kappa \). We may assume that \(\text{cf} (\kappa) = \kappa \).

For each \(x \in X \), let \(\alpha_x \) be least such that \(x \in U_{\alpha_x} \) and consider the neighborhood assignment defined by \(\phi(x) = U_{\alpha_x} \). For each \(i \in N \), there is a relative discrete closed subset \(D_i \) of \(X_i \) such that \(\{\phi(d): d \in D_i\} \) covers \(X_i \). Since \(\mathcal{U} \) has no subcover of smaller cardinality and \(\text{cf} (\kappa) > \omega \), then there is some \(i_0 \in N \), such that \(\|\{\alpha_d: d \in D_{i_0}\}\| = \kappa \).

We let \(F_1 = D_{i_0} \setminus D_{i_0} \). Then \(F_1 \) is a closed set of \(X \) and \(F_1 \cap X_{i_0} = \emptyset \) following from that \(D_{i_0} \) is a relative discrete set of \(X_{i_0} \). If \(F_1 = \emptyset \), then \(D_{i_0} \) will be a closed discrete set of \(X \), and \(|D_{i_0}| \geq \kappa \). This contradicts with countably compact property of \(X \). So \(F_1 \) is a non-empty closed set of \(X \).

Claim. \(\mathcal{U} \) has no subfamily \(\mathcal{U}_1 \) of cardinality \(< \kappa \), such that \(F_1 \subset \cup \mathcal{U}_1 \).

The following is the proof of the Claim.

Otherwise, we have some \(\beta < \kappa \), such that \(F_1 \subset \bigcup \{U_\alpha: \alpha < \beta\} = V_1 \). Then \(D_{i_0} \setminus V_1 = \overline{D_{i_0}} \setminus V_1 \) is a closed discrete set of \(X \). Thus \(|D_{i_0} \setminus V_1| < \omega \). So \(\|\{\alpha_d: d \in D_{i_0} \cap V_1\}\| = \kappa \). Thus we can get a \(\alpha_{d_0} \), such that \(d_0 \in D_{i_0} \cap V_1 \) and \(\alpha_{d_0} > \beta \). On the other hand, \(d_0 \in V_1 \), there is some \(\alpha_0 < \beta \), such that \(d_0 \in U_{\alpha_0} \). Thus we have \(\alpha_{d_0} \leq \alpha_0 < \beta \). This contradicts with \(\alpha_{d_0} > \beta \). So we have proved the Claim.

To assist the reader, we will give the proof of next step. Let \(A_1 = \{i_0\} \), so \(F_1 = \bigcup \{F_1 \cap X_i: i \in N \setminus A_1\} \). \(F_1 \) is a closed set of \(X \), so \(F_1 \cap X_i \) is a closed subset of subspace \(X_i \) for each \(i \in N \setminus A_1 \). We know that \(D \)-spaces are hereditary with closed sets. So \(F_1 \cap X_i \) is a \(D \)-space for each \(i \in N \setminus A_1 \). Thus \(F_1 \) is also the union of a countable family of \(D \)-spaces. In the following we will repeat the method which is used on \(X \).

For each \(x \in F_1 \cap X_i \), where \(i \in N \setminus A_1 \). Let \(\alpha_x \) be least such that \(x \in U_{\alpha_x} \) and consider the neighborhood assignment defined by \(\phi(x) = U_{\alpha_x} \cap (F_1 \cap X_i) \). For each \(i \in N \setminus A_1 \), there is a relative closed discrete subset \(D_i \) of \(X_i \cap F_1 \) such that \(F_1 \cap X_i \subset \bigcup \{\phi(d): d \in D_i\} \). Since \(\mathcal{U} \) has no subfamily \(\mathcal{U}_1 \) of smaller cardinality such that \(F_1 \subset \cup \mathcal{U}_1 \),
and \(cf(\kappa) > \omega \). Then there is some \(i_1 \in N \setminus A_1 \), such that \(|\{\alpha_\xi: d \in D_{i_1}\}| = \kappa \). \(D_{i_1} \subset F_1 \), so \(\overline{D_{i_1}} \subset F_1 \). We let \(F_2 = \overline{D_{i_1}} \setminus D_{i_1} \). Thus \(F_2 \subset F_1 \). By the same proof as the Claim, we may know that \(F_2 \) is a non-empty closed set of \(X \) and \(F_2 \cap X_{i_1} = \emptyset \). And also \(\mathcal{U} \) has no subfamily \(\mathcal{U}_2 \) of cardinality \(< \kappa \), such that \(F_2 \subset \cup \mathcal{U}_2 \). Let \(A_2 = A_1 \cup \{i_1\} \). So we have \(F_1 \cap X_{i_0} = \emptyset \), \(F_2 \cap X_{i_1} = \emptyset \), and \(i_0 \neq i_1 \).

Let \(\alpha < \omega_1 \), and suppose for every \(\beta < \alpha \), we have a non-empty closed set \(F_\beta \), and a set \(A_\beta \subset N \), and a relative closed discrete set \(D_\beta \) of \(X_\beta, i_\beta \subset N \) for each \(r < \beta \). Satisfying the following conditions:

1. \(\mathcal{U} \) has no subfamily \(\mathcal{U}_\beta \) of cardinality \(< \kappa \), such that \(F_\beta \subset \cup \mathcal{U}_\beta \), and \(X_\beta \cap F_{\beta+1} = \emptyset \) (\(\beta + 1 < \alpha \)), \(F_\beta = \cup \{X_i \cap F_\beta: i \in N \setminus A_\beta\} \);
2. \(i_\beta \neq i_\beta \), if \(\beta_1 \neq \beta_2 \) and \(\beta_1, \beta_2 < \alpha \);
3. \(D_\beta \) is a relative closed discrete set of \(F_\beta \cap X_{i_\beta} \), where \(i_\beta \in N \setminus A_{r'} \) for each \(r' < r \);
4. If \(\beta = r + 1 \), then \(F_\beta = \overline{D_{i_\beta}} \setminus D_{i_\beta} \), and \(A_\beta = A_r \cup \{i_\beta\} \);
5. If \(\beta \) is a limit ordinal, then \(F_\beta = \cap \{F_r: r < \beta\} \) and \(A_\beta = \cup \{A_i: r < \beta\} \).

For each \(\beta < \alpha \) we will define sets \(F_\alpha, A_\alpha \) and \(D_\beta \) that satisfy the above conditions.

Firstly, \(\alpha = \beta + 1 \) for some ordinal \(\beta \).

We know that \(F_\beta = \cup \{X_i \cap F_\beta: i \in N \setminus A_\beta\} \). For each \(i \in N \setminus A_\beta \), \(X_i \cap F_\beta \) is a closed subset of subspace \(X_i \). For each \(x \in F_\beta \cap X_i \), let \(\alpha_x \) be least such that \(x \in U_{\alpha_x} \) and consider the neighborhood assignment defined by \(\phi(x) = U_{\alpha_x} \cap (X_i \cap F_\beta) \). For each \(i \in N \setminus A_\beta \), \(X_i \cap F_\beta \) is a \(D \)-space. Then there is a relative closed discrete subset \(D_i \) of \(X_i \cap F_\beta \) such that \(F_\beta \cap X_i \subset \cup \{\phi(d) : d \in D_i\} \). Since \(\mathcal{U} \) has no subfamily \(\mathcal{U}_\beta \) of smaller cardinality such that \(F_\beta \subset \cup \mathcal{U}_\beta \), and \(cf(\kappa) > \omega \). Then there is some \(i_\beta \in N \setminus A_\beta \), such that \(|\{\alpha_\xi: d \in D_{i_\beta}\}| = \kappa \). \(D_{i_\beta} \subset F_\beta \), so \(\overline{D_{i_\beta}} \subset F_\beta \).

We let \(F_\alpha = \overline{D_{i_\beta}} \setminus D_{i_\beta} \). Thus \(F_\alpha \subset F_\beta \). By the same proof as the Claim, we may know that \(F_\alpha \) is a non-empty closed set of \(X \) and \(F_\alpha \cap X_{i_\beta} = \emptyset \), and \(\mathcal{U} \) has no subfamily \(\mathcal{U}_\alpha \) of cardinality \(< \kappa \), such that \(F_\alpha \subset \cup \mathcal{U}_\alpha \). Let \(A_\alpha = A_\beta \cup \{i_\beta\} \).

We know that \(i_\beta \neq A_\beta \). Thus we have \(i_\beta \neq i_\beta \), if \(\beta_1 \neq \beta_2 \) and \(\beta_1, \beta_2 < \alpha \).

Secondly, \(\alpha \) is a limit ordinal.

We let \(F_\alpha = \cap \{F_\beta: \beta < \alpha\} \). Since \(X \) is countably compact, and \(F_\beta \) is a non-empty closed set of \(X \), and \(\alpha < \omega_1 \).

Then we know that \(F_\alpha \) is a non-empty closed set of \(X \). Let \(V \) be any open set of \(X \). If \(F_\alpha \subset V \), then there is some \(\beta < \alpha \), such that \(F_\alpha \subset V \) following from the countably compact property of \(X \). Suppose \(\mathcal{U} \) has a subfamily \(\mathcal{U}_\alpha \) of cardinality \(< \kappa \), such that \(F_\alpha \subset \cup \mathcal{U}_\alpha \). Then there is some \(\beta < \alpha \), such that \(F_\beta \subset F_\beta \subset \cup \mathcal{U}_\beta \). This contradicts with condition (1). So \(\mathcal{U} \) has no subfamily \(\mathcal{U}_\alpha \) of cardinality \(< \kappa \), such that \(F_\alpha \subset \cup \mathcal{U}_\alpha \).

We let \(A_\alpha = \cup \{A_\beta: \beta < \alpha\} \). Then \(F_\alpha = \cup \{F_\beta \cap X_i: i \in N \setminus A_\alpha\} \). For each \(i \in N \setminus A_\alpha \), \(F_\beta \cap X_i \) is a \(D \)-space. We use the same method as the first step, we can get a relative closed discrete set \(D_{i_\alpha} \) of \(F_\alpha \cap X_{i_\alpha} \) for some \(i_\alpha \in N \setminus A_\alpha \), such that \(\overline{D_{i_\alpha}} \setminus D_{i_\alpha} = F_{\alpha+1} \) is a non-empty closed set of \(X \), and \(\mathcal{U} \) has no subfamily \(\mathcal{U}_{\alpha+1} \) of cardinality \(< \kappa \), such that \(F_{\alpha+1} \subset \cup \mathcal{U}_{\alpha+1} \). Let \(A_{\alpha+1} = A_\alpha \cup \{i_\alpha\} \).

From the proof we know that \(F_\alpha, A_\alpha \) and \(D_\beta \) for each \(\beta < \alpha \), satisfying the conditions (1)–(5).

Thus for each \(\alpha < \omega_1 \), we have a \(i_\alpha \in N \). If \(\beta_1, \beta_2 < \omega_1 \), and \(\beta_1 \neq \beta_2 \), then there is some \(\alpha \in \omega_1 \), such that \(\beta_1, \beta_2 < \alpha \) and \(i_\beta_1, i_\beta_2 \subset A_\alpha \). Thus we have that \(i_\beta_1 \neq i_\beta_2 \) by the condition (2). This contradicts with \(|\{i_\alpha: \alpha < \omega_1\}| \leq \omega \).

So \(X \) is linearly Lindelöf. Thus \(X \) is compact. \(\square \)

Next we will discuss the \(D \)-property of a regular regular space with a point-countable \(k \)-network. Let’s recall some definitions. A family \(\mathcal{F} \) of a space \(X \) is a \(k \)-network for \(X \), if for any open set \(U \) in \(X \) and any compact set \(C \subset U \), there exists a finite \(\mathcal{F}' \subset \mathcal{F} \), such that \(C \subset \cup \mathcal{F}' \subset U \) (cf. [10]).

A subset \(U \) of \(X \) is called sequentially open if each sequence in \(X \) converging to a point in \(U \) is eventually in \(U \). A space is called sequential if every sequentially open set of \(X \) is open in \(X \) (cf. [11]).

Theorem 3. If a regular space \(X \) is sequential and has a point-countable \(k \)-network, then \(X \) is a \(D \)-space.

Proof. Let \(\mathcal{F} \) be the point-countable \(k \)-network of \(X \), and let \(\mathcal{F}_\gamma = \{F: x \in F \in \mathcal{F}\} \). Let \(\phi \) be any neighborhood assignment of \(X \). We may assume \(X = \{x_\gamma: \alpha < \gamma\} \), where \(\gamma \) is a cardinal number. Suppose for each \(\alpha < \beta < \gamma \), we have chosen a closed discrete set \(D_\alpha \) satisfying:

1. \(x_\alpha \in \cup \{\phi(d): d \in \cup \{D_i: i < \alpha\}\} \);
(2) \(\bigcup\{D_\eta; \eta < \alpha\} \) is a closed discrete set of \(X \);
(3) \(D_\alpha \cap (\bigcup \{\phi(d); d \in \bigcup\{D_i; i < \alpha\}\}) = \emptyset \);
(4) For any \(x \in X \setminus \bigcup \{\phi(d); d \in \bigcup\{D_\eta; \eta \leq \alpha\}\} \) and for any \(F \in \mathcal{F} \), if there exists a sequence \(C \subset F \) such that \(C \) converges to \(x \) and \(\overline{F} \subset \phi(x) \), then \(F \cap D_\eta = \emptyset \) for any \(\eta \leq \alpha \).

Before we construct \(D_\beta \), let us show that \(D_\beta^* = \bigcup\{D_\alpha; \alpha < \beta\} \) is a closed discrete set of \(X \).

By condition (2) we have known that for any \(\alpha < \beta \), \(D_\alpha^* = \bigcup\{D_\eta; \eta < \alpha\} \) is a closed discrete set of \(X \). We now show that \(D_\beta^* = \bigcup\{D_\alpha; \alpha < \beta\} \) is a closed discrete set of \(X \).

Firstly, \(\beta \) is a limit ordinal number.

We first show that \(D_\beta^* \) is a closed set of \(X \). Suppose \(D_\beta^* \) is not a closed set of \(X \). Since \(X \) is sequential there exists a sequence \(C \subset D_\beta^* \), such that \(C \) converges to some point \(x \), and \(x \in X \setminus D_\beta^* \). For any \(y \in \phi(D_\beta^*) = \bigcup \{\phi(d); d \in D_\beta^*\} \), let \(\alpha_y \) be the minimal ordinal, such that \(y \in \bigcup \{\phi(d); d \in D_{\alpha_y}\} \). Let \(V_y = (\bigcup \{\phi(d); d \in D_{\alpha_y}\}) \setminus \bigcup \{D_\eta; \eta < \alpha_y\} \), and \(V_y' = (\bigcup \{\phi(d); d \in D_{\alpha_y}\}) \setminus \bigcup \{V_x; x \in V_y\} \), where \(V_y' \) is an open set of \(X \), such that \(y \in V_y' \) and \(|V_y' \cap D_{\alpha_y}| \leq 1 \).

So \(y \in V_y' \), and \(V_y' \) is an open set of \(X \), such that \(|V_y' \cap D_\beta| \leq 1 \). So \(x \neq y \). Thus \(x \in X \setminus \phi(D_\beta^*) \). Since \(C \) converges to \(x \), then there is a subsequence \(C_1 \subset C \), such that \(C_1 \setminus \{x\} \subset \phi(x) \). \(C_1 \setminus \{x\} \) is compact and \(\mathcal{F} \) is a \(k \)-network of \(X \), so there is a finite family \(\mathcal{F}_1 \subset \mathcal{F} \), such that \(C_1 \setminus \{x\} \subset \bigcup \mathcal{F}_1 \subset \phi(x) \). So there exists some \(F \in \mathcal{F}_1 \), such that \(F \) contains a subsequence of \(C_1 \) which converges to \(x \). Thus \(F \cap C_1 \) converges to \(x \) and \(\overline{F} \subset \phi(x) \). This contradicts with condition (4).

So \(D_\beta^* \) is a closed set of \(X \). By the proof we know that \(D_\beta^* \) is a closed discrete set of \(X \).

Secondly, \(\beta = \alpha + 1 \) for some \(\alpha \). So \(D_\beta^* = \bigcup\{D_\alpha; \eta < \beta\} = \bigcup\{D_\eta; \eta \leq \alpha\} = \bigcup\{D_\eta; \eta < \alpha\} \cup D_\alpha \). By assumption, we know that \(\bigcup\{D_\eta; \eta < \alpha\} \) is a discrete closed set of \(X \), so is \(D_\beta^* \).

Let \(U_\beta = \bigcup \{\phi(d); d \in \bigcup\{D_\eta; \eta < \beta\}\} \). Now we will construct \(D_\beta \).

If \(x \in U_\beta \), we let \(D_\beta = \emptyset \). So we assume that \(x \notin U_\beta \). We let \(\mathcal{F}_{x_\beta}^* = \{F^*; x\beta \in F, F \in \mathcal{F}\} \). If \(x \beta \) is a countable family following from that \(\mathcal{F} \) is a point-countable family of \(X \). Enumerate it by prime numbers \(p \). Let \(y_1 = x_\beta \) and take the first member \(F^* \) of \(\mathcal{F}_{x_\beta}^* \) such that \(F^* \setminus (\phi(y_1) \cup U_\beta) \neq \emptyset \). We choose a point \(y_2 \) that \(y_2 \in F^* \setminus (\phi(y_1) \cup U_\beta) \). Then \(F^* \cap \phi(y_2) \) is a family \(\mathcal{F}_{y_2} \) is countable, and we denote \(\mathcal{F}_{y_2} \) by \(\{F^*; F \in \mathcal{F}_{y_2} \setminus \mathcal{F}_{y_1}\} \).

We enumerate \(\mathcal{F}_{y_2} \) by the squares \(p^2 \) of prime numbers.

Suppose we have finished \(n \) steps. We have \(\phi(y_1), \ldots, \phi(y_n) \), and \(\mathcal{F}_{y_1}, \ldots, \mathcal{F}_{y_n} \), \(i \leq n \). If \(\bigcup \{\phi(y_i); i \leq n\} \cup U_\beta = X \), then stop the induction, and let \(D_\beta = \{y_1 \setminus i \leq n\} \). So \(F^* \cap (\bigcup \{\phi(y); i \leq n\} \cup U_\beta) = \emptyset \), then we take the first member of \(\bigcup \{\phi(y_i); i \leq n\} \cup U_\beta \), such that \(F^* \setminus (\bigcup \{\phi(y_i); i \leq n\} \cup U_\beta) \neq \emptyset \). We choose a point \(y_{n+1} \) that \(y_{n+1} \in F^* \setminus (\bigcup \{\phi(y_i); i \leq n\} \cup U_\beta) \). Then \(F^* \cap \phi(y_{n+1}) \) is in \(\bigcup \{\phi(y_i); i \leq n\} \cup U_\beta \), then we let \(x_{n+1} = \min\{\phi(y_i); i \leq n\} \cup U_\beta \). Then \(x_{n+1} \notin \phi(y_i); i \leq n\} \cup U_\beta \), and denote \(x_{n+1} \) by \(y_{n+1} \). And we let \(\mathcal{F}_{y_{n+1}} = \{F^*; F \in \mathcal{F}_{y_{n+1}} \setminus \mathcal{F}_{y_n} \} \), and enumerate it by the \((n + 1)^{st}\) powers of prime numbers.

In this way, we get \(D_\beta = \{y_n; n \in N\} \). We have that \(D_\beta \cap U_\beta = \emptyset \). Let us show that \(D_\beta \) is closed. Suppose not, there exists a sequence \(C \subset D_\beta \), such that \(C \) converges to some point \(x \). We know that \(x \notin U_\beta \cup \bigcup \{\phi(d); d \in D_\beta\} \). Thus there exists some \(F \in \mathcal{F} \), such that \(F \) contains a subsequence which converges to \(x \), and \(\overline{F} \subset \phi(x) \) (by regularity property of \(X \)). So \(x \in F^* \). By the construction, we know that there is some \(n \), such that \(F^* \cap \bigcup \{\phi(y_i); i \leq n\} \neq \emptyset \). So \(x \in \bigcup \{\phi(d); d \in D_\beta\} \). Contradiction. So \(D_\beta \) is a closed set of \(X \). And also we know that it is a closed discrete set of \(X \) by its construction.

We have shown that \(\bigcup \{D_\eta; \eta < \beta\} \) is a closed discrete set of \(X \), so the set \(\bigcup \{D_\alpha; \alpha < \beta\} \cup D_\beta \) is also a closed discrete set. From the above discussion, we know that the conditions (1)–(4) hold.

Let \(D = \bigcup \{D_\alpha; \alpha < \gamma\} \), we may easily see that \(X = \bigcup \{\phi(d); d \in D\} \). Next we will prove that \(D \) is a closed discrete set of \(X \).

For any \(x \in X \), let \(\eta = \min\{\alpha; x \in \bigcup \{\phi(d); d \in D_\alpha\}\} \), we denote \(V_x = (\bigcup \{\phi(d); d \in D_\eta\} \setminus \bigcup \{D_\delta; \delta < \eta\}) \cap V'_{x} \), where \(V'_{x} \) is an open set of \(X \), and \(x \in V'_{x} \), satisfying that \(|V'_{x} \cap D_\eta| \leq 1 \). So \(V_x \) is an open set of \(X \), and \(x \in V_x \), \(|V_x \cap D_\eta| \leq 1 \). Thus \(D \) is a discrete closed set of \(X \). So \(X \) is a \(D \)-space.
Acknowledgements

This paper was written while I was visiting University of Toronto. I would like to thank Professor Franklin D. Tall for inviting me and for helping me while studying the theory of D-spaces and elementary submodels. The author would also like to thank the referee for his (her) valuable suggestions which greatly improved the paper.

References