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Abstract

In this paper, the existence and the uniqueness of the global generalized solution and th
classical solution for the initial boundary value problem of the generalized cubic double dispersio
equation are proved. The nonexistence of global solution for the initial boundary value problem o
the generalized cubic double dispersion equation is discussed.
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1. Introduction

In this paper, we study the following initial boundary value problem:

utt − uxx − auxxtt + bux4 − duxxt = f (u)xx, x ∈ Ω, t > 0, (1.1)

u(0, t) = u(l, t) = 0, uxx(0, t) = uxx(l, t) = 0, t � 0, (1.2)

u(x,0) = u0(x), ut (x,0) = u1(x), x ∈ Ω̄, (1.3)
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whereu(x, t) denotes the unknown function,ux4 = uxxxx , f (s) is a given nonlinear func
tion,Ω = (0, l), a > 0,b > 0 andd are constants,u0(x) andu1(x) are given functions an
satisfy the boundary condition (1.2).

We also consider the following equation:

utt − uxx − auxxtt + bux4 = f (u)xx, x ∈ Ω, t > 0, (1.4)

with the initial boundary value conditions (1.2), (1.3).
There are several examples of physical problems, which can be formulated as Eq

Indeed, in some problems of nonlinear wave propagation in waveguide, the interac
the waveguides and the external medium and, therefore, the possibility of energy ex
through lateral surfaces of the waveguide cannot be neglected. If the model of interacti
between the surface of a nonlinear elastic rod, whose material is hyperelastic (e
Murnaghan material), and a medium, proposed by Winkler or by Pasternak [1] is c
ered, then the longitudinal displacementu(x, t) of the rod satisfies the following doub
dispersion equation (DDE):

utt − uxx = 1

4
(6u2 + autt − buxx)xx, (1.5)

which is obtained by means of the Hamiltonian principle (see [2,3]). Similarly, the ge
cubic DDE (CDDE)

utt − uxx = 1

4
(cu3 + 6u2 + autt − buxx + dut )xx (1.6)

can be obtained (see [2,3]). Hereu(x, t) is the longitudinal displacement and is prop
tional to strain∂U

∂x
, U(x, t) is the transversal displacement,a > 0, b > 0, c > 0 andd �= 0

are some constants depending on the Young modulus, the shear modulusµ, density of
waveguideρ and the Poisson coefficientν. Obviously, iff (u) = c

4u3 + 3
2u2 anda, b andd

are replaced bya4 , b
4 andd

4 , respectively, Eq. (1.1) becomes Eq. (1.6). Ifd = 0,f (u) = 3
2u2

anda andb are replaced bya4 and b
4, respectively, Eq. (1.1) becomes Eq. (1.5).

For the classical problem of condensed matter physics of waves in stratified liqu
following equation was obtained in [4]:

utt − uxx = (cu3 + du2 − buxx)xx + (f u)xt + guxxt , (1.7)

whilst wave propagation in a different medium, namely, in a one-dimensional non
elastic solid wave guide, is described in [5] by the DDE with dissipation

utt − uxx = ε(cu2 + autt − buxx + gut )xx + O(ε2), (1.8)

whereu is the longitudinal strain,a, b, c > 0, f,g �= 0 andε � 1 are constants.
In [6], the Boussinesq equation obtained from the Euler equation for surface wa

irrotational motion reads (see [7])

φtt − φxx − ε

2
φxxtt + ε

6
φx4 − 3εφxφxx = 0.

If we let φx = w, then the above equation becomes

utt − uxx − ε
uxxtt + ε

ux4 − 3ε
(u2)xx = 0. (1.9)
2 6 2
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When one omitsO(ε2) and takesε = 1 in (1.8), Eqs. (1.8) and (1.9) are then the spe
cases of Eq. (1.1).

In [8], when the nonlinear longitudinal strain solitary waves were studied in
cylindrical elastic rod with microstructure, the related problem was solved by usin
pseudocontinuum Cosserat model and the Le Roux continuum model. A procedure w
developed for derivation of a governing equation for longitudinal nonlinear strain w
The equation governing this process is of Boussinesq type, namely, a double dis
equation

utt − α1uxx − α2(u
2)xx + α3uxxtt − α4uxxxx = 0, (1.10)

where the coefficientsαi depend upon the elastic parameters of the rod material. Ifα1 > 0,
α2 > 0, α3 < 0 andα4 < 0, then Eq. (1.10) is also the special case of Eq. (1.1).

There are also several equations with principal termutt − uxxtt , which are closely re
lated to Eq. (1.1). For example, it is known that the equation (called the Bq equation

utt − uxx − uxxxx = (u2)xx (1.11)

was derived by J. Boussinesq in 1872 to describe shallow water waves. On the othe
the improved Bq equation (called the IBq equation) reads

utt − uxx − uxxtt = (u2)xx. (1.12)

A modification of the IBq equation analogous of the MKdV equation yields

utt − uxx − uxxtt = (u3)xx, (1.13)

which is called the IMBq equation (see [9]).
References [2,3,5] have studied the strain solutions of Eq. (1.5), while [10–12] in

gated the traveling wave solutions of Eqs. (1.5), (1.6). In [3,11] the exact explicit trav
wave solutions to Eqs. (1.8) and (1.9) were obtained, while in [8], the author gave th
tary wave solution of Eq. (1.10). To our best knowledge, however, there has not be
discussion on global solutions of the initial boundary value problem for Eq. (1.1) in th
literature.

In [13] the authors proved that the initialboundary value problem for Eq. (1.13) has
unique global generalized or classical solution. The basic steps of the proof in [13] c
summarized as follows: First, the initial boundary value problem for Eq. (1.13) is red
to an equivalent integral equation by using Green’s function for a boundary value pr
of a second-order ordinary differential equation, and then the existence and uniquenes
generalized and classical local solutions to this integral equation is obtained by ap
the contraction mapping principle, and finally, the extension of the solution to the w
interval[0, T ] is guaranteed by the extension theorem.

The paper [13] gave the sufficient conditions of the nonexistence of global solut
the initial boundary value problem for Eq. (1.12), too.

The aim of the present paper is to prove that under certain conditions, the pr
(1.1)–(1.3) possesses a unique global generalized and classical solutions by using d
methods from [13], and to give sufficient conditions of the nonexistenceof global solutions
to the problem (1.1)–(1.3). Moreover, as applications of our abstract theorems, we
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prove that the problem (1.6), (1.2), (1.3) has a unique global generalized solution,
the problem (1.5), (1.2), (1.3) does not possess global generalized and classical so
under certain assumptions.

In order to obtain the global generalized and classical solutions of the problem
(1.3), we shall consider the following auxiliary problem:

vtt − vxx − avxxtt + bvx4 − dvxxt = f (vx)x, x ∈ Ω, t > 0, (1.14)

vx(0, t) = vx(l, t) = 0, vxxx(0, t) = vxxx(l, t) = 0, t � 0, (1.15)

v(x,0) = ϕ(x), vt (x,0) = ψ(x), x ∈ Ω̄. (1.16)

We first show that there is a smooth global classical solution of the problem (1.14)–(
and then by settingvx(x, t) = u(x, t), ϕx(x) = u0(x) andψx(x) = u1(x), we obtain the
global existence of the generalized and classical solutions to the problem (1.1)–(1.3).

This paper is organized as follows. In Section 2, we prove the existence and uniquen
of global generalized and classical solutions to the problem (1.14)–(1.16). The exi
and uniqueness of global generalized and classical solutions of the problem (1.1
are given in Section 3. In Section 4, the nonexistence of global solutions to the pr
(1.1)–(1.3) is discussed, and in Section 5 we study the problems (1.6), (1.2), (1.3) an
(1.2), (1.3).

2. Global solution of the problem (1.14)–(1.16)

Let {ys(x)} be the orthonormal base inL2(Ω) composed of the eigenfunctions of t
eigenvalue problem

y ′′ + λy = 0, x ∈ Ω, y ′(0) = y ′(l) = 0,

corresponding to eigenvalueλi (i = 1,2, . . .), where “′ ” denotes the derivative with re
spect tox. Let vN(x, t) = ∑N

i=1 αNi(t)yi(x) be the Galerkin approximate solution of t
problem (1.14)–(1.16), whereαNi(t) (i = 1,2, . . . ,N) are functions to be determine
N is a natural number. Suppose that the initial dataϕ(x) andψ(x) can be expressed b
ϕ(x) = ∑∞

i=1 βiyi(x), ψ(x) = ∑∞
i=1 γiyi(x), respectively, whereβi, γi (i = 1,2, . . .) are

constants. Then, substituting the approximate solutionvN (x, t) into (1.14)–(1.16), we ob
tain thatvN (x, t) solves the following problem:

vNtt − vNxx − avNxxtt + bvNx4 − dvNxxt = f (vNx)x, (2.1)

vNx(0, t) = vNx(l, t) = 0, vNx3(0, t) = vNx3(l, t) = 0, (2.2)

vN(x,0) = ϕN(x), vNt (x,0) = ψN(x). (2.3)

Multiplying both sides of (2.1) and (2.3) byys(x), respectively, and integrating onΩ , we
get

(vNtt − vNxx − avNxxtt + bvNx4 − dvNxxt , ys) = (
f (vNx)x, ys

)
, (2.4)

αNs(0) = βs, αNst (0) = γs, s = 1,2, . . . ,N, (2.5)

where(·, ·) denotes the inner product ofL2(Ω).
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Lemma 2.1. Suppose thatf ∈ C1(R), and there is a constantC0 such thatf ′(s) � C0
for any s ∈ R, ϕ ∈ H 2(Ω), ψ ∈ H 1(Ω) andϕ(x),ψ(x) satisfy the boundary condition
(1.15). Then for anyN , the Cauchy problem(2.4), (2.5) has a global classical solutio
αNs ∈ C2[0, T ] (s = 1,2, . . . ,N). Moreover, the following estimate holds:∥∥vN (·, t)∥∥2

H2(Ω)
+ ∥∥vNt (·, t)

∥∥2
H1(Ω)

� C1(T ), t ∈ [0, T ], (2.6)

where and in the sequelC1(T ) andCi(T ) (i = 1,2, . . .) are constants which depend onT ,
but not onN .

Proof. Let f0(s) = f (s) − δs − f (0) with δ = min{C0,0} (� 0), then f0(0) = 0,
f ′

0(s) = f ′(s) − δ � 0 andf0(s) is a monotonically increasing function. ThusF(s) =∫ s

0 f0(τ ) dτ � 0. Clearly, Eq. (1.14) is equivalent to the following equation:

vtt − vxx − avxxtt + bvx4 − dvxxt − δvxx = f0(vx)x. (2.7)

Obviously, Eq. (2.4) is equivalent to the following system:

(vNtt − vNxx − avNxxtt + bvNx4 − dvNxxt − δvNxx, ys) = (
f0(vNx)x, ys

)
,

s = 1,2, . . . ,N. (2.8)

Multiplying both sides of Eq. (2.8) by 2αNst (t), summing up fors = 1,2, . . . ,N , adding
2(vN , vNt ) to the both sides, integrating by parts and using Gronwall’s inequality, we∥∥vN (·, t)∥∥2

H2(Ω)
+ ∥∥vNt (·, t)

∥∥2
H1(Ω)

� eC2(|δ|+2|d |+1)T

(
‖ϕ‖2

H2(Ω)
+‖ψ‖2

H1(Ω)
+2

∫
Ω

F
(
ϕx(x)

)
dx +1

)
,

t ∈ [0, T ], (2.9)

where‖ · ‖ denotes the norm of the spaceL2(Ω). Thus (2.6) follows from (2.9) immedi
ately.

Similarly to [14], we can prove by applying (2.9) and the Leray–Schauder fixed
theorem [15] that the Cauchy problem (2.4), (2.5) has a solutionαNs ∈ C2[0, T ] (s =
1,2, . . . ,N). The proof is complete. �
Lemma 2.2. Suppose that the conditions of Lemma2.1 hold. If f ∈ C3(R), ϕ ∈ H 5(Ω)

andψ ∈ H 4(Ω), then, the approximate solution of the problem(1.14)–(1.16) satisfies the
following estimate:

‖vN‖2
H5(Ω)

+ ‖vNt‖2
H4(Ω)

+ ‖vNtt‖2
H3(Ω)

� C2(T ), 0 � t � T . (2.10)

Proof. Multiplying Eq. (2.4) by 2λ2
sαNst , summing up fors = 1,2, . . . ,N , integrating by

parts with respect tox, utilizing (2.6), and recalling that the spaceH 2(Ω) is continuously
imbedded intoC1(Ω̄), we infer that

d

dt

(‖vNxxt‖2 + ‖vNx3‖2 + a‖vNx3t‖2 + b‖vNx4‖2)
� C3(T )

(‖vNxx‖2
4 + ‖vNx3‖2) + 2

(|d| + 1
)‖vNx3t‖2. (2.11)
L (Ω)
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l’s

e find
Using the Gagliardo–Nirenberg interpolation theorem, Young’s inequality and Gronwal
inequality, we conclude

‖vNxxt‖2 + ‖vNx3‖2 + ‖vNx3t‖2 + ‖vNx4‖2 � C4(T )
(‖ϕ‖2

H4(Ω)
+ ‖ψ‖2

H3(Ω)
+ 1

)
,

t ∈ [0, T ]. (2.12)

Similarly, multiplying Eq. (2.4) by−2λ3
s αNst , summing up fors = 1,2, . . . ,N , and inte-

grating with respect tot , we get

‖vNx3t‖2 + ‖vNx4‖2 + a‖vNx4t‖2 + b‖vNx5‖2

� 2|d|
t∫

0

‖vNx4τ‖2 dτ − 2

t∫
0

f ′′(0)v2
Nxx(l, τ )vNx4τ (l, τ ) dτ

+ 2

t∫
0

f ′′(0)v2
Nxx(0, τ )vNx4τ (0, τ ) dτ

+ 2

t∫
0

∫
Ω

(
f ′′′(vNx)v3

Nxx + 3f ′′(vNx)vNxxvNx3 + f ′(vNx)vNx4

)
vNx4τ dx dτ

+ ‖ψx3‖2 + ‖ϕx4‖2 + a‖ψx4‖2 + b‖ϕx5‖2. (2.13)

Using the integration by parts, the Sobolev imbedding theorem, (2.6) and (2.12), w
that

−2

t∫
0

f ′′(0)v2
Nxx(l, τ )vNx4τ (l, τ ) dτ

= −2f ′′(0)
[
v2
Nxx(l, t)vNx4(l, t) − v2

Nxx(l,0)vNx4(l,0)
]

+ 2f ′′(0)

t∫
0

(
v2
Nxx(l, τ )

)
τ
vNx4(l, τ ) dτ

� 2
∣∣f ′′(0)

∣∣{ sup
0�t�T

(∥∥vNxx(·, t)∥∥
C(Ω̄)

)2∥∥vNx4(·, t)∥∥
C(Ω̄)

+ ‖ϕxx‖2
C(Ω̄)

‖ϕx4‖C(Ω̄)

+ 4

t∫
0

∥∥vNxx(·, τ )
∥∥

C(Ω̄)

∥∥vNxxτ (·, τ )
∥∥

C(Ω̄)

∥∥vNx4(·, τ )
∥∥

C(Ω̄)
dτ

}

� C5(T )+C6‖ϕ‖H3(Ω)‖ϕ‖H5(Ω) +
b

4

∥∥vNx5(·, t)∥∥2 +
t∫

0

∥∥vNx5(·, τ )
∥∥2

dτ,

(2.14)

where‖ · ‖ ¯ denotes the norm in the spaceC(Ω̄).
C(Ω)
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Similarly to (2.14), we can prove

2

t∫
0

f ′′(0)v2
Nxx(0, τ )vNx4τ (0, τ ) dτ

� C7(T ) + C8‖ϕ‖2
H3(Ω)

‖ϕ‖H5(Ω) + b

4

∥∥vNx5(·, t)∥∥2 +
t∫

0

∥∥vNx5(·, τ )
∥∥2

dτ.

(2.15)

By the Sobolev embedding theorem, (2.6) and (2.12), we conclude

2

t∫
0

∫
Ω

(
f ′′′(vNx)v3

Nxx + 3f ′′(vNx)vNxxvNx3 + f ′(vNx)vNx4

)
vNx4t dx dτ

� C9(T ) +
t∫

0

‖vNx4τ‖2 dτ. (2.16)

Inserting (2.14)–(2.16) into (2.13) and using Gronwall’s inequality, we obtain

‖vNx3t‖2 + ‖vNx4‖2 + ‖vNx4t‖2 + ‖vNx5‖2 � C10(T ), t ∈ [0, T ]. (2.17)

Multiplying both sides of Eq. (2.4) byαNstt (t) + λ2
s αNst t (t), summing up fors =

1,2, . . . ,N and using the Cauchy inequality, the estimates (2.6), (2.17) and the Sobol
embedding theorem, we arrive at

‖vNtt‖2
H3(Ω)

� C11(T ), 0� t � T . (2.18)

This completes the proof.�
Theorem 2.1. Under the conditions of Lemma2.2, the problem(1.14)–(1.16) has a unique
global generalized solution

v ∈ C
([0, T ];H 5(Ω)

) ∩ C1([0, T ];H 4(Ω)
) ∩ C2([0, T ];H 3(Ω)

) = A. (2.19)

Proof. From (2.10), the Sobolev imbedding theorem and the compactness princip
see that the problem (1.14)–(1.16) has a global generalized solutionv ∈ A. The uniquenes
of solutions is obvious. The proof is complete.�
Lemma 2.3. Suppose that the conditions of Lemma2.2 hold. If ϕ ∈ H 7(Ω), ψ ∈ H 6(Ω),
f ∈ C4(R) and f (i)(0) = 0 (i = 2,4), then, the approximate solution of the proble
(1.14)–(1.16) satisfies the following estimate:

‖vN‖2
H7(Ω)

+ ‖vNt‖2
H6(Ω)

+ ‖vNtt‖2
H5(Ω)

+ ‖vNt3‖2
H4(Ω)

� C12(T ),

t ∈ [0, T ]. (2.20)

Proof. Multiplying Eq. (2.4) by−2λ5
sαNst (t), summing up fors = 1,2, . . . ,N , integrat-

ing by parts and using Gronwall’s inequality, we obtain
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2.20).

.1, we
‖vNx5t‖2 + ‖vNx6‖2 + ‖vNx6t‖2 + ‖vNx7‖2

� C13(T )
(‖ϕ‖2

H7(Ω)
+ ‖ψ‖2

H6(Ω)
+ 1

)
, t ∈ [0, T ]. (2.21)

In the same manner, we have by multiplying Eq. (2.4) byλ4
s αNst t (t) that

‖vNx4t t‖2 + a‖vNx5t t‖2 = (−vNx5 + bvNx7 − dvNx5t − f (vNx)x4, vNx5t t

)
� a

4
‖vNx5t t‖2 + C14

(‖vNx5‖2 + ‖vNx7‖2 + ‖vNx5t‖2 + ∥∥f (vNx)x4

∥∥2)
. (2.22)

It follows from (2.10), (2.21) and (2.22) that

‖vNx4t t‖2 + ‖vNx5t t‖2 � C15(T ), t ∈ [0, T ]. (2.23)

Similarly, we obtain

‖vNx3t3‖2 + ‖vNx4t3‖2 � C16(T ), 0 � t � T . (2.24)

Combining the estimates (2.6), (2.10), (2.21), (2.23) with (2.24), we get the estimate (
This completes the proof.�

Using Lemma 2.3 and following the same procedure as in the proof of Theorem 2
have

Theorem 2.2. Under the conditions of Lemma2.3, the problem(1.14)–(1.16) has a unique
global classical solution

v ∈ C
([0, T ];C5(Ω̄)

) ∩ C1([0, T ];C4(Ω̄)
) ∩ C2([0, T ];C3(Ω̄)

) = B.

3. Global solutions of the problem (1.1)–(1.3)

Theorem 3.1. Suppose thatu0 ∈ H 4(Ω), u1 ∈ H 3(Ω), f ∈ C3(R) andf ′(s) is bounded
below. Then, the problem(1.1)–(1.3) has a unique global generalized solution

u ∈ C
([0, T ];H 4(Ω)

) ∩ C1([0, T ];H 3(Ω)
) ∩ C2([0, T ];H 2(Ω)

) = D.

Proof. Differentiating (2.1) with respect tox, one gets

vNxtt − vNx3 − avNx3t t + bvNx5 − dvNx3t = f (vNx)xx. (3.1)

Let

vNx(x, t) = uN(x, t). (3.2)

Substituting (3.2) into (3.1), (2.2) and (2.3), one obtains

uNtt − uNxx − auNxxtt + buNx4 − dvNxxt = f (uN)xx, (3.3)

uN(0, t) = uN(l, t) = 0, uNxx(0, t) = uNxx(l, t) = 0, (3.4)

uN(x,0) = u0N(x), uNt (x,0) = u1N(x), (3.5)
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where in (3.5),u0N(x) = ∑N
i=1 aiyi(x) andu1N(x) = ∑N

i=1 biyi(x) are the approxima
tions of the

u0(x) =
∞∑
i=1

aiyi(x), u1(x) =
∞∑
i=1

biyi(x),

ai, bi constants, respectively.
From (3.2) and (2.10) it follows that

‖uN‖H4(Ω) + ‖uNt‖H3(Ω) + ‖uNtt‖H2(Ω) � C17(T ), 0 � t � T . (3.6)

From (3.6) and the Sobolev imbedding theorem, we find that

‖uN‖C3,λ(Ω̄) + ‖uNt‖C2,λ(Ω̄) + ‖uNtt‖C1,λ(Ω̄) � C18(T ), 0 � t � T , (3.7)

where 0< λ � 1
2. It follows from (3.7) and the Ascoli–Arzelá theorem that there ex

ist a functionu(x, t) and a subsequence of{uN(x, t)}, still denoted by{uN(x, t)}, such
that asN → ∞, {uNxi (x, t)} (i = 0,1,2) and{uNxit (x, t)} (i = 0,1) converge uniformly
to uxi (x, t) (i = 0,1,2) anduxit (x, t) (i = 0,1) on Q̄T , respectively. The subsequenc
{uNxi (x, t)} (i = 0,1,2,3,4), {uNxit (x, t)} (i = 0,1,2,3) and{uNxi t t (x, t)} (i = 0,1,2)

converge touxi (x, t) (i = 0,1,2,3,4), uxit (x, t) (i = 0,1,2,3) and uxit t (x, t) (i =
0,1,2) weakly in L2(QT ), respectively. Thus the initial boundary value problem (1.
(1.3) has a global generalized solutionu ∈ D.

Now, we prove the uniqueness of the solution for the problem (1.1)–(1.3).
Let u1(x, t) andu2(x, t) be two generalized solutions of the problem (1.1)–(1.3). T

u(x, t) = u1(x, t) − u2(x, t) satisfies the following problem:

utt − uxx − auxxtt + bux4 − duxxt = f (u1)xx − f (u2)xx, x ∈ Ω, t > 0, (3.8)

u(0, t) = u(l, t) = 0, uxx(0, t) = uxx(l, t) = 0, t � 0, (3.9)

u(x,0) = 0, ut (x,0) = 0, x ∈ Ω. (3.10)

Multiplying Eq. (3.8) by 2ut , integrating overΩ , adding 2
∫
Ω

uut dx to the resulting equa
tion, and integrating by parts, we obtain

d

dt

(‖u‖2 + ‖ut‖2 + ‖ux‖2 + a‖uxt‖2 + b‖uxx‖2)
= −2d‖uxt‖2 −2

∫
Ω

{
f ′′(u1 + θ(u2 −u1)

)
uu1x +f ′(u2)ux

}
uxt dx +2

∫
Ω

uut dx

� 2|d|‖uxt‖2 +2 max
0�t�T , x∈Ω

∣∣f ′′(u1 + θ(u2 −u1)
)
u1x

∣∣ ∫
Ω

|u||uxt |dx

+ 2 max
0�t�T , x∈Ω

∣∣f ′(u2)
∣∣ ∫
Ω

|ux ||uxt |dx + (‖u‖2 + ‖ut‖2)

� C19(T )
(‖u‖2 + ‖ut‖2 + ‖ux‖2 + ‖uxt‖2),

which together with Gronwall’s inequality yields

‖u‖2 + ‖ut‖2 + ‖ux‖2 + ‖uxt‖2 + ‖uxx‖2 = 0.

Hence, we have the uniqueness.�
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l

ry

l
eorem

lem
Theorem 3.2. Suppose thatu0 ∈ H 6(Ω), u1 ∈ H 5(Ω), f ∈ C4(Ω), f (i)(0) = 0 (i = 2,4)

andf ′(s) is bounded below. Then, the problem(1.1)–(1.3) has a unique global classica
solutionu(x, t).

Proof. By virtue of Theorem 2.2,v(x, t) ∈ B satisfies Eq. (1.14) and the initial bounda
conditions (1.15) and (1.16). Differentiating Eq. (1.14) with respect tox and substituting
vx(x, t) = u(x, t) into the resulting equation, we see thatu(x, t) is the global classica
solution of the problem (1.1)–(1.3). The uniqueness of the solution is obvious. The th
is proved. �
4. Nonexistence of global solutions of the problem (1.1)–(1.3)

Theorem 4.1. Let u(x, t) be a generalized solution or a classical solution of the prob
(1.1)–(1.3). Suppose that the following conditions are satisfied:

(1) − π

2l

∫
Ω

u0(x)sin
πx

l
dx = α > 0, − π

2l

∫
Ω

u1(x)sin
πx

l
dx = β > 0;

(2) (i) f (s) ∈ C2(R) is an even and convex function satisfying

f (0) = 0 and f (α) − l2 + bπ2

l2
α � 0;

(ii) f (s) grows fast enough ass → ∞, so that the integral

B = dπ2

l2 + aπ2

∞∫
α

[
β2 + 2π2

l2 + aπ2

y∫
α

(
f (s) − l2 + bπ2

l2
s

)
ds

]− 1
2

dy (4.1)

converges whend > 0, moreover,B < 1; the integral

T̄2 =
∞∫

α

[
β2 + 2π2

l2 + aπ2

( y∫
α

f (s) ds − l2 + bπ2

2l2
y2

)

+ π2(l2 + bπ2)

l2(l2 + aπ2)
α2

]− 1
2

dy (4.2)

converges ford � 0.

Then, whend > 0,

lim
t→t−0

sup
x∈Ω

∣∣u(x, t)
∣∣ = ∞ (4.3)

for some finite timet0 � T̄1 = − l2+aπ2

dπ2 ln(1−B); whend � 0,

lim
t→t−0

sup
x∈Ω

∣∣u(x, t)
∣∣ = ∞ (4.4)

for some finite timet0 � T̄2, whereT̄2 is given by(4.2).
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en in-

e is
Proof. Let

φ(t) = − π

2l

∫
Ω

u(x)sin
πx

l
dx.

Multiplying both sides of Eq. (1.1) byπ2l
sin πx

l
and integrating by parts, we obtain(

1+ aπ2

l2

)
φ̈ +

(
π2

l2
+ bπ4

l4

)
φ + dπ2

l2
φ̇ = − π

2l

∫
Ω

f (u)xx sin
πx

l
dx. (4.5)

Sincef (s) is even and convex, we have by using integration by parts and the Jens
equality that

− π

2l

∫
Ω

f (u)xx sin
πx

l
dx = π3

2l3

∫
Ω

f (u)sin
πx

l
dx

� π2

l2
f

(
− π

2l

∫
Ω

usin
πx

l
dx

)
= π2

l2
f (φ). (4.6)

Substituting (4.6) into (4.5), one gets

φ̈ + dπ2

l2 + aπ2
φ̇ + π2(l2 + bπ2)

l2(l2 + aπ2)
φ � π2

l2 + aπ2
f (φ) (4.7)

with φ(0) = α > 0, φ̇(0) = β > 0.
In order to proveφ̇(t) > 0 for any t > 0, we first show thatf (s) − l2+bπ2

l2
s � 0 for

all s � α. In fact, sincef ∈ C2(R) is even and convex function, we havef ′′(s) � 0
andf ′(0) = 0. DenoteF(s) = f (s) − l2+bπ2

l2
s, thenF ′′(s) = f ′′(s) � 0. ThusF ′(s) is

a monotonically increasing function. By virtue of

F(0) = f (0) = 0, F ′(0) = f ′(0) − l2 + bπ2

l2
= − l2 + bπ2

l2
< 0

andF(α) � 0, we see thatF(s) takes its minimum at some points0 in (0, α) andF ′(s0)

= 0. Thanks to the monotone increase ofF ′(s) we find thatF ′(s) � F ′(s0) = 0, for
s � s0, i.e., whens � s0, F(s) is a monotonically increasing function. In particular,F(s)

is monotonically increasing in[α,∞) andF(s) � F(α) � 0. Thusf (s) − l2+bπ2

l2
s � 0 for

all s � α.
Now, we proveφ̇(t) > 0 for anyt > 0. Suppose that this result is false. Then ther

t0 > 0, such that when 0< t < t0, φ̇(t) > 0, butφ̇(t0) = 0.

First of all, we consider the cased > 0. Multiplying (4.7) bye
dπ2

l2+aπ2 t
and integrating

over(0, t), we obtain
t∫

0

d

dτ

(
φ̇e

dπ2

l2+aπ2 τ )
dτ � π2

l2 + aπ2

t∫
0

[
f (φ) − l2 + bπ2

l2
φ

]
e

dπ2

l2+aπ2 τ
dτ. (4.8)

By the definition oft0, φ(t) � α for 0 � t � t0. It follows from (4.8) that
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φ̇ � e
− dπ2

l2+aπ2 t

{
β2 + π2

l2 + aπ2

t∫
0

[
f (φ) − l2 + bπ2

l2
φ

]
e

dπ2

l2+aπ2 τ
dτ

}
> 0,

t ∈ (0, t0).

Therefore,φ̇(t0) > 0. This contradicts the fact thatφ̇(t0) = 0. Henceφ̇(t) > 0 for t > 0.
It is easy to see thatφ(t) > α for t > 0. Hence, whend > 0, multiplying (4.7) by

2e
2dπ2

l2+aπ2 t
φ̇, integrating over(0, t) and observing thate

2dπ2

l2+aπ2 t
> 1, we get

e
2dπ2

l2+aπ2 t
φ̇2 � β2 + 2π2

l2 + aπ2

t∫
0

e
2dπ2

l2+aπ2 τ
[
f (φ) − l2 + bπ2

l2
φ

]
φ̇ dτ

� β2 + 2π2

l2 + aπ2

φ(t)∫
φ(0)

[
f (s) − l2 + bπ2

l2
s

]
ds.

Thus

φ̇ � e
− dπ2

l2+aπ2 t

{
β2 + π2

l2 + aπ2

φ(t)∫
α

[
f (s) − l2 + bπ2

l2
s

]
ds

} 1
2

, t > 0. (4.9)

By separation of variables from (4.9), we deduce

dφ{
β2 + 2π2

l2+aπ2

∫ φ(t)

α

(
f (s) − l2+bπ2

l2
s
)
ds

} 1
2

� e
− dπ2

l2+aπ2 t
dt. (4.10)

Integrating (4.10) over(0, t), we have

1− e
− dπ2

l2+aπ2 t � dπ2

l2 + aπ2

φ(t)∫
α

{
β2 + 2π2

l2 + aπ2

y∫
α

(
f (s) − l2 + bπ2

l2
s

)
ds

}− 1
2

dy.

(4.11)

Thusφ(t) develops a singularity in finite timet0 � T̄1 = − l2+aπ2

dπ2 ln(1−B).
Finally, sinceφ(t) > 0, we obtain

φ(t) = ∣∣φ(t)
∣∣ =

∣∣∣∣∣− π

2l

∫
Ω

u(x, t)sin
πx

l
dx

∣∣∣∣∣ � sup
x∈Ω

∣∣u(x, t)
∣∣,

which proves (4.3).
In the case ofd � 0, we see from (4.7) that

φ̈ � π2

l2 + aπ2

(
f (φ) − l2 + bπ2

l2
φ

)
. (4.12)
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)

d the
Similarly, we can provėφ(t) > 0 for t > 0. We multiply the differential inequality (4.12
by 2φ̇(t) to get

d

dt

[
φ̇2 + π2

l2 + aπ2

(
l2 + bπ2

l2
φ2 − 2

φ∫
α

f (s) ds

)]
� 0.

Thus

(
φ̇(t)

)2 � β2 + 2π2

l2 + aπ2

( φ(t)∫
α

f (s) ds − l2 + bπ2

2l2
φ2

)
+ π2(l2 + bπ2)

l2(l2 + aπ2)
α2. (4.13)

Similarly, we conclude from (4.13) that

t �
φ(t)∫
α

{
β2 + 2π2

l2 + aπ2

( y∫
α

f (s) ds − l2 + bπ2

2l2
y2

)
+ π2(l2 + bπ2)

l2(l2 + aπ2)
α2

}− 1
2

dy.

Therefore,φ(t) develops a singularity in finite timet0 � T̄2.
Finally, sinceφ(t) > 0, we have

φ(t) � sup
x∈Ω

∣∣u(x, t)
∣∣,

which proves (4.4). The theorem is proved.�
Corollary 4.1. For eachp, 1 � p � ∞,

‖u‖Lp(Ω) =
( ∫

Ω

∣∣u(x, t)
∣∣p dx

) 1
p

blows-up in finite time.

5. The problems (1.6), (1.2), (1.3) and (1.5), (1.2), (1.3)

In this section we apply the above theory to the problem (1.6), (1.2), (1.3) an
problem (1.5), (1.2), (1.3).

Theorem 5.1. Suppose thatu0 ∈ H 4(Ω), u1 ∈ H 3(Ω). Then, the problem(1.6), (1.2),
(1.3) has a unique global generalized solutionu ∈ C([0, T ];H 4(Ω))∩C1([0, T ];H 3(Ω))

∩ C2([0, T ]; H 2(Ω)).

Proof. By virtue of Theorem 3.1, it is enough to prove thatf ′(u) = 1
4(3cu2 + 12u) is

bounded from below. In fact,

f ′(u) = 1

4
(3cu2 + 12u) = 1

4

(√
3c u + 6√

3c

)2

− 3

c
� −3

c
.

The theorem is proved.�



576 G. Chen et al. / J. Math. Anal. Appl. 299 (2004) 563–577

rove
nique

ow

and

ar

iet
By the contraction mapping principle [16] or the Galerkin method [17] we can p
that the problem (1.5), (1.2), (1.3) has a unique local generalized solution and a u
local classical solution. The following theorem then follows from Theorem 4.1.

Theorem 5.2. Let u(x, t) be the generalized solution of the problem(1.5), (1.2), (1.3).
Suppose that the following conditions are satisfied:

(1) − π

2l

∫
Ω

u0(x)sin
πx

l
dx = α > 0, − π

2l

∫
Ω

u1(x)sin
πx

l
dx = β > 0;

(2)
3

2
α2 − l2 + bπ2

l2
α � 0.

Then

lim
t→t−0

sup
x∈Ω

∣∣u(x, t)
∣∣ = ∞ (5.1)

for some finite timet0 � T̄2.

Proof. Since

T̄2 =
∞∫

α

[
β2 + 2π2

l2 + aπ2

( y∫
α

3s2

2
ds − l2 + bπ2

2l2
y2

)
+ π2(l2 + bπ2)

l2(l2 + aπ2)
α2

]− 1
2

dy

=
∞∫

α

[
β2 + π2

l2 + aπ2

(
y3 − α3 − l2 + bπ2

l2
y2

)
+ π2(l2 + bπ2)

l2(l2 + aπ2)
α2

]− 1
2

dy

converges, (5.1) follows from Theorem 4.1 immediately.�
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