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Abstract

In this paper, the existence and the uniqueness of the global generalized solution and the global
classical solution for thinitial boundary value problem of theegeralized cubic double dispersion
equation are proved. The noneriste of global solution for thenitial boundary value problem of
the generalized cubic double dispersion equation is discussed.

0 2004 Elsevier Inc. All rights reserved.

Keywords:Generalized cubic double dispersion equatioitjal boundary value problem; Existence and
uniqueness of global solution;adexistence of global solution

1. Introduction

In this paper, we study the following initial boundary value problem:

Upp — Uxx — AUyxsr Fbua —diyy = f(U)xy, x€82,t>0, (1.1
u(o, t)=u(lvt)=07 uxx(oat):uxx(lat)=07 t>oa (1'2)
u(x,0)=uo(x), u/(x,0)=ui(x), xe, (1.3)

Y This project is supported by the National Natugaiience Foundation of Qe (Grant No. 10371111) and
by the Natural Science Foundation of Henan Province.
* Corresponding author.
E-mail addresschen_gw@371.net (G. Chen).

0022-247X/$ — see front mattdrl 2004 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2004.05.044


https://core.ac.uk/display/82525980?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

564 G. Chen et al. /J. Math. Anal. Appl. 299 (2004) 563-577

whereu(x, r) denotes the unknown functiom,s = u,xxx, f(s) is a given nonlinear func-
tion, 2 = (0,1),a > 0,b > 0 andd are constants;o(x) andu1(x) are given functions and
satisfy the boundary condition (1.2).

We also consider the following equation:

Uip — Uxx — AUy +bua = fU)yx, x€82,1>0, (1.4)

with the initial boundary value conditions (1.2), (1.3).

There are several examples of physical problems, which can be formulated as Eq. (1.1).
Indeed, in some problems of nonlinear wave propagation in waveguide, the interaction of
the waveguides and the external medium and, therefore, the possibility of energy exchange
through lateral surfaces of the waveguidemat be neglected. If the model of interaction
between the surface of a nonlinear elastic rod, whose material is hyperelastic (e.g., the
Murnaghan material), and a medium, proposed by Winkler or by Pasternak [1] is consid-
ered, then the longitudinal displacemeitk, t) of the rod satisfies the following double
dispersion equation (DDE):

1
Upr — Uxx = 2(6”2 +auy — buyxy)xx, (15)

which is obtained by means of the Hamiltonian principle (see [2,3]). Similarly, the general
cubic DDE (CDDE)

1
Uy — Uxy =Z(cu3+6u2+au,,—buxx—i—dut)xx (1.6)

can be obtained (see [2,3]). Hetéx, ) is the longitudinal displacement and is propor-
tional to strain%, U(x,t) is the transversal displacemeat> 0,5 > 0,¢c > 0 andd # 0
are some constants depending on the Young modulus, the shear magduaasity of
waveguidep and the Poisson coefficient Obviously, if £ () = $u®+ 3u? anda, b andd
are replaced b, 4 and4, respectively, Eq. (1.1) becomes Eq. (1.6)] K 0, f (u) = 3u?
anda andb are replaced by and?, respectively, Eq. (1.1) becomes Eg. (1.5).

For the classical problem of condensed matter physics of waves in stratified liquid the
following equation was obtained in [4]:

Ut — Uxx = (Cug + du® — butyy)xx + (fWxr + gUxxt, (1.7)
whilst wave propagation in a different medium, namely, in a one-dimensional nonlinear
elastic solid wave guide, is described in [5] by the DDE with dissipation

Uiy — gy = &(cu® + auyy — bitgy + gu)xx + 0(62), (1.8)

whereu is the longitudinal straing, b, ¢ > 0, f, g = 0 ande < 1 are constants.
In [6], the Boussinesq equation obtained from the Euler equation for surface waves in
irrotational motion reads (see [7])

& &
Prr — Gxx — §¢xxtt + 6¢x4 — 3epprr =0.

If we let ¢, = w, then the above equation becomes

e e 3e
Uty — Uxx — Euxxtt + éux‘l - ?(uz)xx =0. (19)
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When one omit® (¢2) and takes = 1 in (1.8), Egs. (1.8) and (1.9) are then the special
cases of Eq. (1.1).

In [8], when the nonlinear longitudinal strain solitary waves were studied inside
cylindrical elastic rod with microstructure, the related problem was solved by using the
pseudocontinuum Cosserat model and tleeRoux continuum model. A procedure was
developed for derivation of a governing equation for longitudinal nonlinear strain waves.
The equation governing this process is of Boussinesq type, namely, a double dispersive
equation

2
Upp — O1lxy — 02U ) xx + QBUxxrr — 04Uy xxy =0, (110)

where the coefficients; depend upon the elastic parameters of the rod materied.# 0,
a2 > 0,3 < 0 andus < 0, then Eqg. (1.10) is also the special case of Eq. (1.1).

There are also several equations with principal tagm- u, ., Which are closely re-
lated to Eqg. (1.1). For example, it is known that the equation (called the Bg equation)

Urg — Uxx — Uxxxx = (Mz)xx (1.11)

was derived by J. Boussinesq in 1872 to describe shallow water waves. On the other hand,
the improved Bq equation (called the IBq equation) reads

Urg — Uxx — Uxxtr = (Mz)xx- (1.12)

A modification of the IBq equation analogous of the MKdV equation yields

Urp — Uxx — Uxxtr = (M3)XX7 (1.13)

which is called the IMBq equation (see [9]).

References [2,3,5] have studied the strain solutions of Eq. (1.5), while [10-12] investi-
gated the traveling wave solutions of Egs. (1.5), (1.6). In [3,11] the exact explicit traveling
wave solutions to Egs. (1.8) and (1.9) were obtained, while in [8], the author gave the soli-
tary wave solution of Eq. (1.10). To our best knowledge, however, there has not been any
discussion on global solutions of the inltlaoundary value problem for Eq. (1.1) in the
literature.

In [13] the authors proved that the initiabundary value problem for Eq. (1.13) has a
unique global generalized or classical solution. The basic steps of the proofin [13] can be
summarized as follows: First, the initial boundary value problem for Eq. (1.13) is reduced
to an equivalent integral equation by using Green'’s function for a boundary value problem
of a second-order ordinary differential edjoa, and then the existence and uniqueness of
generalized and classical local solutions to this integral equation is obtained by applying
the contraction mapping principle, and finally, the extension of the solution to the whole
interval[0, T'] is guaranteed by the extension theorem.

The paper [13] gave the sufficient conditions of the nonexistence of global solution to
the initial boundary value problem for Eq. (1.12), too.

The aim of the present paper is to prove that under certain conditions, the problem
(1.1)—(1.3) possesses a unique global generalized and classical solutions by using different
methods from [13], and to give sufficient conditis of the nonexistenad global solutions
to the problem (1.1)—(1.3). Moreover, as applications of our abstract theorems, we shall
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prove that the problem (1.6), (1.2), (1.3) has a unique global generalized solution, while
the problem (1.5), (1.2), (1.3) does not possess global generalized and classical solutions
under certain assumptions.

In order to obtain the global generalized and classical solutions of the problem (1.1)—
(1.3), we shall consider the following auxiliary problem:

Vit — Uxx — QUxxpt + D04 —dvgyy = f(ux)y, x€82,1t>0, (1.14)
Ve (0,) =vx([,1) =0, vy xx(0,1) =vxxx(l, 1) =0, =0, (1-15)
v(x, 0 =9¢x), v 0=yx), xe. (1.16)

We first show that there is a smooth global classical solution of the problem (1.14)—(1.16),
and then by setting, (x, 1) = u(x, 1), ¢y (x) = uo(x) andy, (x) = u1(x), we obtain the
global existence of the generalized andsslaal solutions to the problem (1.1)—(1.3).

This paper is organized as follows. In Seat®, we prove the existence and unigueness
of global generalized and classical solutions to the problem (1.14)—(1.16). The existence
and uniqueness of global generalized and classical solutions of the problem (1.1)—(1.3)
are given in Section 3. In Section 4, the nonexistence of global solutions to the problem
(1.1)—(1.3)is discussed, and in Section 5 we study the problems (1.6), (1.2), (1.3) and (1.5),
(1.2), (1.3).

2. Global solution of the problem (1.14)—(1.16)

Let {ys(x)} be the orthonormal base i (£2) composed of the eigenfunctions of the
eigenvalue problem

Y +ay=0, xe, y©0)=y(dl=0,

corresponding to eigenvalue (i =1, 2,...), where “” denotes the derivative with re-
spect tox. Let vy (x,t) = Z,N:l ay;i(t)y;(x) be the Galerkin approximate solution of the
problem (1.14)—(1.16), wherey;(t) (i = 1,2,..., N) are functions to be determined,
N is a natural number. Suppose that the initial data) and (x) can be expressed by
@(x) =72 Biyi(x), v(x) = Y 21 viyi(x), respectively, wherg;, y; (i=1,2,...) are
constants. Then, substituting the approximate solutjp(x, ) into (1.14)—(1.16), we ob-
tain thatvy (x, r) solves the following problem:

UNtt — UNxx — QUNxxtt + bva4 —dvnxxr = f(UNx)x, (21)
N (0,8) =vnx (1, 1) =0, wvp,3(0,2) =vy,3(,1) =0, (2.2)
vy (x,0) =pn(x), vNi(x,0)=YN(x). (2.3)

Multiplying both sides of (2.1) and (2.3) by (x), respectively, and integrating an, we
get

(UNtr — UNxx — AQUNxxtr + DUy 4 — dUNxxr, Ys) = (f(UNx)x’ ys)’ (2.4)
aNS(O):ﬁ57 aNSl‘(O):ySv S=1,2,...,N, (25)

where(-, -) denotes the inner product 6f(£2).
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Lemma 2.1. Suppose thaf € C1(R), and there is a constan@ such thatf’(s) > Co
foranys € R, ¢ € H3(2), ¥ € HX(£2) and ¢(x), ¥ (x) satisfy the boundary conditions
(1.15). Then for anyN, the Cauchy probleni2.4), (2.5) has a global classical solution
ans € C?[0,T] (s =1,2,..., N). Moreover, the following estimate holds

HUN('s t) ||i[2(9) + || le‘('s t) ||i[1(9) < Cl(T)s re [Os T]s (26)

where and in the sequéli(T) andC;(T) (i =1, 2, ...) are constants which depend @n
but not onN.

Proof. Let fo(s) = f(s) — 8s — f(0) with § = min{Cp, 0} (< 0), then fp(0) = 0,
fols) = f'(s) — 8 > 0 and fo(s) is a monotonically increasing function. Thu&(s) =
[g fo(r)dt > 0. Clearly, Eq. (1.14) is equivalent to the following equation:

Ut — Uxx — AUxxtr + mb4 — dvyyxs — 0vxy = fo(Vx)x. (27)

Obviously, Eq. (2.4) is equivalent to the following system:

(UNtt — UNxx — @UNxxit + DUy 4 — dUNxxr — SUNxx, Y5) = (fO(UNX)X7 )’s)s
s=1,2,....N. (2.8)

Multiplying both sides of Eq. (2.8) by®y,; (z), summing up fos =1, 2,..., N, adding
2(vn, vyy) to the both sides, integrating by parts and using Gronwall’s inequality, we have

2 2
lon .0 2 T Jowe G- 0) “Hl(.o)

2

where|| - | denotes the norm of the spa&é(£2). Thus (2.6) follows from (2.9) immedi-
ately.

Similarly to [14], we can prove by applying (2.9) and the Leray—Schauder fixed point
theorem [15] that the Cauchy praoh (2.4), (2.5) has a solutiomy; € C2[0,T] (s =
1,2,...,N). The proof is complete. O

Lemma 2.2. Suppose that the conditions of Lemeha hold. If f € C3(R), ¢ € H>(2)
andy € H4(£2), then, the approximate solution of the probléhil4)—(1.16) satisfies the
following estimate

o125y + Ione 50y + w15 o) < C2(T),  0<i<T. (2.10)

Proof. Multiplying Eq. (2.4) by ’AfaNS,, summing up fos = 1,2, ..., N, integrating by
parts with respect to, utilizing (2.6), and recalling that the spafE(£2) is continuously
imbedded intaC1(£2), we infer that

d
2 2 2 2
E(”UNxxt” + vyl +alloyys 1+ blluygal©)

< C3(D)(lowxxZ g, + lonssll?) +2(1d] + 1) vy, 17 (2.11)
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Using the Gagliardo—Nirenberg interptitan theorem, Young'’s inequality and Gronwall's
inequality, we conclude

loncxe 1%+ oy ,sl? + oy, 12 + oy all® < CaD (01120 o) + 115550 + 1),
1€[0,T]. (2.12)

Similarly, multiplying Eq. (2.4) by—23ay,,, summing up fos =1,2,..., N, and inte-
grating with respect to, we get

2 2 2 2
lvnas 17+ lvyea I +allvy,all” +bllvy,sl

I t
< 2|d|/ ||va4r||2dT - 2/ f,/(o)vlz\/xx(la T)UNx4r(l7 T)dt
0 0
t
+ 2/ F" (v, (0, T)vy,4, (0, 7)dt

0
t
+ 2/ / (" (N )0y + 3 (WUNDVNx Uyys + /ON Uy a )V a dx dT
02

1Y ysll? + l@gall® + allyryall® + blloysl|>. (2.13)

Using the integration by parts, the Sobolev imbedding theorem, (2.6) and (2.12), we find
that

t
—2/ 1 Ov% (1, Dy, (1) dT
0

= 2" (O[3 ([, Doy ra (U, 1) — VR (1, O)vya(l, 0)]

t
—|—2f”(0)/ (V3 (1, D)), vype(l, D) dT
0

2
< 2|f//(o)‘ {O<S[u<p’]“ (” UN)C)C('? I)HC(Q)) HUNX4(.’ I)HC(Q) + ||§0xx ”%(Q) ||¢X4||C(é)

AU

t

+ 4/ Hvax(" 7) ”C(.(_Z) ” UNxxr (5 T) ”C(.(_Z) ” Una (s t)HC(.(_Z) dt}
0

t
b
§C5(T)+C6||<P||H3(g)||<P||H5(Q)+Z||UNx5('7t)H2+/||”Nx5("t)H2dt’
0

(2.14)

where|| - e denotes the norm in the spaces?).
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Similarly to (2.14), we can prove

t
2 / "%, (0, T)vy,a, (0, 7)dT
0

t
b
<Cu(T) + cg||<p||§13(9)||<p||Hs(m + Z” U5 (s t)”z +/ lonesC, r)szT.
0

(2.15)
By the Sobolev embedding theorem, (2.6) and (2.12), we conclude
t
2// (f" (ne)VS o+ 3 (N UNxxUyys + f/(UNx) Uy 4) Vs, dx dT
0Q
t
< Co(T) + / oy ac 2 dz. (2.16)
0
Inserting (2.14)—(2.16) into (2.13) and using Gronwall’'s inequality, we obtain
w312 + oy a2+ loyge, 12+ loy,sli> < Cro(T), €10, T]. (2.17)

Multiplying both sides of Eq. (2.4) bwyg: (¢) + ASZaNm(t), summing up fors =
1,2,..., N and using the Cauchy inequality, theiggtes (2.6), (2.17) and the Sobolev
embedding theorem, we arrive at

lowielle o) < Cru(T), 0<1<T. (2.18)
This completes the proof.O
Theorem 2.1. Under the conditions of Lemn2a2, the problen(1.14)—(1.16) has a unique
global generalized solution
ve C([0,T1; H3(£2)) N C([0, T1; H*(2)) N C?([0, T1; H3(2)) = A. (2.19)
Proof. From (2.10), the Sobolev imbedding theorem and the compactness principle, we

see that the problem (1.14)—(1.16) has a global generalized soluéioh The uniqueness
of solutions is obvious. The proof is completex

Lemma 2.3. Suppose that the conditions of Lem&ahold. If g € H'(2), ¢ € H5($2),
f e CHR) and fD(0) =0 (i =2,4), then, the approximate solution of the problem
(1.14)—(1.16) satisfies the following estimate

o127y + 0Nt 56 gy + owirlls @) + onislie g, < Cra(T),
1€[0,T]. (2.20)

Proof. Multiplying Eq. (2.4) by—2A2ayy, (t), summing up fos = 1,2, ..., N, integrat-
ing by parts and using Gronwall’s inequality, we obtain
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o5 1% + oo 1+ oy, 17 + oy 12
<C) (el o) + 1¥1260, +1), 1€I0,T]. (2:21)

In the same manner, we have by multiplying Eqg. (2.4)»?)(){1\/”,([) that

Vw12 + allvy s 12 = (—viys + boy,t — dvyys, — f(ONx) 4 Vivisyy)
< Zlowsi 17 + Cra(losl? + ot 12+ lowes 12+ [ Fowa)os ). (2.22)
It follows from (2.10), (2.21) and (2.22) that
oyt 12 + lloyys, 12 < C1s(T), ¢ €[0,T1. (2.23)
Similarly, we obtain
loneaal® + loy,ael? < Cis(T), 0<t<T. (2.24)
Combining the estimates (2.6), (2.10), (2.21), (2.23) with (2.24), we get the estimate (2.20).

This completes the proof.O

Using Lemma 2.3 and following the same procedure as in the proof of Theorem 2.1, we
have

Theorem 2.2. Under the conditions of Lemnga3, the problen(1.14)—(1.16) has a unique
global classical solution

ve C([0,T1; C3(2)) N C([0, TT; C*(£2)) N C?([0, T1; C3(£2)) = B.

3. Global solutions of the problem (1.1)—(1.3)
Theorem 3.1. Suppose thatg € H*(£2), u1 € H3(2), f € C3(R) and f’(s) is bounded
below. Then, the probleigi.1)—(1.3) has a unique global generalized solution

u e C([0, T1; H*(2)) n c}([0, T1; H3(2)) N C3([0, T1; H*($2)) = D.

Proof. Differentiating (2.1) with respect to, one gets
UNxtt — Uny3 — AUN, 3y + DUy, s —dUp 3, = f(UNx)xx. (3.2)
Let
v (x, ) =un(x,1). (3.2
Substituting (3.2) into (3.1), (2.2) and (2.3), one obtains
UNit — UNxx — AUNxxrr + Dy a — dVnye = FUN)xxs (3.3)
un(©O,0) =un(,1) =0, unxx(0,1) =unxx(,1) =0, (3.4)
un(x,0)=uon(x), uni(x,0 =uin(x), (3.9)



G. Chen et al. / J. Math. Anal. Appl. 299 (2004) 563-577 571

where in (3.5)uon (x) = YN 4 a;yi (x) andugy (x) = YN | biyi(x) are the approxima-
tions of the

wo(x) =Y aiyi(x),  wi(x) =y biyi(x),
i=1 i=1

ai, b; constants, respectively.
From (3.2) and (2.10) it follows that
lunll gy + lunellgse) + lunellpzio) < C172(T), 0<t<T. (3.6)
From (3.6) and the Sobolev imbedding theorem, we find that

||MN||C3,A(_(}) + ||MNt||c2,A(Q) + ||14Ntt||clvk(_r}) <Cig(T), 0<t<T, (3-7)

where 0< 1 < 3. It follows from (3.7) and the Asdb-Arzela theorem that there ex-

ist a functionu(x, r) and a subsequence @f y (x, 1)}, still denoted by{uy (x, ¢)}, such
thatasN — oo, {uy,i(x, )} (i =0,1,2) and{uy,:,(x, )} (i =0, 1) converge uniformly
tou,i(x,?) (i =0,1,2) andu,,(x,t) (i =0,1) on Qr, respectively. The subsequences
{(Upni (0,0} (=0,1,2,3,4), {uy,i,(x,0)} ( =0,1,2,3) and{uy,i,(x,1)} (i =0,1,2)
converge tou,i(x,?) (i =0,1,2,3,4), u,i,(x,t) (i =0,1,2,3) and ui,,(x,1) (i =
0,1,2) weakly in L2(Q7), respectively. Thus the initial boundary value problem (1.1)—
(1.3) has a global generalized solutior D.
Now, we prove the uniqueness of the solution for the problem (1.1)—(1.3).
Letus(x, ) anduz(x,t) be two generalized solutions of the problem (1.1)—(1.3). Thus,
u(x,t) =ui(x,t) —uz(x, t) satisfies the following problem:
U — Uxx — AUxxer + bux4 —duyyr = fU)xx — fU2)xx, Xx€E2,1> 0, (38)
u@,) =u(l,t) =0, uxx(0,1) =uyx(,1)=0, >0, (3.9
u(x,00=0, u;(x,00=0, xef. (3.10)
Multiplying Eq. (3.8) by 2;, integrating over2, adding 2/, uu; dx to the resulting equa-
tion, and integrating by parts, we obtain

d
E(nun2 + el + Nl 1% + @l + blluse1?)

=—2d||uxt||2—2/ {f”(u1+9(uz—u1))uu1x+f'(u2)ux}uxrdx+2/uurdx
2 2

<2|d|||um||2+20 max Q|f”(u1+9(u2—u1))ulx|/Iulluledx
2

<t<T, xe

+2  max \f’(uz)\/|ux||uxz|dx+(||u||2+||uf||2)
0<t<T, xef2
2

< Cro(T) (ull® + llute 11 + lleax I + lleaxe 112),
which together with Gronwall’s inequality yields
laell? 4 Nl 1% 4 N 1 + Nt 12 + g |12 = O.
Hence, we have the uniqueness:
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Theorem 3.2. Suppose thatg € H8(2), u1 € H3(2), f € C*(2), fD(0)=0(i =2,4)
and f’(s) is bounded below. Then, the probléinl)—(1.3) has a unique global classical
solutionu(x, t).

Proof. By virtue of Theorem 2.2y(x, t) € B satisfies Eq. (1.14) and the initial boundary
conditions (1.15) and (1.16). Differentiating Eq. (1.14) with respeat &md substituting

v (x, 1) = u(x,t) into the resulting equation, we see thdk, t) is the global classical
solution of the problem (1.1)—(1.3). The uniqueness of the solution is obvious. The theorem
is proved. O

4. Nonexistence of global solutions of the problem (1.1)—1.3)

Theorem 4.1. Letu(x, t) be a generalized solution or a classical solution of the problem
(1.1)—(1.3). Suppose that the following conditions are satisfied

4 . TTX b/ . TTX
(1) —Z/uo(x)SIanx—a>O, —Z/ul(x)SIanx—,B>0,
2 2
(2) (i) f(s) € C2(R)is an even and convex function satisfying
12 + br?
f@=0 and fl@)-—Ta>0
(i) f(s) grows fast enough as— oo, so that the integral
00 y _1
dn? 2 272 12 4+ br? 2
B—m/[ﬂ +mf<f<”‘ 2 S)f’s v 4D
o o

converges whed > 0, moreoverS3 < 1; the integral

T, 22 (7 24 bn?
T2=/ B Y e an? /f(s)ds— oz Y
o

o

NI

2072 2 -
7e(lc+bmc) ,
7 d 4.2
1202 +an?) * } Y (4.2)
converges foel < 0.
Then, when! > 0,
lim sup|u(x, )| =00 (4.3)

=1y xef2
for some finite timey < 71 = —% In(1 — B); whend <0,

lim suplu(x, )| = oo (4.4)

=1y xef2

for some finite timep < 7, whereT> is given by(4.2).
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Proof. Let
g . TX
¢(t) = —Z/u(x)SIanx.
2
Multiplying both sides of Eq. (1.1) by; sin“* and integrating by parts, we obtain
2 4 2
< “ >¢+(7IT ]9114)¢+d7; ¢——1/f(u)xxsm—dx (4.5)
2

Since f (s) is even and convex, we have by using integration by parts and the Jensen in-
equality that

/f(u)xx sin— /f(u)sm—dx

l e

12 f( /usm—dx) 7z f(@). (4.6)

2
Substituting (4.6) into (4.5), one gets
" dn? . 72(1%+4bn?) n?
> 4.7
¢+ 12+an2¢+ 12(12 4+ an?) ¢ lz+an2f(¢) 4.7

with ¢(0) =« > 0, $(0) = 8 > 0.

In order to provep(r) > O for anyz > 0, we first show thatf (s) — IZJ;IZ’”Z >0 for
all s > «. In fact, sincef € C2(R) is even and convex function, we hay&(s) >
and £/(0) = 0. DenoteF(s) = f(s) — 2 *;’;” s, then F”(s) = f”(s) > 0. ThusF’ (s) is
a monotonically increasing function. By virtue of

2 2 2 2
FO=70=0  FO=/0-—3" =" <0
and F(«) > 0, we see thaF'(s) takes its minimum at some poisg in (0, ) and F’(so)
= 0. Thanks to the monotone increase 0f(s) we find thatF’(s) > F’(sg) = 0, for
s > s, i.e., whens > sg, F(s) is a monotonically increasing function. In particulﬁ?gs)
is monotonically increasing ifix, oo) and F (s) > F(«) > 0. Thusf (s) — 2 “’” s >0 for
als > a.
Now, we provep(t) > 0 for anys > 0. Suppose that this result is false. Then there is
fo > 0, such that when @ ¢ < 1, ¢(r) > 0, buté (1) =

d?‘[2
First of all, we consider the cagk> 0. Multiplying (4.7) bye12+w2' and integrating
over (0, t), we obtain

1 t

d . _dr? 2 12 b 2 2
/E(Wﬂ””zr)df 2 lz_fﬁ/[f@) 2 il ¢]e12+aﬂ2rdt. (4.8)
0 0

By the definition oftg, ¢ () > « for 0 < ¢ < 1. It follows from (4.8) that
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1

o x? w2 2+br? | a2,

p=e 12+an2t{,32+m/|:f(¢) 17¢1|312+“”2rdf >0,
0

t € (0, 10).

Thereforeg(to) > 0. This contradicts the fact thatzg) = 0. Hencep(r) > 0 forz > 0.

It is easy to see thap(r) > o for r > 0. Hence, wheni > 0, multiplying (4.7) by
Zdﬂz 72
2¢ 12+an? q) integrating ovex0, ¢) and observing tha&lzw > 1, we get

t
22 2
612+“”2 ¢ /ﬁ +12 v4 /e[2+an |:f(¢) l +b7T ¢}¢d

+ am?
0
()
272 lz—i-byr
Y /[f( - ]ds.
¢ (0)

Thus

12+ an? 2

. , 90 2 3
¢>e‘zz+an2’:ﬁ2+”7/[f(s) tor s:|ds} , t>0. (4.9

o

By separation of variables from (4.9), we deduce

d¢ dn?
— > P, (4.10)
{,32 12+an. / f (f() l+b7‘[ )ds}i

Integrating (4.10) ove(O, r), we have

o 2 O y 12+b

__an” _ T T

1-—e 12+an21< m / {ﬁ +12 /(f( )_ S) ds dy.
* (4.11)

Nl

o

Thusg (1) develops a singularity in finite timg < 71 = L +“” In(1— B).
Finally, since¢ () > 0, we obtain

o) =|p)| = ‘—%/u(x t)sdex

2

which proves (4.3).
In the case off <0, we see from (4.7) that

. 2 +b
e (e @12
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Similarly, we can prove(r) > 0 for r > 0. We multiply the differential inequality (4.12)
by 2¢(¢) to get

d| .» 72 12 + b2 2 .
- -2 d >0.
ai|® T v\ T Y /f(s) s

Thus

. 2 272 o 12 4 b2 72(% + br?)
(3()) >ﬂ2+m(/ f&)ds = —5 ¢2>+ Py o o?. (4.13)

o

Similarly, we conclude from (4.13) that
¢ (1)

y _
272 12+ br? 72(12 4+ brr?)
t < 2y = ds — 2+ 202 dy.
/:’3 +lz+an2</f(s) ST Y T izt an) @ Y
o

o

NI

Thereforeg (1) develops a singularity in finite timg < 7».
Finally, sincep (r) > 0, we have

¢ (1) < suplu(x, 1),
xXeR

which proves (4.4). The theorem is provedi

Corollary 4.1. For eachp, 1 < p < 00,

1
)4
lullrr2) = </|u(x,r)|”dx)
2

blows-up in finite time.

5. The problems (1.6), (1.2), (1.3) and (1.5), (1.2), (1.3)

In this section we apply the above theory to the problem (1.6), (1.2), (1.3) and the
problem (1.5), (1.2), (1.3).

Theorem 5.1. Suppose thatig € H4(2), u1 € H3(£2). Then, the problentl.6), (1.2),
(1.3) has a unique global generalized solutior C ([0, T]; H*(22))NCL([0, T1; H3(£2))
NC2([0, T1; H3($2)).

Proof. By virtue of Theorem 3.1, it is enough to prove théltu) = ;11(3cu2 + 12u) is

bounded from below. In fact,
1 6 \° 3_ 3
_(fscH ) _3.3
4 V3c ¢ ¢

flu) = %(?wz +12u) =

The theorem is proved.O
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By the contraction mapping principle [16] or the Galerkin method [17] we can prove
that the problem (1.5), (1.2), (1.3) has a unique local generalized solution and a unique
local classical solution. The following theorem then follows from Theorem 4.1.

Theorem 5.2. Letu(x,t) be the generalized solution of the probléin5), (1.2), (1.3).
Suppose that the following conditions are satisfied

1) —%/uo(x)sinnl—xdxza>0, —251 ul(x)sin”l—xdxzﬂ>0;
2 2
3, I2+bn?
Then
lim sup|u(x, )| = oo (5.1)
t—>tq x€R

for some finite timey < 7.

Proof. Since

00 y _

. 272 352 12+ br? 72(12 4+ br?)

Ty = 2 | | Sds - ——? |+ o a? | d

2 /[/3 +12+an2</ 2 Tz ) T e Y
o

o
® 2 2 2 2,12 2 -
T 1“4+ br (¢ + bm*)
:/[,32+7(y3—a3— 12 y2)+ 2:| dy
o

NI

NI

12+ an? 12(12 4 an?) *

converges, (5.1) follows from Theorem 4.1 immediately
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