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01. INTRODUCTION 

IN THIS note, we shall present a proof of a general result concerning the theory of weighted 

approximation over topological spaces. It is concerned with the formulation and solution 

of a problem which generalizes the classical Bernstein approximation problem, in the same 

sense that the Weierstrass-Stone theorem contains the classical Weierstrass approximation 

theorem. The subject matter that we are going to discuss engaged the interest of Arnold 

Shapiro and was the object of some of our mathematical conversations. A special case of it 

was treated by Malliavin [ 11. The theorem stated below extends our previous results in this 

field [2, 31. The proof indicated here follows the pattern of one already given in our Portu- 

guese expository article [3]. The adaptation of the proof to the more general case considered 

now becomes simple once we look at the problem as we do at present. 

Let us describe the content of this note in a sketchy manner. We shall deal with a 

topological space E, which we may assume to be completely regular. Let us introduce the 

algebra g(E) of all continuous real-valued functions on E. We shall also consider a set Y of 

upper-semi-continuous positive real-valued functions on E, referred to as weights. In terms 

of it we define in W(E) a certain vector subspace W’-,(E) which is given a suitable weighted 

topology ($2). We finally consider in g(E) a subalgebra d containing the unit function; and 

in %Wm(E) a vector subspace w which is an d-module, that is dw c 94’-. The approxima- 

tion problem we propose to discuss, namely that of the weighted approximation for 

continuous real-valued functions on a topological space, consists in asking for a description 

of the closure of -W in WV,(E) under such circumstances that YV is an d-module. This 

problem is as yet unsolved even in classical situations. We shall deal here with a more 

precise, hence less general, form of this problem. We shall look for a description of the 

closure of ?V by using in a natural manner the equivalence relation E/d on E determined 

by -rB, namely through the notion of localisability of W under d in +?V_,(E) ($3). We then 

prove a general sufficient condition for localisability ($6) which in a sense not described here 

is fairly close to being necessary. Our theorem reduces the weighted approximation over 
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topological spaces to the Bernstein problem over finite dimensional vector spaces. In this 

note, we shall deal exclusively with the real case, from which the self-adjoint complex case 

is an easy consequence. The general complex case is as yet beyond our reach. 

$2. WEIGHTED TOPOLOGICAL VECTOR SPACES OF CONTINUOUS FUNCTIONS 

Let E be a topological space, which we shall assume to be completely regular without 

losing generality. We shall denote by VT(E) the algebra of all continuous real-valued functions 

on E. Put llSllK = su~(lf(4l; x E K} forfe q:(E) and K c E compact. We shall endow V(E) 

with the topology determined by the family of semi-normsf-r /lfllK, K c E compact, that is 

the compact-open topology. 

Consider a set V of upper-semi-continuous positive real-valued functions on E, whose 

elements shall be referred to as n!eights. Introduce the weighted topological vector space 

VY,(E) formed by all f E V(E) such that z!f is bounded on E, for any u E Y. Put 

llfll” = suP{&44f(x)l; x E E} forfE %‘V,(E) and v E V. We shall endow WVa(E) with the 

weighted topology determined by the family of all semi-normsf-r Ilfll,, v E Y. 

Actually we shall be more interested in the weighted topological vector subspace 

Wfm(E) of V-Y-,(E) formed of all,fE S’(E) such that, for any v E Y and any E > 0, the set of 

all x E E where v(x). If(x)] 2 E is compact (this set being a priori only closed). %‘Vm(E) is a 

closed subspace of $W,(E). 

Without loss of generality, we shall assume Y to be directed, in the sense that, given 

vt, u2 E “Y, there are v E Y and J. 3 0 such that v,, v2 < Au. 

When V is reduced to a single function v, we shall write %?q,(E) and @?v,(E) in place of 

WY,,(E) and %W,(E), respectively. 

Remark. We notice that, if we wanted, we could also assume Y to satisfy the following 

more stringent conditions: that if v E Y and v’ is an upper-semi-continuous positive real- 

valued functions on E such that v’ G v then v’ E “Y-; that if v E *Y- and ,? > 0 then Au E Y; and 

that if vl, o2 E ^Y- then v1 + v2 E V. In fact, if we replace Y by the smallest set containing 

V and satisfying these conditions, then the topological vector spaces %V,(E) and %‘Vm(E) 

will not change. 

$3. LOCALISABILITY IN THE WEIGHTED APPROXIMATION 

Let E, F(E), V and W’-,(E) be as indicated in $2. Consider a subalgebra SB c %7(E) 

containing the unit function 1. Consider also a vector subspace -W c WVm(E) which we 

shall assume to be an &-module, that is &w c ,YY. Notice that d defines an equivalence 

relation El& on E, if we consider x1, x2 E E as being equivalent module El&’ when 

f(xl) = f(xZ) for any f E d. We shall say that w is Zocalisable under d in WV,(E), if, for 

any given f e @W,(E), the following condition holds: a sufficient (and always necessary) 

condition for f to belong to the closure of Yf in V+‘-,(E) is that, corresponding to any 

v E Y, any E > 0 and any equivalence class Xc E modulo Elsd, there is some w E %K such 

that v(x). Iw(x) -f(x)/ < E for x E X. 
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Notice that, with this terminology, the content of the Weierstrass-Stone theorem may 

be phrased precisely as follows: if V is the set of characteristic functions of all compact 

subsets of E and .zZ = YY, then localisability holds good. More generally, if Y is the set of 

such characteristic functions it can be shown, as a consequence of the Weierstrass-Stone 

theorem, that we still have localisability, regardless of the circumstance that JZZ and w are 

equal or not. This is the motivation of the above definition. 

$4. THE BERNSTEIN PROBLEM OVER FINITE DIMENSIONAL VECTOR SPACES 

Let E be a real vector space of finite dimension n. We shall denote by Y(E) the algebra 

of all real polynomials on E, that is the subalgebra of the algebra of all real-valued functions 

on E generated by the constant functions and the linear forms. Given an upper-semi- 

continuous positive real-valued function cc) on E, we introduce the vector space %?q(E) 

semi-normed byf-+ ilfllw and its semi-normed subspace go,(E) (in the notation set at $2). 

The weight w is said to be rapidly decreasing at infinity if Y(E) c %?q,(E) or equivalently 

.9’(E) c %‘:o,(E). In such a case, o is called a,fundamental weight function in the sense of 

Bernstein provided Y(E) is dense in the semi-normed space %o,(E). 

Notice, for future reference, that if %c?~(E) represents the algebra of all bounded con- 

tinuous real-valued functions on E, then C??*(E) c %co,(E) provided that o tends to zero at 

infinity, which is the case if w is rapidly decreasing at infinity, hence if w is a fundamental 

weight function. 

We shall denote by R(E) the set of all upper-semi-continuous positive real-valued 

functions on E which are fundamental weight functions in the sense of Bernstein. 

When E = R”, where R is the real number system, we shall write 8, = B(R”) and 

Q, =Q(R”) for short. 

$5. A TOPOLOGICAL LEMMA 

In the following, given a set E and an integer m 2 1, then E” shall denote the Cartesian 

m-power E x . . . x E (m times) and A(E”) shall be the diagonal of Em. Iff : E -+ F is a map- 

ping, then f” : E” + F” shall be the mapping given by (x,, . . . , x,) +( f(x,), . . . , f (x,,,)). 

LEMMA (1). Let fi : E + Ei (i E Z) be a.family of continuous mappings from a topological 

space E into Hausdorffspaces Ei. Let {j;} i EI be separating on E, that is, $x1, x2 E E, x1 # x2, 

there is some i E Z such that fi(Xl) # fi(Xz). Then, if X is a collection of compact subsets 

of E with empty intersection, there exist i 1,. . . , i,, E I such that, if we denote by @ : E + Ei, 

X . . . x Ein the mapping given by x -+ (j;,(x), . . . , f,“(x)), the collection @(Xx) will also have an 

empty intersection. 

Proof. We may assume that X = {K,, , K,,,} is finite. By assumption K n A(E”‘) = 0, 

where K = K, x . . . x K,,, c E”. If x =(x1, . . . , x,) E Em is outside A(Em), we may find an 

open subset U c E” containing x and some i E I such that f y(U) n A(ET) = @. In fact, there 

are r, s such that x, # x,. Choose i E I so that .fi(x,) # fi(xS) and then select open subsets 

V, W c E such that x, E V, x, E W, and such that u E V, w E W imply fi(u) # fi(w). The open 
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subset U= A, x . . . x A,,, c E”, where A, = E for p # r, s and A, = V, A, = W, and the 

chosen i have the asserted properties. Once these remarks are made, we can cover K by 

a finite number of such open subsets II,, . . , U,, c Em to which there are associated suitable 

indices i,, . . . , i,, E I. Let us introduce the mapping 9’ : Em --f Eiy x . . . x Eir which is defined 

by I + (fi’: (t), . .f,r(t)). Then the image Y(K) will be disjoint from A(Eiy) x . . . x A(E,r). 

If @ is the mapping referred to in the statement of the lemma, we have @” = A .Y, where 

A: E,‘:x . . . x Ei;+ (Ei, x . . . x Ei,)‘” is one of the finitely many natural identifications 

between the two spaces in question. It follows that m”(K) = Q(K,) x . . . x @(K,,,) is disjoint 

from A((Ei, x . . . x Ei,,)m), that is @(K,) n . . . n @(K,,,) = 0, as we wanted. 

COROLLARY. Let E = fl Ei be a Cartesian product of Hausdorfl spaces. Then if a 
isI 

collection _s? of compact subsets of E has an empty intersection, there is a finite subset J c / 

such that, letting I[~ denote the natural projection from E onto the Cartesian subproduct 

gEiv h t e collection rc,(.X) will also have an empty intersection. 

Notice that the lemma and its corollary imply each other. 

$6. AN APPROXIMATION LEMMA 

Let E, g(E), Y, WY,(E), @’ and %‘” be as described in $3. We shall now introduce a 

subset A c d which topologically generates d as an algebra with unit, that is such that the 

subalgebra of ~2 generated by A and 1 is dense in & for the topology of g(E). Let us also 

consider .a subset W c -W which topologically generates -ly- as an .&‘-module, that is the 

d-submodule of W generated by W is dense in YY for the topology of @Y,(E). Let also 

%?JR”) be as defined in 54. 

LEMMA (2). Letf E %:Y,(E), v E Y andE > 0 begiven. Assume that, for every equivalence 

class X c E module E/z&+, there exists some w E W such that v(x). I w(x) -f (x)1 < e for x E X. 

Then there exist a,, . . . , a, E A, wlr . . . , W,E Wandu,,...,a,E%?Sb(R”)such that 

4X). i~lai[al(X)y . . . , a.(X>]wi(X> -f(x) < E for x E E. 

Proof. Consider the space of all real-valued functions on A: denote it by RA and 

endow it with the Cartesian product topology, also called finite-open topology. Let rr : E-+R* 

be the continuous mapping which to every x E E associates the function rc(x) E R* such that 

n(x)(a) = a(x) if a E A. To every y E z(E) we may associate n-‘(y) c E. We thus obtain a 

one-to-one correspondence between n(E) and the set of equivalence classes of E modulo 

E/d because A topologically generates SZI as an algebra with unit. By the assumption made 

in the lemma, for each y E z(E) there exists some wY E YF such that v(x). lw,(x) - f(x)1 -C E 

for x E 7~~ l(y). We may assume that wu belongs to the vector subspace of YY generated by 

W, because W topologically generates YY as an d-module and the elements of & are 

constant on z-i(y). Let us denote by KY the compact subset of E of all x where 

V(X). jw,(x) -f(x)! 3 E. Then x(K,) is a compact subset of r&G). Since y 4 n(K,,), the inter- 

section of all n(K,,), as y E z(E), is empty. We now apply the corollary to Lemma (1). There 



WEIGHTED APPROXIMATION OVER TOPOLOGICAL SPACES 129 

are al, . . . , a, E A such that, if we denote by CD : E -+ R” the mapping t + O(f) =(a,(f), 
. . . ) a,(t)), then the intersection of all O(K,,), as y E n(E), is empty too. By compactness, we 

findy,, . . . , y,,, E n(E) such that the intersection of all @(KJ, for i = 1, . . . , m, is empty. We 
now use normality of R” and the method of continuous partition of unit. We then get 
positive functions ml, . . . , u, E %(R”) such that a1 + . . . + a, = 1 and C(~ vanishes on (P(K,,) 
for i = 1, . . . , m. We claim that 

a,(x)]w,,,(x) -f”(x) < E for x E E. 

This is a consequence of 

(2) v(x>cli[al(x), *** 3 an(x)]. Iwy*tx) -f(x>l G Eai[ulCX)s .*a 9 un(x>l 

forxEE,i= 1, . . . ,m, 

and from the fact that, once x is given, there is some i for which the inequality (2) holds 
true in the strict sense. In fact, to prove (2) we simply remark that, if CD(x) E z(K,J, then 
ai[@(x)] = 0; and if a(x) $ n(KJ, then V(X). Iw,,,(x) -f(x)! < E. In both cases, (2) is 
satisfied. On the other hand, once x is given, there is some i for which gi[@(x)] > 0. This 
requires that O(x)+! @&), hence that v(x). Iw,,,(x) -f(x)1 < a. We then conclude that (2) 
is true in the strict sense. By addition, (1) follows from (2). Finally, since each wY, is an 
element of the vector subspace of w generated by W, as we already said, (1) implies the 
inequality in the statement of the lemma, as we wanted. 

47. REDUCTION OF THE TOPOLOGICAL CASE TO THE 

FINITE DIMENSIONAL VECTOR SPACE CASE 

The notation will be that already introduced in $4 and $6. 

T~OREM. Suppose that, for every v E Y, every a,, . . . , a, E A and every w E W, there 
are a,,,, . . . , aN E A, where N > n, and o E QN such that 

v(x). IWWI G o[&>, ... > a,(x)] for x E E. 

Then -Mr is loculisuble under JZZ in gym(E). 

Proof. Let us start by remarking that, if v E Y, a,, . . . , a, E A; w E W, u E %Z*(R”) and 
6 > 0 are given, there exists some w’ E YY for which 

(1) v(x). W(x) - cr[%(X), * * * 3 ~“(X>lW(X)l < 6 for x E E. 

In fact, by the assumption, there are u,,,~, . . . , aN E A, where N > n, and o E nN, such that 
the inequality in the statement of the theorem holds true. Now u E ‘XJR”) determines 
CI’ E Vr,(RN) by the formula cr’(t,, . . . , fN) = a(t,, . . . , t,) for tl, . . . , fN E R. Since 
U,(RN) c %?m,(RN) (@I), there is p E gN such that 

4t, , . . . , fN)ab(tl, . . . , h> - a(tly . . . , &)I < 6 for t,, . . . , t, ER. 
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Therefore we shall have 

4x). II-$&>9 * *’ 3 4mlNx) - ~cq(x>Y ..* 2 ~“(X)lWl < 
o[a,(x), . . .T, M31* IPC44 . *. 3 Gwl - 4~I(X>, * * * , %(X>lI < 6 

which proves (1) with w’ = p(ul, . . . , a&. 

We now complete the proof of the theorem. Letfo F+‘-,(E) be such that, corresponding 
to any v E “Ir, any E > 0 and any equivalence class X c E modulo El&, there is some w E w 
such that v(x). Iw(x) -f(x)1 < E for x E X. By Lemma (2), once_& v and E are given, there 
are a,, . . . , u,EA, wl, . . . , w,,,E Wand cI1, . . . ,a,,,Egb(Rn) such that 

v(x). f ai[al(x>, ..* 3 un(x)lwi(x> -_fCx) < & for x E E. 
i=l 

We apply the preliminary remark made above to get w;, . . . , wk E W such that 

v(x).IwI(x) - ai[ul(x>9 *-* 9 un(x)]wi(x>l < 6 forxoE,i=l,..., m, 

from which we get v(x). Iw(x) -f(x)1 < 2s for x E E, where w =cwi, provided 6 = z/m. 
This finishes the proof. 

COROLLARY. Suppose that A = (a,, . . . , a,,>, W = (wl, . . . , w,} and that, jk every v E V 
and every i = 1, . . . , m, there is co E Q, such that 

v(x)*Iwi(x)I G o[“l(x>3 *** 9 4X>] 

Then Yf is loculisuble under .a’ in %&T,(E). 
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