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ABSTRACT 

We consider n x n primitive nearly reducible matrices for n > 5. As defined by 
Ross, let e(n) be the least integer such that no such n X n matrix has this integer as 
its exponent. The investigation of e(n) is the first open problem in Ross’s paper. Here 
we offer a method to compute e(n) for small n. Then we generalize Ross’s estimate, 
which is e(n) > n + 1, to 

e(n>>(p+l)(n-p) 

for n 2 2p + 1, and p 2 11 a prime less than 109,000. There are extant various 
estimates and conjectures concerning the difference of successive primes. If one of the 
most hopeful of these conjectures be true, then our lower bound for e(n) holds for all 
p > 11 and in fact we obtain 

i) 
n 3/z 

e(n)>$- -2 
( 1 

1. INTRODUCTION 

The exponent set of primitive matrices is a very interesting subject to 
which many papers have contributed (see, for example, [3], [4], [6], [7], [8]). 
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R. A. Brualdi and J. A. Ross investigated the exponent of a primitive, nearly 
reducible matrix, and gave many important results ([3] and [8]). Ross [8] 
defined e(n) to be the least integer greater than or equal to 6 such that no 
R X n (n >, 5) primitive, nearly reducible matrix has this integer as its 
exponent. Finding e(n) for each n >, 5 is an interesting problem. It is the 
first open problem of Ross [8]. 

In Section 2 we shall give a method to compute e(n) for small n. This is, 
of course, a partial answer for the open problem. Since it is probably very 
difficult to answer the problem completely, we turn to the question: How to 
estimate e(n)? Ross’s results for this question is e(n) > n + 2 (see Theorem 
1.1). In Section 3 we shall give some better estimates for e(n), including a 
quadratic estimate if Conjecture 3.7 for the distribution of primes holds. 

Here we list all the known results that we shall need. We always use the 
same notation as in Ross’s paper; for instance, we use y(D) for the exponent 
of a digraph D. We also use PMSD to abbreviate “primitive, minimally 
strong digraph.” 

THEOREM 1.1 (Theorem 3.3 of [8]). Given integers n 2 5 and k a 6 with 

k < n + 1, there exists a PMSD D on n vertices with y(D) = k. 

REMARKS (cf. [4, pp 6456461). Suppose D is a primitive digraph in 
which the circuit lengths are pi, pa,. . . , p,. For any ordered pair of vertices 
(i, j ) we define the nonnegative integer rij as follows. If i = j and if for 
s = 1,2 >...> u there is a circuit through vertex i of length ps, then rii = 0. 
Otherwise rij is the length of the shortest path from i to j which has at least 
one vertex on some circuit of length p, for s = 1,2,. . . , u. Let r = max rij, 
where the maximum is taken over all ordered pairs (i, j). In [4] Dulmage and 
Mendelsohn discuss the unique path property and a weaker condition. This 
weaker condition is the one we employ. Since the assumption is that certain 
path lengths look like affine combinations of the ‘p, and rij, we shall refer to 
this as the affine sum property. 

DEFINITION 1.2. An ordered pair of vertices (k, m) is said to satisfy the 
affane sum property iff for every path from k to m of length w >/ I+,,,, there 
are nonnegative integers a 1, a2,. . . , a,, for which 

W=rkm+a,p,+ ... +a,p,. 

If the ordered pair (k, m) has the affine sum property and rk,,, = r, then 
y(D)= WP,, Pp,,..., p,)+r+l. Here F(p,,p,,...,pu)is thelargestinteger 
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which is not expressible as a nonnegative integral combination of p 1, p,, . . . , p, 

(cf. [41). 
We close by summarizing properties of F and y(D) which we shall need. 

THEOREM 1.3. The function F(p,, p,,..., p,) has the following proper- 
ties: 

(i) (Cf. [5, P. 61.) If p ad 9 are relatively prime, then F(p, 9) = p9 - p 

- 9. 
(ii) (Cf. [4, p. 6441.) Zf aj = a, + jd (j = O,l,..., S) and an > 2, then 

F(u ,,,...,u,)=([~]++,,+(d-1)(.&l 

where [x] denotes the greutest integer less than or equal to X. 

(iii) Zf p( < pi for i = 1,2, then F(p;, ph) < F(P,, ~2). 

(iv) Zf the set { 91, q2,. . . , 9,} isusubsetoftheset {pl,p2,...,prr}, then 

F(9,,9,,..., 9,) a F(P,, P~>+..T P,), 

THEOREM 1.4 (Theorem 4.9 of [8]). Let D be a PMSD on n vertices, and 
let s be the length of a shortest circuit in D. Then s f 1, s f n - 1, and 
y(D)< n + s(n - 3). 

THEOREM 1.5 (Theorem 4.2 of [3]). Let D be a PMSD on n vertices. 
Then y(D) d n2 - 4n + 6, and there exists a primitive minimally strong 
digruph of exponent n2 - 4n +6 for each n 2 5. 

THEOREM 1.6 (Corollary 5.2 of [8]). Let n be an integer at least six. 
Then there exists rw PMSD D on n vertices such that either 

n2-5n+9<y(D)<n2-4n+6 

n2-6n+12<y(D)<n2-5n+9. 

There always exists a PMSD on n vertices of exponent n2 - 6n + 12; and 
there is a PMSD on n vertices of exponent n2 - 5n +9 iff n is even. 
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2. e(n) FOR A SMALL n 

Using the results listed in Section 1, we are able to find e(n) for a small 
n. Our arguments are based on directed graphs. And we shall use the other 
equivalent definition of e(n), that e(n) is the least integer greater than or 
equal to six such that no PMSD on n > 5 vertices has the integer as its 
exponent. 

First we establish the following useful lemma. 

LEMMA 2.1. For any integer m > 5 we have 

e(m + 1) 2 e(m). 

Proof By the definition of e(m) there exists a PMSD De, on m vertices 
with y( D,,,) = e(m) - 1. Since D,,, is not an elementary circuit, D, contains a 
branch r=(x,,xi,..., xk) (k > 2) by Lemma 2.3 of [8], From the digraph 
D,,, we can make a PMSD D,,, 1 of m + 1 vertices by adding the (m + 1)th 

vertex x )>I + 1 and two arcs (x,, xm+r),(xmtl, xg). It is clear that Y(D,+~) = 
y( D,,) and thus e( m + 1) >, e(m). n 

PROPOSITION 2.2. There exists no PMSD on 5 vertices with exponent 
different from 6, 8, or 11. In other words, e(5) = 7. 

Proof. By Theorem 1.4, s is 2 or 3. And any PMSD should be isomor- 
phic to one of the digraphs in Figure 1: 

y( D5) = F(2,3) +6+ 1 = 8, 

y(D,) = F(3,4)+5+1 =ll. 

[In each digraph Di the ordered pair (a, a) or (a, b) of vertices has the affine 
sum property, and ?,a or r,, is equal to max rij for all ordered pairs (i, j) in 

Oi.3 
n 

PROPOSITION 2.3. For n = 6 and n = 7, the two gaps shown in Theorem 
1.6 are the only two gaps of PMSD on n vertices. Therefore e(6) = 13 and 
e(7) = 20. 
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b 

aEr b4a 
FIG. 1 

Proof. 

Casel: n=6. By Theorem 1.1 e(6) > 8, and by Theorem 1.6 e(6) < 13. 
It suffices to prove that there exist PMSD on 6 vertices of exponent k such 
that k = 8,9,10,11. (By Theorem 1.6, k # 12.) Figure 2 shows that there 
really exist these kinds of digraphs. 

Case2: n=7. By Theorem 1.6 e(7) < 20, and by Lemma 2.1 e(7) >, 
e(6) = 13. It suffices to prove that there exist PMSD on 7 vertices of exponent 
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a& 
D2 
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FIG. 2. 

k such that k = 13,14,. . . , 18. And the digraphs in Figure 3 are the digraphs 
desired. [As in Figure 1, in both Figure 2 and Figure 3 the marked ordered 
pair (a, a) or (a, b) of vertices in each digraph 0, has the affine sum 

property and r,,,, or r,, is equal to max ri j for ail ordered pairs (i, j) in Dj.] 

Thus we have 

y(Di)=7+i, i = 1,2,3,4, 

and Figure 2, and 

y(D,)=12+i, i = 1,2 ,..., 6, 

for Figure 3. 
If we notice that Theorem 1.6 implies e(n) < n2 - 6n + 13, then Proposi- 

tion 2.3 implies that the equality holds when n = 6 or 7. n 

Unfortunately, this nice result does not hold for n > 7. In fact, when 
n = 8 we have n2 - 6n + 12 = 28 and e(8) = 21. This can be proved by an 
argument which we outline as follows. Let t denote the length of a maximal 
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circuit in a PMSD D with 8 vertices. Since t can not be 8, we have four 
cases: 

Cuse I: t = 7. In this case the digraph D has only two kinds of circuits 
of different lengths and the digraph shown in Figure 4(a) has the lowest 
exponent 23 by Theorem L3(iii). [The pair (a, b) has the affine sum property 
and r,,,, = r=ll, F(3,7)+r+1=11+11+1=23.] Therefore there is no 
PMSD with n = 8 and t = 7 which has exponent 21. 

Cuse ZZ: t = 6. There are two subcases: 

(II 1 ) D has only two kinds of circuits of different lengths. In this subcase the 
digraph shown in Figure 4(b) has the lowest exponent 26 by Theorem 1.3. 
[The pair (a, b) has the unique path property, and rcz6 = r = 6, F(5,6) + r + 1 
= 19+6+ l= 26.1 
(II,) D has more than two kinds of circuits of different lengths. In this 
subcase the digraph shown in Figure 4(c) has the highest exponent 16 by 
Theorem 1.3(ii)-(iv). [The pair (a, b) has the affine sum property, and 
r c,b=r=8, F(3,5,6)+r+1=7+8+1=16.] 

Therefore there are no PMSD with n = 8 and t = 6 which has exponent 21. 

Case III: t = 5. In this case the digraph shown in Figure 4(d) has the 
highest exponent 26, so there is no PMSD with n = 8 and t = 5 which has 
exponent 21. 

Cuse IV: t G 4. It is obvious that there is no PMSD with n = 8 and 
t < 4 which has exponent 21. 

Therefore we have e(8) = 21. 

LEMMA 2.4. Suppose s and t are any positive integers such that 2 < s < t 
< n, ( s, t ) = 1, where (a, b) denotes the greatest common divisor of a and 6. 
Then there exists a PMSD on n > 2s + 1 vertices with exponent k for every k 
such that 

m<k<M=min{st+n-2s,st+t-s-l} (2.1) 

where m is determined by s, t, and n, and the length of the interval [m, M] 
is greater than 1 if t < n - 1. 

In the course of the proof we shah use a certain type of subpath 
sufficiently often that we give it a name. 

DEFINITION 2.5. Let (Y be a circuit of the digraph D, and let p be a 
subpath of LX. We call j3 a pure subpath of (Y iff no vertex of p belongs to a 
circuit of D other than 0~. 
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a 

(A) (B) 

(C) (D) 

FIG. 4. 

Proof. We shall construct D, a PMSD on n vertices, with only one 
elementary circuit of length t, several elementary circuits of length s, and no 
other elementary circuits. Then Theorem 1.3 allows us to compute the 
exponent of D, that is 

y(D)=F(s,t)+r+l=st-s-t+++l. (2.2) 

To begin, construct a digraph D with two circuits as follows. The first 



186 YANG SHANGJUN AND GEORGE P. BARKER 

circuit, (Y, passes through vertices 1,2,. . . , t, and the subpath p passing 
through 1,2,. . . , d is pure, where 

d=min{n-s,t-1). (2.3) 

(see Figure 5). The other circuit passes through 

t-t1 ,...I n,d+l,..., t. 

Now the pair of vertices (1, d ) has the affine sum property and 

rlsd = T = t + (d - 1). 

Thus 

y(D)=&-.s--_+f+l=st-ssdd. 

By (2.3) we have 

y(D)=min{st+n-2s,st+t-s-l}. 

If n - i = 1, there is only one PMSD on n vertices with a circuit of length t 
and a circuit of length s, whence 1~1= M = st - 2s - 1. If n - t > 1, first 
modify D so that it has a circuit length s in the portion of D complementary 
to p and so that one circuit of length s passes through d. Now change D so 
that LY remains the same, j3 becomes (1,2,. . . , d - l), and a circuit of length s 
passes through d (see Figure 5 again). The exponent of this digraph is M - 1. 
Continuing in this fashion we obtain digraphs with pure subpaths (1,2,. . . , 
d-2),(1,2 ,..., d-3) ,..., and respective exponents M - 2, M - 3,. . . . n 

As an example, let us consider the case that n = 9, s = 3, and t = 7. In 
this case d = t - 1 = 6, M = st + t - s - 1 = 24, n - t = 2 > 1, and the di- 
graphs in Figure 6 have exponents 24 = M, 23,22,21, and 20 = m = M - 4. 

For the given n, if a pair (s, t ) of positive integers satisfies the conditions 
of Lemma 2.4, then by the lemma we have an interval [m, M] such that there 
is a PMSD with only two kinds of elementary circuits of length s and t, 
whose exponent can be any integer k E [m, M]. For convenience we use the 
notation (s, t),ni,, and (s, t),,, for m and M. 
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n e(n) > n 

10 36 17 
11 47 18 
12 49 19 
13 63 20 
14 87 21 
15 106 22 
16 107 23 

e(n) > 

126 
151 
176 
203 
232 
233 
248 

Now there is a general procedure for computing e(n) for small n which is 
based on Lemmas 2.1 and 2.4: 

1. Find a pair (si, ti) satisfying the conditions of Lemma 2.4 and 

2. Among all the pairs (s, t ) such that s and t satisfy the conditions of 
Lemma 2.4 and s + t = s1 + t, or s + t = si + t, + 1, choose a pair (as, tz) 

such that (sa, k&,in d (si, tl)max + 1 and (ss, Qmax > (si, tl),max. Simi- 
larly choose (sg,ts),(sq,tq) ,... . 

3. If step 2 stops at (su, t,), and there is no PMSD on n vertices having 

exponent (sl,, tll),nBx + 1, then e(n) = (su, t,),,, + 1. 

For instance, when n = 9 we have (3,7),i, = 20 < e(B), (3,7),,, = 24 (see 
Figure 6); (4, 7),,in = 26 = (5, 6),i,. We might use an argument similar to the 
one we used for e(8) to prove that there is no PMSD on 9 vertices having 
exponent 25. So we claim e(9) = 25. When n = 10, we have (3, f&,, G 23, 

(3,8),,,, 2 28; (4,7),,i” G 26, (4,7),,, 2 36; (5,7),, G 31, (5,7),, > 35; and 
hence e(lO) > 36. When n = 11, we have (5,7),, > 36, (6,7&, < 37, 

(6,7),11,X > 41, (5,9),,i, d 42, (5,9),,, >, 46. Therefore e(l1) >, 47. In this way 
we may compute a lower bound of e(n) one by one for small n. We list a few 
of them in Table 1 for future use. 

3. LOWER BOUNDS FOR e(n) 

Theorem 1.1 implies 

e(n)>n+l, (3.1) 
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and Theorem 1.6 implies 

e(n)<n’-6n+13. (3.2) 

These are the known estimates of lower and upper bounds for e(n) given by 
Ross [8]. As we pointed out before, the equality in (3.2) holds when n = 6 or 
7. So (3.2) gives a very good estimate of upper bounds for e(n). But (3.1) 
does not offer a good estimate of lower bounds for e(n). From now on, 
improving the inequality (3.1) is our task in this paper. First of all, we need 
the following theorem: 

THEOREM 3.1. Let pa5 be any prirrw number and n>Zp+l, t*= 
min{ n - [n/p], n - p + l}. If 

e(2p+l)>p(p+l)+l (3.3) 

and 

e(3p) > 2p2 + 1, (3.4) 

then 

44 ’ 
i 

min{(p+l)(n- [n/p] -2),(p+l)(n-p-l)} if pit*, 

min{(p + l)(n - [n/PI - l),(P + lKn - PI) if ptt*. 

(3.5) 

Proof. For any integer t such that p t t and 

p+2<ttmin{n- [n/p],n-p+l} =t* 

there exists a PMSD on n vertices with exponent k for each k satisfying 

b,<k,<B,, 

where 

b,=F(p,t)+t+l=pt-p-t+t+l 

=p(t-1)fl (3.6) 
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and 

B,=F(p,t)+(Zt-2)+1=pt-p-t+2t-1 

=(p+l)(t-1). (3.7) 

In fact, we could form, as shown in Figure 7, a PMSD on n vertices with only 
one elementary circuit (Y of length t whose vertices are named 1,2,. . . , t, and 
n-t (>, [n/p]) circuits fll,&,..., /3,_t of length p such that pi contains 
vertices 

t+i,(i-l)p+l,(i-l)p+2 ,..., ip-1 for i=l,e,...,[t/p]; 

and Pr,,,l+l,...2 j3,_, contain the same p - 1 vertices of (Y: 

t-1,t-2 )...) t-p+l. 

It is clear that the digraph in Figure 7(a) has exponent 

b,=F(p,t)+t+l=pt-p-t+t+1=p(t-1)+1, 

for the ordered pair of vertices (t, k) has the affine sum property and 
t I. I = r = t ( ri. j < t for any two vertices i and j outside a). 

Set pi= {2,3,..., p - 1, p, t + l}, and keep the remaining portion of the 
digraph in Figure 7(a) the same to obtain a new digraph with exponent 
F( p, t ) + (t + 1) + 1= p( t - 1) + 2, since in this case the pair (t, 1) has the 
affine sum property and r,,, = P = t + 1. Now construct a new digraph by 
shifting the vertices of p, on [Y one step clockwise, that is, set 

&= {3,4 )...) p+l,t+l}, 

to obtain a pure subpath {t, 1,2} f o LY no vertex of which belongs to any 
circuit of length p. This modification to fil results in a digraph of exponent 
F( p, t ) + (t + 2) + 1 = p(t - 1) + 3. [The pair (t,2) has the affine sum prop- 
erty, and r, 2 = T = I +2.] Continue to shift p, in this way step by step 
toward &. After j3r and & have p - 1 common vertices on (Y, shift their 
common vertices toward &; carry this out until all the circuits of length p 
have p - 1 common vertices: t - 1, t - 2,. . . , t - p + 1. This gives exponents 
p(t - l)+l,..., p( t - 1) + (t - p). We construct yet another digraph with 
the same circuit LY as before and one fewer circuit of length p. The remaining 
circuits are called /.?a, &, . . . , &, _ , and are constructed as follows. 

We connect t+l to t-2 and have (t-p+l,...,t-2,t+l} as the 
common subpath of /?a, &,. . . , @,_ t. However, each new circuit ,f3j will 
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contain the p-l common vertices: t+l,t-2,t-3,...,t-p+l, for j= 
2,3,..., n - t [see Figure 7(b)]. We ca.II this process “canceling p.” Analo- 
gously, we may cancel & &, . . . , &_2. Now cancel & and let (t +l,t+2, 
t+3,t-p+l,..., t - 3) be the common subpath of &, p,, . . . , &_ t,. . . . 
Finally, cancel &_a and let {t+l,t+2 ,..., t+p-2 ,..., n,t-p+l} be 
the common subpath of all remaining circuits of length p [Figure 7(c)]. 

In this way we get a series of pure subpaths of (Y: 

{t,1},{t,1,2} ,..., {t,1,2 ,... ,t-P>> 

{t-l&l )..., t-p} )..., {t-p+2 ,..., t,1,2 ,... *t-p>, 

such that the two ends of each pure path form a pair (i, j) which has the 
affine sum property and rjj = T. Therefore there are a series of PMSD on n 

vertices with exponents 

b,=p(t-l)fl,p(t-1)+2,..., 

B,=F(p,t)S(2t-2)fl 

=(p+I)(t-1). 

Since t > p + 2, we have 

B ,_r=(p+I)(t-2)=p(t-1)+t-p-2 

>, p(t - 1) = b, - 1. 

Therefore if e(2p+1)>p(p+l)+l=b,+z, then let t=2p-1 and we 
have, by Lemma 2.1, a PMSD on n > 2p + 1 vertices with exponent k from 6 
to B+r. 

When t >, 2p + 1, we have n > t + p - 12 3p and hence 

e(n) >, e(3p) 2 2p2 + 1 = bzp+ 1. 

And for s > 3, Bsp_ 1 = ( p + l)(sp - 2) > sp2 + 1 = b,,, 1. Therefore there 
exists a PMSD on n vertices with exponent k such that 

6<k,<B,a -, =min((p+l)(n-[n/PI -2),(p+l)(n-P-1)) if pit*, 

b<k<B,.=min((p+l)(n-[n/p] -l),(p+l)(n-P)} if pit*. 

n 
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COROLLARY 3.2. We have 

e(n) > min{6( n - [n/5] - 2),6( n - 4)) for n>,ll, (3.8) 

e(n)>min{8(n- [n/7] -2),8(n-6)) for n>,15, (3.9) 

e(n)>min{lz(n-[n/11]-2),12(n-10)) for n >, 23. (3.10) 

Proof. By Table 1, we have 

e(2(5) + 1) > 47 > 5(5 + 1) + 1, 

e(2(7) + 1) > 106 > 7(7+ 1) + 1, 

e(2(11)+1)>248>11(11+1)+1, 

e(3(5)) 2 106 > 2(52) + 1, 

e(3(7)) 2 232 > 2(7’) + 1, 

e(3(11)) > e(23) >, 248 > 2(112)+ 1. 

Therefore the conditions (3.3) and (3.4) of Theorem 3.1 hold for p = 5, 7, and 
11, and hence (3.8), (3.9), and (3.10) follow from (3.5). n 

THEOREM 3.3. Let p, > 11 be any prime such that 

e(n) > (pl +l)(n - PI) for 2p1+1<n<3p,-1. 

lf p > p, is another prime satisfying 

2p+1<3p,-1 

and 

(Pl+l)(2P+l-P,)>,P(P+l)+l, 

then 

e(n)>(p+l)(n-p) fir 2p+l<nn<p-1. 

Proof. When n < 3p - 1, we have 

min{ n - [n/p], n-p+l}=n-p+1<2p. 

(3.11) 

(3.12) 

(3.13) 
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According to the proof of Theorem 3.1, for any integer t such that p + 2 < t 
< 2p - 1, there exists a PMSD on n vertices with exponent k for each k 
satisfying 

where b, = p( t - 1) + 1, B, = (p + l)( t - 1) 2 b,, 1. Since (3.11) and (3.12) 
imply e(2p + 1) > (pl + 1)(2p + 1- p,) > b,+z, there exists a PMSD on n 
vertices of exponent k for each k such that 

6<k<B 2,-1=(p+l>@p4. 

But n < 3p - 1 implies (p c 1)(2p - 2) >, (p + l)(n - p). Finally we have 
e(n)>(p + l)(n - P). m 

LEMMA 3.4. Zf the inequality 

(P-PlY<Pl (3.14) 

holds fnr any two consecutive primes p, > 127 and p, and the inequalities 
(3.11) and (3.12) hold. 

Proof (3.14) implies 

P,(2P - Pl+ 1) ’ P2. (3.15) 

and (3.15) obviously implies (3.12). Then (3.14) and p > p1 > 127 imply 

P1-2 
p-P,++- 

2 ’ 

from which (3.11) follows. n 

THEOREM 3.5. Zf the inequality (3.14) holds for any two consecutive 
primes p, > 127 and p,, then for any prime p > 11 and n >, 2p + 1, 

e(n) > (p + l)(n - ~1. (3.16) 

Proof. We have, by Theorem 3.1, that e(n) > (11 + l)( n - 11) for 2(11) 
+ 1 <n < 3(11)- 1. And (3.11), (3.12) hold for p,= 11, p = 13. Hence 
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Theorem 3.3 implies 

e(n)>(13+l)(n-13) for 2( 13) + 1~ n < 3( 13) - 1. 

Set pi = 13, p = 17, and note that (3.11) (3.12) are true. Then Theorem 3.1 
implies e(n) > (17-t l)(n - 17) for 2(17) + 1~ n < 3(17) - 1. It is easy to 
check that the inequalities (3.11) and (3.12) hold for any two consecutive 
primes pi and p < 127. Therefore the inequality (3.13) holds for p =Z 127. 

If p > p, > 127 and (3.14) holds, then (3.11) and (3.12) hold by Lemma 
3.4. In this case we may use Theorem 3.3 to complete the induction which 
implies 

e(n) > (p +l>(n - P> (3.17) 

for any prime p > 11 and any n for which 2p + 1~ n < 3p - 1. 
If n > 3p - 1, then there must be a prime p’ > p such that 2p’ + 1~ n < 

3p’ - 1, and thus e(n) > (p’ + l)( n - p’). In fact if there is no such a prime 
p’, then there should be two consecutive p’ and p” satisfying 

p” > p’ > p 

and 

2p”+1<3p’-1, 

or 

p”- p’> ; - 1, (3.18) 

The inequality (3.18) is not true for 11~ p’ < p” < 127 and is contradk- 
tory to (3.14) for 127 G p’ -c p”. Since n > p’+ p + 1, we have 

n(p’- P) ’ CP’- P)(P’-t- P + I), 

or 

(p’+ l)(n - P’) ’ (P + lb - PI. 

Now (3.17) holds for any prime p 2 11 and n >, 2p + 1. 

(3.19) 

n 
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THEOREM 3.6. Zf the inequality (3.14) hoids for any two consecutive 
primes p, > 127 and p, then for any integer n > 23 we have 

n2 n 3D 
e(n) > 4 - 

( i 2 . 

Proof By Theorem 3.5, we have 

e(n) > (p, + l)(n - PI>~ 

(3.20) 

(3.21) 

where p, is the greatest prime less than or equal to (n - 1)/2. If p, = 

(n - 1)/2, then (3.21) implies e(n) > (n/2)2 and thus implies (3.20). So we 
may only consider the case that p, < (n - 1)/2 and p > n/2, where p is the 

prime next to p,. By (3.14) we have 

P-P,<& (3.22) 

Now (3.21) and (3.22) imply that 

e(n) ’ 
h+l)(n+1) 

2 

n 
’ 2 PI 

( 1 

i 
1 

since p,+--5 
1 

n n 
‘2 2- P, 

i 1 
J- 

i 

n 
since --p<o 

2 1 

(since (P - pl12< pl) 

n n n 
>--- - 

( si 22 2 

n 

i 
since Pl<-- * 

2 i 

There the inequality (3.20) holds. m 

REMARK. The inequality (3.20) already holds for n < 23 by Table 1 and 
Lemma 2.1. 

Theorem 3.6 gives a nice quadratic estimate for a lower bound of e(n), 
by requiring (3.14) hold for any two consecutive primes p, > 127 and p < n. 

(3.14) can be described as the following conjecture for distribution of primes. 
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CONJECTURE 3.7. Let p,, denote the nth prime and d, = P,,+~ - p,. 
Then 

d,<& for any n > 30. (3.23) 

Conjecture 3.7 can be verified from tables of primes (see for instance [2]) 
for small values such as 127 < p, < 100,000. Estimates of d n have been given. 
There is a discussion of these estimates in [9, p. 1001, where the best bound is 
given as 

d,=O(p$+‘). 

The conjecture represents a hoped-for best possible case. 

We would like to thank the referee for his careful reading of an earlier 

version of this paper. 
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