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Abstract Uteroglobin-related protein 2 (UGRP2) is thought to
play a role in inflammation and/or epithelial cell differentiation in
the lung. Induction of Ugrp2 mRNA expression by epidermal
growth factor (EGF) and transforming growth factor a was
examined using mouse transformed lung Clara cell-derived
mtCC cells. The EGF-induced increase of Ugrp2 occurred at
the transcriptional level that required the EGF receptor and
the activation of the ERK-MAPK and phosphoinositide-3 kinase
pathways.
� 2005 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Uteroglobin-related protein (UGRP) 2, also called high in

normal-1 or secretoglobin 3A1 (SCGB3A1), was originally

identified as a putative growth inhibitory cytokine gene that

is inactivated by methylation in the majority of human breast

carcinomas [1]. Independently, UGRP2 was found as a homol-

ogous gene to UGRP1 that is a downstream target gene for a

homeodomain transcription factor, T/EBP/NKX2.1 [2,3]. In

humans, UGRP2 is highly expressed in the trachea, lung, sal-

ivary gland, prostate, esophagus, duodenum and mammary

gland [1]. In the latter, the expression is specifically found in

the luminal mammary epithelial cells of small ducts and lob-

ules [1]. In the adult mouse, UGRP2 is primarily expressed

in the trachea and lung, and weakly expressed in the heart,

stomach and small intestine [4]. Consistent with the impor-

tance of UGRP2 in human breast carcinomas, UGRP2 is ex-

pressed in the mouse mammary gland, but its expression is

weak compared to that in trachea and lung [4].

Based on amino acid sequences, UGRP1 and UGRP2 be-

long to a gene superfamily of the Uterogloglobin/Clara cell

secretory proteins (UG/CCSP), officially termed secretoglobins

(SCGB), thus referring to UGRP1 and UGRP2 as SCGB3A2

and SCGB3A1, respectively [2–4]. UGRP1 is thought to play a
Abbreviations: UGRP2, Uteroglobin-related protein 2; mtCC, mouse
transformed lung Clara cell-derived cell line
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role in lung inflammation [2,5,6]. Further, UG/CCSP, a proto-

typical protein of the SCGB gene superfamily, to which

UGRP1 and UGRP2 are distantly related, exhibits several

anti-inflammatory and anti-chemotactic activities [7]. The

mouse Ugrp2 gene is localized at chromosome 11B1 [3], a

homologous region to 5q31-q35 in human [8], in which many

genes encoding inflammatory cytokines such as interleukin-3,

-4, -5, -13 and colony-stimulating factor 2 are located. These

facts together with the sites of UGRP2 expression suggest that

UGRP2 may play a role in the regulation of inflammation and/

or differentiation of epithelial cells [1,4]. However, little is

known about the physiological function of UGRP2.

Both epidermal growth factor (EGF) and transforming

growth factor a (TGFa) are potent mitogens for most epithe-

lial tissues. Binding of EGF and TGFa to the receptor EGFR

promotes dimerization of EGFR, which stimulates intrinsic

tyrosine kinase activity, resulting in autophosphorylation of

the receptor [9]. The tyrosine autophosphorylated EGFRs ex-

hibit increased binding affinities to src homology 2 regions of

substrate molecules. Substrate binding to the receptors is fol-

lowed by phosphorylation of tyrosine residues on the substrate

molecules, which in turn results in the activation of a variety of

downstream signaling cascades [10,11]. Activation of the adap-

tor molecule, Grb2 occurs through its direct binding to the

activated EGFR [12]. The Grb2/Sos-1 pathway is well charac-

terized and is responsible for activation of the ERK-MAPK

pathway, which ultimately leads to the regulation of gene tran-

scription [13]. Phosphoinositide-3 kinase (PI3K) is also a sub-

strate for activated EGFR [14,15]. Several PI3K isoforms are

commonly found that play roles in a number of signal trans-

duction pathways such as activation of PKB/Akt [16].

The aim of the present study was to investigate the mecha-

nisms governing regulation of Ugrp2 expression by EGF and

TGFa. We demonstrate that both EGF and TGFa stimulate

the expression of Ugrp2 through a mechanism dependent on

the ERK-MAPK and PI3K pathways.
2. Material and methods

2.1. Materials
Recombinant murine EGF, TGFa and HGF were purchased from

PeproTech Inc. (Rocky Hill, NJ). Murine basic FGF (bFGF), actino-
mycin D (ActD), SB203580, SP600125 and PD098059 were obtained
from SIGMA (St. Louis, MO), and LY294002 and AG1478 were from
Calbiochem (San Diego, CA). Antibodies against murine ERK1 and
ERK2 (ERK1/2), and phospho-ERK (Y204) were purchased from
Santa Cruz Biotechnology (Santa Cruz, CA), and Akt and phospho-
Akt (Ser473) from Cell Signaling Technology (Beverly, MA).
blished by Elsevier B.V. All rights reserved.
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Fig. 1. Induction of Ugrp1 and Ugrp2 mRNAs by EGF and TGFa.
mtCC cells were treated with 50 ng/ml of selected growth factors
(EGF, HGF, TGFa and bFGF) for 12 h. Total cellular RNAs were
extracted and mRNA for Ugrp1, Ugrp2 and 18S were examined by
Northern blot analysis.
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2.2. Cell culture
Mouse transformed Clara cells (mtCC) were maintained in Dul-

becco�s modified Eagle�s medium (Biosource, Camarillo, CA) supple-
mented with 10% fetal bovine serum (GEMINI Bio-Products,
Woodland, CA) and Antibiotic–Antimycotic containing 100 units/ml
penicillin G sodium, 100 lg/ml streptomycin sulfate and 250 ng/ml
amphotericin B (Invitrogen Life technology, Carlsbad, CA).

2.3. RT-PCR
To prevent genomic DNA contamination, total RNAs were treated

with RNase-free DNase I (Ambion, Austin, TX). For cDNA synthesis,
total RNAs were first incubated at 70 �C for 10 min, and chilled on ice.
The cDNA synthesis reactions were carried out in a final volume
of 20 ll containing RNA, 4 ll of 5· first strand synthesis buffer, 1 ll
of mixture of four deoxynucleotide triphosphates (10 mM each), 2 ll of
0.1 M dithiothreitol, and 1 ll of 500 ng/ll N6 random hexamer. After
incubation at 37 �C for 2 min, 200 U of Superscript II reverse trans-
criptase (Invitrogen Life technologies) was added, and the incubation
was continued at 37 �C for 60 min, which was then subjected to
PCR using Advantage 2 Taq DNA polymerase (BD Biosciences, San
Jose, CA) under the following conditions: denaturation at 94 �C for
30 s, annealing at 60 �C for 30 s, and extension at 72 �C for 30 s, 20 cy-
cles for 18S and 30 cycles for mouse EGFR. Oligonucleotide primers
used for RT-PCR were as follows: mouse 18S, 5 0-CGGCTACCA-
CATCCAAGGAA-3 0 and 5 0-ATTGGAGCTGGAATTACCGC-30;
mouse EGFR, 5 0-GGCGTTGGAAAAGAAAGT-3 0 and 5 0-GAT-
GGGGTTGTTGCTGAATCG-3 0.

2.4. Northern blot analysis
Five lg of total RNAs extracted from mtCC cells was electrophore-

sed on a 1% agarose gel containing 0.22 M formaldehyde and blotted
onto GeneScreen Plus nylon membranes (Perkin–Elmer Life Sciences,
Boston, MA). Filters were serially hybridized with mouse Ugrp2 and
18S cDNA probes. Hybridization was performed in Perfect Hybridiza-
tion solution (SIGMA) overnight at 68 �C. The membrane was washed
twice with 2 · SSC containing 0.1% SDS at 68 �C for 30 min, once with
2 · SSC at 68 �C for 30 min, followed by exposure to a storm phospho-
imager screen (Molecular Dynamics, Sunnyvale. CA).

2.5. Western blot analysis
mtCC cells were washed with phosphate-buffered saline and lysed in

radio-immuno-protein-assay buffer (20 mM Tris–HCl, 150 mM NaCl,
0.1% SDS, 0.1% sodium deoxycholate, 1% Triton X-100, 2 mM
EDTA, 10 mM NaF and 1 mM sodium orthovanadate) with Protease
Inhibitor Cocktail Tablets (Complete Mini; Roche Applied Science,
Indianapolis, IN). The protein lysates mixed with SDS sample loading
buffer containing b-mercaptoethanol were electrophoresed on a 10%
SDS–polyacrylamide gel containing 0.8% bis(N,N 0-methylene-bis-
acrylamide), followed by electrotransfer to an Immobilon-P membrane
(Millipore). Membranes were blocked with Tris-buffered saline (TBS)
containing Tween 20 (TBS-Tween; 20 mM Tris–HCl, 150 mM NaCl,
0.1% Tween 20) with 5% skimmed milk, and were incubated with first
antibody in TBS-Tween. Membranes were washed with TBS-Tween 20
and incubated with horseradish peroxidase-conjugated secondary anti-
body (Santa Cruz) for enhanced chemiluminescence detection using
Western Lighting Chemiluminescence Reagent Plus (Perkin–Elmer
Life Sciences). Image visualization was carried out by exposure to Sci-
entific Imaging Film (Kodak, Rochester, NY).
Fig. 2. Dose- and time-dependent increase of Ugrp2 mRNA by EGF
occurs at the transcriptional level. (A) Dose effects of EGF and TGFa.
mtCC cells were treated with 6.25, 12.5, 25 and 50 ng/ml EGF or
TGFa for 24 h. (B) Time course analysis of EGF and TGFa effects.
mtCC cells were treated with 50 ng/ml EGF or TGFa for 3, 6, 12 or
24 h. (C) EGF induces Ugrp2 mRNA at the transcriptional level.
mtCC cells were pre-treated with 5 lg/ml ActD for 1 h, followed by
treatment with 25 ng/ml EGF in the presence of ActD for 6 h.
Expression of Ugrp2 and 18S was detected by Northern blot analysis.
3. Results

3.1. EGF and TGFa induce Ugrp2 mRNA expression

To study the effect of several mitogens on the levels of Ugrp1

and Ugrp2 mRNA expression, mtCC cells were used. These

cells, derived from necrotic tumor tissues of lungs obtained

from transgenic mice expressing the simian virus 40 large T

antigen gene under the control of Ug/Ccsp promoter [17,18],

constitutively expresses high and modest levels of Ugrp1 and

Ugrp2 mRNAs, respectively. When treated with 50 ng/ml of

EGF, HGF, TGFa, and bFGF for 12 h, both EGF and TGFa
robustly induced Ugrp2 mRNA levels, while Ugrp1 expression

stayed at similar levels regardless of addition of mitogens ex-

cept for a slightly enhanced expression after EGF treatment

(Fig. 1). These results suggest that the effect of EGF and TGFa
is Ugrp2-specific, and thus only Ugrp2 regulation by these mit-

ogens was studied further.

3.2. Induction of Ugrp2 mRNA by EGF occurs in a time- and

dose-dependent manner

When mtCC cells were treated with different concentrations

of EGF and TGFa for 24 h, the slight increase of Ugrp2

mRNA levels was seen at 6.25 ng/ml for both mitogens

(Fig. 2A). EGF induction appeared to plateau with 25 ng/ml

while induction by TGFa continued with concentrations of

up to 50 ng/ml. A time dependent effect of EGF and TGFa
on the induction of Ugrp2 mRNA was further examined using

a fixed concentration of 50 ng/ml EGF and TGFa. In both

cases, significant increase of Ugrp2 mRNA was detected at

6 h after the addition of the mitogen, and levels continued to



Fig. 4. Induction of Ugrp2mRNA by EGF requires activation of both
ERK-MAPK and PI3K pathways. (A) ERK1/2 activation in mtCC
cells by EGF stimulation. mtCC cells were treated with 25 ng/ml EGF
for 5 min. Activation of ERK1/2 was measured by the presence of
phosphorylated ERK1/2 (Y204) bands. The total ERK was detected
by using anti-ERK antibody. (B) Akt activation in mtCC cells by EGF
stimulation. mtCC cells were treated with 25 ng/ml EGF for 30 min.
Activation of Akt was measured by the presence of phosphorylated
Akt (Ser473) band. The total Akt was detected by using anti-Akt
antibody. (C) Both ERK-MAPK and PI3K pathway inhibitors inhibit
Ugrp2 mRNA induction by EGF. mtCC cells were pre-treated with
10 lM PD098059 (MEK inhibitor) and/or 10 lM LY294002 (PI3K
inhibitor) for 1 h, followed by treatment of 25 ng/ml EGF in the
presence of either or both inhibitors for 6 h. Expression of Ugrp2 and
18S was detected by Northern blot analysis. (D) Neither p38 kinase
nor JNK pathway inhibitors inhibit Ugrp2 mRNA induction by EGF.
mtCC cells were pre-treated with 10 lM SB203580 or 10 lM SP600125
for 1 h, followed by treatment of 25 ng/ml EGF in the presence of
either inhibitors for 6 h. Expression of Ugrp2 and 18S was detected by
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increase up to 24 h (Fig. 2B). These results suggest that time-

dependent increase of Ugrp2 mRNA expression occurs with

similar kinetics for both EGF and TGFa. To examine whether

the increase of Ugrp2 mRNA expression by treatment with

EGF is due to transcriptional control, mtCC cells were pre-

treated with the RNA synthesis inhibitor, ActD, followed by

treatment with EGF. ActD abrogated the EGF-induced in-

crease of Ugrp2 mRNA expression (Fig. 2C), suggesting that

the increase of Ugrp2 mRNA expression by EGF is mediated

at the transcriptional level.

3.3. Induction of Ugrp2 mRNA by EGF is through EGFR

Both EGF and TGFa start a signaling cascade through their

binding to a shared EGFR, a cell surface transmembrane pro-

tein with tyrosine kinase activity [19,20]. In order to study the

mechanism of EGF-induced increase of Ugrp2 expression, the

presence of EGFR was first examined using RT-PCR analysis

(Fig. 3A). The results clearly demonstrate that EGFR is pres-

ent in mtCC cells. When cells were treated with AG1478, a

selective inhibitor of EGFR tyrosine kinase activity [21] before

the addition of EGF, the increase of Ugrp2 mRNA by EGF

was completely inhibited (Fig. 3B). These results suggest that

the induction of Ugrp2 mRNA by EGF occurs through EGFR

activation.

3.4. ERK-MAPK and PI3K pathways are responsible for the

induction of Ugrp2 mRNA by EGF

As typical of growth factors and their receptors, ligand

binding to EGFR initiates activation of ERK-MAPK and

PI3K pathways. To understand whether ERK-MAPK and

PI3K pathways are activated in mtCC cells upon EGF stim-

ulation, phosphorylation of ERK1/2 and Akt was examined

for each pathway, respectively. Treatment with the MEK

inhibitor, PD098059 and the PI3K inhibitor, LY294002 to-

tally abolished EGF-induced ERK1/2 and Akt phosphoryla-

tion (Fig. 4A and B). Interestingly, small amount of activated

ERK1/2 was constitutively observed without any treatment,

which was also abolished by MEK inhibitor, PD098059

(Fig. 4A). Further, both EGF-induced and constitutive

expression of Ugrp2 were partially and almost completely

inhibited by PD098059 and LY294002, respectively (Fig.
Fig. 3. Induction of Ugrp2 mRNA by EGF requires activation of
EGFR. (A) RT-PCR analysis for the presence of EGFR in mtCC cells.
The size of PCR product is 397 bp for EGFR and 193 bp for 18S.
RT(�) is shown as a negative control. RNAs extracted from fetal lung
were used as a positive control. (B) AG1478, which is a selective
inhibitor of EGFR phosphorylation inhibits the induction of Ugrp2 by
EGF. mtCC cells were pre-treated with 1 lM AG1478 for 1 h followed
by treatment with 50 ng/ml EGF in the presence of AG1478 for 6 h.
Expression of Ugrp2 and 18S was detected by Northern blot analysis.

Northern blot analysis.
4C). The level of Ugrp2 expression did not seem to differ

by the addition of both inhibitors together as compared to

LY294002 alone, suggesting that the latter pathway may be

dominant. In order to determine whether other classical

MAPKs such as p38 kinase and JNK affect on the induction

of Ugrp2 mRNA, cells were treated with the p38 kinase

inhibitor, SB203580 and the JNK inhibitor, SP600125. Nei-

ther inhibitors affected EGF-induced induction of Ugrp2

expression (Fig. 4D). These results suggest that the induction

of Ugrp2 mRNA by EGF occurs through the ERK-MAPK

and PI3K pathways, the latter being dominant.
4. Discussion

The present study demonstrates that Ugrp2 mRNA can be

regulated by EGF and TGFa through EGFR activation.
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EGF activates both ERK-MAPK and PI3K pathways, leading

to the upregulation of Ugrp2 gene expression in mtCC cells.

Both the ERK-MAPK inhibitor, PD098059 and the PI3K

inhibitor, LY294002 alone or in combination, partially or

completely blocked EGF-induced expression of Ugrp2, sug-

gesting that Ugrp2 transcriptional activation may require the

cooperation of two or more transcription factors activated

by distinct signal transduction pathways.

The MAPK family of serine/threonine kinases is well known

to be composed of ERKs, JNKs and p38 kinases [22]. Activa-

tion of EGFR also induces JNK activation in a Rac-dependent

manner [23], and p38 activation in a Src- and/or Fyn-depen-

dent manner [24]. The induction of Ugrp2 mRNA by EGFR

activation does not seem to be through the p38 kinase and

JNK pathways because no effect was observed on the Ugrp2

mRNA levels by treatment of cells with their specific inhibi-

tors. Further, these inhibitors did not affect constitutive levels

of Ugrp2 expression while MEK and PI3K inhibitors sup-

pressed constitutive Ugrp2 expression. In particular, the

PI3K inhibitor, LY294002 almost completely suppressed con-

stitutive expression of Ugrp2. This complete suppression was

also observed for EGF-induced increase of Ugrp2 expression.

This suggests that PI3K pathway is dominant over ERK-

MAPK pathway for constitutive as well as EGF-induced

expression of Ugrp2. Constitutive Ugrp2 expression may be

partly accounted for by low levels of endogenous ERK1/2 acti-

vation observed in control cells, which was abolished by MEK

inhibitor. On the other hand, Akt phosphorlylation was not

observed in control cells without EGF stimulation. There re-

mains the possibility that a minute amount of phosphorylated

Akt is also present in cells that cannot be detected by western

blotting due to antibody sensitivity.

Although it remains to be determined whether other path-

ways are involved in the regulation of Ugrp2 mRNA expres-

sion, the ERK-MAPK and PI3K pathways are currently

responsible for Ugrp2 gene regulation (Fig. 5). There is a

molecular basis for cross talk between ERK-MAPK and

PI3K pathways at the level of Raf and Akt, and ERK-MAPK

pathway is activated by Akt through c-Raf activation [25].

Whether this cross talk plays a role in the activation of Ugrp2

gene and whether this is related to the apparent dominancy of

the PI3K pathway over ERK-MAPK pathway need to be

determined.
Fig. 5. Signaling pathways leading to the Ugrp2 upregulation. EGF/
TGFa activates ERK-MAPK and PI3K pathways leading to Ugrp2
activation. Inhibitors at particular steps are shown.
Based on the pattern of Ugrp2 mRNA expression in termi-

nally differentiated airway epithelial cells of adult and develop-

ing mouse embryos, an association between UGRP2 and the

terminally differentiated epithelial phenotype was suggested

[4]. Thus, the induction ofUgrp2 mRNA was correlated with

upregulation of Muc2, a mucinous phenotype marker gene

and downregulation of the squamouse cell marker gene, trans-

glutaminase I during retinoic acid-induced mucinous differen-

tiation of primary normal human bronchial epithelial cells

[4]. Despite these observations, the precise physiological and

functional role of UGRP2 in the airways is not fully under-

stood. Whether the regulation of UGRP2 expression by

EGF/TGFa is involved in the development of terminally differ-

entiated airway epithelial phenotypes awaits further studies.

In summary, the expression of Ugrp2is enhanced by both

EGF and TGFa through the mechanism dependent on the

ERK-MAPK and PI3K pathways.
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