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Abstract

Perceptual learning is an improvement in perceptual task performance reflecting plasticity in the perceptual system. Practice effects
were studied in two object orientation tasks: a first order, luminance object task and a second-order, texture object task. Perceptual learn-
ing was small or absent in the first-order task, but consistently occurred for the second-order (texture) task, where it was limited to
improvements in low external noise conditions, or stimulus enhancement [Dosher, B., & Lu, Z. -L. (1998). Perceptual learning reflects
external noise filtering and internal noise reduction through channel reweighting. Proceedings of the National Academy of Sciences of the

United States of America, 95 (23) 13988–13993; Dosher, B., & Lu, Z. -L. (1999). Mechanisms of perceptual learning. Vision Research, 39
(19) 3197–3221], analogous to attention effects in first- and second-order motion processing [Lu, Z. -L., Liu, C. Q., & Dosher, B. (2000).
Attention mechanisms for multi-location first- and second-order motion perception. Vision Research, 40 (2) 173–186]. Perceptual learn-
ing affected the later, post-rectification, stages of perceptual analysis, possibly localized at V2 or above. It serves to amplify the stimulus
relative to limiting internal noise for intrinsically noisy representations of second-order stimuli.
� 2006 Published by Elsevier Ltd.
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1. Introduction

Perceptual learning, or the improvements in perfor-
mance with training or practice, is virtually ubiquitous in
perceptual tasks. In this paper, we examine and contrast
perceptual learning in the domains of first-order (lumi-
nance) stimuli and second-order (texture) stimuli. The task
is a simple one—discriminating the orientation (right- or
left-pointing) of letter objects at fovea. Perceptual learning
in these tasks was assessed through measuring contrast
thresholds in an external noise paradigm. A perceptual
template model (PTM) of the observer distinguishes
between mechanisms of perceptual learning—when it
0042-6989/$ - see front matter � 2006 Published by Elsevier Ltd.
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occurs—that reflect learned amplification of the stimulus
and learned retuning to exclude external noise in the stim-
ulus. Perceptual learning differs profoundly for the compa-
rable tasks using luminance and texture stimuli, implying a
higher, post-rectification, level of perceptual learning for
this second-order character orientation task.

1.1. Perceptual learning

Perceptual learning has been demonstrated in a wide
range of visual judgments in many different task domains,
including detection or discrimination of visual gratings
(DeValois, 1977; Fiorentini & Berardi, 1980, 1981; Mayer,
1983), stimulus orientation judgments (Dosher & Lu, 1998;
Shiu & Pashler, 1992;Vogels & Orban, 1985), motion direc-
tion discrimination (Ball & Sekuler, 1982, 1987; Ball,
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Fig. 1. A schematic two-level architecture for analysis of second-order
task processing. First-order tasks could be based on an initial Fourier
channels, consistent with analysis at V1, while second-order tasks are
based on rectified representations, consistent with analysis at V2 or higher.
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Sekuler, & Machamer, 1983), texture discrimination (Ahis-
sar & Hochstein, 1996; Karni & Sagi, 1991, 1993), time to
perceive random dot stereograms (Ramachandran &
Braddick, 1973), stereoacuity (Fendick & Westheimer,
1983), hyperacuity and vernier tasks (Beard, Levi, & Reich,
1995; Bennett & Westheimer, 1991; Fahle & Edelman,
1993; Kumar & Glaser, 1993; McKee & Westheimer,
1978; Saarinen & Levi, 1995), and object recognition
(Furmanski & Engel, 2000), see (Dosher & Lu, 1999b; Fine
& Jacobs, 2000) for reviews.

However, the nature and magnitude of perceptual learn-
ing may depend upon the level or complexity of the task
(Fine & Jacobs, 2002) and the eccentricity or noisiness of
the tests (Lu & Dosher, 2004). In certain tasks and condi-
tions, perceptual learning may not occur at all (Herzog &
Fahle, 1997; Lu & Dosher, 2004). The limits of perceptual
performance and the malleability of these limits with per-
ceptual learning may be different in distinct tasks, and
may reflect distinct mechanism(s) of learning. These
properties, in turn, will point to the neural substraits of
perceptual computations, and inform us about different
classes of plasticity in each task domain. The goal is to
understand the circumstances under which learned plastic-
ity is possible and to relate these observations to known
brain systems and representations. Studying perceptual
learning in first- and second-order systems may inform us
about the locus and system of learning in the two tasks.

1.2. First- and second-order systems

The distinction between first- and second-order systems
has been important in the domains of visual motion per-
ception (Cavanagh & Mather, 1989; Chubb & Sperling,
1989; Lu & Sperling, 1995, 2001b; Sperling, Chubb,
Solomon, & Lu, 1994) and in pattern and texture percep-
tion(Chubb & Sperling, 1988; Sutter & Graham, 1995),
and object perception (Regan, 2000). The first-order visual
system operates directly on luminance representations
while the second-order visual system operates on
pre-processed (i.e., rectified) representations to which the
first-order system is blind. The visual system is exquisitely
sensitive to luminance patterns and to luminance inputs
to motion systems, whereas second-order texture inputs
to motion or pattern systems are often characterized by
reduced sensitivity (Lu & Sperling, 2001b). Proposed sys-
tems for the processing of texture patterns (Regan, 2000;
Sutter & Graham, 1995; Wilson, Ferrera, & Yo, 1992)
share formal properties with the systems for processing sec-
ond-order motion (Chubb & Sperling, 1989; Lu & Sperling,
2001a, 2001b; Solomon & Sperling, 1995). In the proposed
systems, luminance stimuli are processed through a system
of first-order linear filters, often characterized as a bank of
spatial-frequency and temporal frequency filters typical of
computations in V1 (Fig. 1A). Processing of second-order
texture stimuli is generally modeled as a second pathway
with a ‘‘sandwich’’ process in which a point-wise non-line-
arity such as rectification (or half-rectification and pooling,
segregating and then combining positive and negative) is
carried out between the initial processing by linear filters
and subsequent linear filtering (Fig. 1B). This second stage
of the pathway has been associated with computations at
V2 or above (Lin & Wilson, 1996), where cells selectively
responsive to texture or orientation boundaries, but not
carrier elements have been reported (von der Heydt,
Peterhas, & Baumgartner, 1984), but see (Chaudhuri &
Albright, 1977). The second-order (non-Fourier) pathways
exhibit characteristically higher (1.4–3·) discrimination
thresholds and require longer presentation durations (Lin
& Wilson, 1996). Within this framework, perceptual learn-
ing may take place at different stages of the processing sys-
tem reflected in first-order and second-order stimuli and
tasks.

Comparing perceptual learning in analogous first- and
second-order letter orientation tasks will have implications
for the localization of the learning in the first- and second-
order systems. Moreover, if perceptual learning occurs for
either task, the mechanism of the learning (stimulus
enhancement or external noise exclusion, see Section 1.4)
can be identified through external noise studies. Learning
in the second-order task in the absence of learning in the
comparable first-order task would suggest that perceptual
learning occurs in the second (post-rectification) stages of
the non-Fourier pathways, at the level of V2 or above. If



1 An equal magnitude of (log) improvement at all performance criteria
(e.g., 65%, 75%, and 85%) identifies these results as a mixture of stimulus
enhancement and external noise exclusion and not a change in contrast
gain control or multiplicative noise properties (Dosher & Lu, 1998,
1999b).
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perceptual learning occurs in both tasks, but the identified
mechanisms are different, then this would imply learning in
different pathways or at different levels for the two forms of
stimuli, or an order of perceptual learning in the two
systems.

1.3. Comparing perceptual learning in first- and

second-order tasks

Several observations, mostly in the motion domain, sug-
gest that learning may differ between first-order and sec-
ond-order pattern tasks. For example, asymmetries in
transfer of perceptual learning between a first-order and
a second-order motion task suggests the engagement of dis-
tinct perceptual learning processes (Zanker, 1999). An
analogy between perceptual learning and attention (e.g.,
Dosher & Lu, 2000)—both of which reflect a change of
state of the observer and demonstrate analogous perfor-
mance patterns—also suggests different properties of first-
and second-order stimuli. There are significant attention
limitations in the simultaneous processing of two or more
patches of second-order motion stimuli (Dosher, Landy,
& Sperling, 1989), where these same limitations do not
occur for first-order motion stimuli. Judgments of sec-
ond-order motion are strongly influenced by attention,
while judgments of first-order motion may be affected little
or not at all by attention (Lu, Liu, & Dosher, 2000) (but see
(Allen & Ledgeway, 2003)). Furthermore, this attention
effect on the perception of second-order motion stimuli
has the unusual property of being restricted to clear (low
external noise) situations (see PTM section below for an
interpretation). Taken together, these observations may
lead to the prediction that perceptual tasks based on sec-
ond-order texture stimuli may also be more susceptible to
perceptual learning, and that the mechanisms of that learn-
ing may parallel the mechanisms of attention. The patterns
of perceptual learning for closely controlled first- and sec-
ond-order tasks will provide important information about
the locus and independence of perceptual learning.

1.4. Perceptual learning and the perceptual template model

The perceptual template model (PTM) characterizes the
limitations of perceptual processes in an observer. The
PTM and systematic external noise tests were developed
to identify the mechanism(s) of change of state of the
observer due to attention or perceptual learning (Dosher
& Lu, 1998, 1999a; Lu & Dosher, 1998). A brief quantita-
tive description of the model appears in Appendix A. If
perceptual learning occurs either in a first-order task or
in a second-order task, then the mechanism of that learning
can be identified through the PTM and external noise tests.
In studying perceptual learning, the performance of the
observer is measured as a joint function of training or prac-
tice and the amount of white Gaussian external noise add-
ed to the signal stimuli. Three mechanisms of perceptual
learning can be distinguished: (1) stimulus enhancement
reduces absolute thresholds by amplifying the input stimu-
lus, including both the signal and the external noise, rela-
tive to internal (additive) noise. It is signified by
performance improvements only in low or zero external
noise conditions but not in high external noise conditions.
(2) Perceptual template retuning optimizes the perceptual
template to exclude external noise or distractors. Its signa-
ture is performance improvements restricted to high exter-
nal noise conditions. And (3) contrast-gain control or

multiplicative noise reduction improves the contrast satura-
tion properties of the perceptual system. It is associated
with improvements throughout the full range of external
noise, with the magnitude of the improvements differing
with the criterion accuracy. Performance threshold mea-
sures at multiple criterion levels (e.g., 70% and 80% correct)
provide sufficient constraints to distinguish these mecha-
nisms and various mixtures of them (Dosher & Lu,
1999b; Lu & Dosher, 1999).

The external noise plus perceptual learning paradigm
has been used in a number of studies to characterize
improvements of the perceptual system during the course
of perceptual learning (Chung, Levi, & Tjian, 2005; Dosher
& Lu, 1998, 1999b, 2005; Gold, Bennett, & Sekuler, 1999;
Lu & Dosher, 2004; Saarinen & Levi, 1995; Tjian, Chung,
& Levi, 2002). Perceptual learning of peripheral Gabor ori-
entation identification (Dosher & Lu, 1998, 1999a), as well
as the identification of faces or filtered noise patterns from
a small set of alternatives (Gold et al., 1999) all showed
improved performance (reduced contrast thresholds)
across all external noise conditions reflecting simultaneous
improvements in external noise exclusion (template retun-
ing) and stimulus enhancement (stimulus amplification),1

although the improvements in performance due to the
two mechanisms may be decoupled in magnitude (Dosher
& Lu, 2005).

Recently, a case of pure external noise exclusion was
documented for Gabor orientation identification (about
45�) at fovea (Lu & Dosher, 2004). In this case, perfor-
mance in zero or low external noise never improved despite
extensive practice, while performance in high external noise
improved systematically with practice. It was also reported
briefly that there was no perceptual learning for orientation
discriminations (±8�) about the vertical—even in high
external noise. Orientation judgments for luminance
(first-order) objects tested at fovea might exhibit the same
pattern of perceptual learning in high noise, suggesting that
perceptual learning might or might not occur for letter ori-
entation (left or right facing) for first-order stimuli at fovea.
In contrast, based on the impact of spatial attention cueing
on second-order motion perception only in low external
noise, it is possible that orientation judgments for texture
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Fig. 2. Illustration of texture (checkerboard) and luminance (dark gray)
stimuli embedded in eight levels of external noise (left) and of a trial
display sequence (right). Signal and external noise stimuli were combined
via temporal integration (16.7 ms each of N-S-N).
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(second-order) objects tested at fovea might instead reflect
improvements with perceptual learning in stimulus
enhancement. The following experiments evaluate percep-
tual learning in luminance (first-order) and texture (sec-
ond-order) object orientation identification tasks.

2. General methods

2.1. Observers

Eight observers participated in the study, four in each Experiment.
Observers had normal, or corrected to normal, vision and were naı̈ve to
the purpose of the experiment.

2.2. Apparatus

The experiments were conducted on a Macintosh 7300 computer,
using PsychToolbox (Brainard, 1997; Pelli, 1997) subroutines and
Matlab programs (Mathworks, 1998). The stimuli were displayed on
a Nanao Technology Flexscan 6600 monitor with a P4 phosphor at
a 480 · 640 pixel spatial resolution and a refresh rate of 120 Hz. A
special circuit (Pelli and Zhang, 1991) combined two eight-bit outputs
of the internal Macintosh graphics card to produce 12.6 bits, or 6144
distinct gray levels. A psychophysical procedure was used to generate
a lookup table that linearly translated pixel gray-levels into display
luminance (Li, Lu, Xu, Jin, & Zhou, 2003). The minimum, maxi-
mum, and neutral luminance (l0) values were 1, 50, and 25 cd/m2,
respectively.

2.3. Design

The perceptual task consisted of discriminating the orientation (for-
ward or mirror-reversed) of the letter K represented either using lumi-
nance contrast (Experiment 1) or through texture contrast (Experiment
2) combined with one of eight levels of external noise. The eight external
noise conditions ranged from no external noise to high external noise (see
Stimuli, Fig. 2). The texture contrast or luminance necessary to achieve
one of two criterion threshold accuracy levels in each external noise con-
dition was measured using adaptive staircase methods (Levitt, 1971). Cri-
terion accuracies of 70.7% and 79.3%, corresponding to d 0s of 1.089 and
1.634, were estimated with 2/1 and 3/1 staircases that reduced the contrast
by 10% (Cn+1 = 0.9 Cn) after two or three correct responses and increased
the contrast by 10% (Cn+1 = 1.1 Cn) after each error. The sixteen staircas-
es—8 noise conditions · 2 staircases—were interleaved within each 1008-
trial session (72 for each 3/1 staircase and 54 for each 2/1 staircase).
Observers practiced either the luminance task (Experiment 1) or the tex-
ture task (Experiment 2) for five sessions (days). In Experiment 2b, observ-
ers practiced the luminance task for five sessions after training on the
texture task. The final value of the staircases on 1 day served as starting
values for the next.

2.4. Stimuli

The luminance or texture letter was centered within a 64 · 64-pixel
grid, with a ‘stroke width’ of 6 pixels. The luminance-defined characters
took on a luminance value darker than the background while texture-de-
fined characters were filled with a 2 · 2 checkerboard texture (see Fig. 2).
The luminance of the luminance letter (lmin�l0, expressed as a percent of
the maximum range) or the contrast (lmax or min � l0, as a percent of the
maximum range) of the texture letter was determined by adaptive staircase
methods tracking either 70.7% correct or 79.3% correct. Each 64 · 64-pix-
el noise image consisted of random Gaussian pixel noise image had con-
trasts drawn from a Gaussian distribution with mean 0 and standard
deviation Next 2{0,0.02,0.04,0.08,0.12,0.16,0.25,0.33} relative to the neu-
tral luminance, windowed within a circular region with radius of 32 pixels.
The maximum value of 0.33 for the highest noise provides a range for ±3r
of the Gaussian within a full luminance range of [�1,+1] relative to the
neutral luminance. External noise frames and the letter were combined
via temporal integration, N-S-N.

2.5. Procedure

A key press initiated each session. Each trial began with a fixation dis-
play for 150 ms, followed by a noise (or blank) image, a signal character
image, and another noise (or blank) image, each presented for 16.67 ms,
followed by a blank screen until response. The observer pressed the ‘‘j’’
key on the keyboard for a right-facing character and ‘‘f’’ key on the key-
board for a left-facing (reversed) character. The observer was allowed to
take several breaks between trials; these breaks were brief or the observer
often elected to continue immediately.

3. Experiment 1 results

3.1. Contrast threshold versus external noise practice
functions

Perceptual learning should reduce thresholds with
practice. The slopes of the log2 contrast thresholds as a
function of days of practice index learning, where nega-
tive slopes reflect threshold improvements. The slopes
of log2 thresholds, averaged over staircases and observ-
ers, as a function of days of practice were statistically
indistinguishable from 0 (no learning) individually for
all eight external noise levels. There was a slight trend
(with mixed significance) towards increased thresholds



Fig. 3. Average threshold versus contrast (TVC) data for luminance task
of Experiment 1 with the PTM model (see text) shown as the smooth
curve. Data are shown for two criteria (3/1 and 2/1 staircases).
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with practice for observers GB and JJ,2 no consistent
trend for observer MH, and slight and variable decreases
for RC in the individual observer regression analyses.
These analyses clearly did not show a consistent trend
towards perceptual learning for the first-order task.
Any changes in threshold with practice were as likely
to reflect slight deterioration with practice as
improvement.

3.2. Perceptual template model

The perceptual template model (PTM) was used to
characterize the impact of external noise level on thresh-
olds and estimate learning, if it occurs. The regression
tests and flat thresholds as a function of days indicated
an absence of consistent systematic learning in these
data. Consistent with the regression analyses, a PTM
model analysis showed no consistent systematic improve-

ments in performance over days of practice in these
luminance-object data for three of the four observers.
As with the regression slope analysis, observers GB
and JJ showed some tendency to deterioration of per-
formance, observer MH differed relatively little over
days, and observer RC showed some tendency to
improvement in low external noise. The average thresh-
old versus external noise contrast (TVC) functions are
shown in Fig. 3 along with smooth curves representing
the fit of the perceptual template model (PTM) with no
learning over days. The PTM model has four parame-
ters that set the overall level of performance and also
how much higher the 3/1 thresholds are than the 2/1
thresholds (a proxy for the slope of the psychometric
function): Nadd, additive internal noise that determines
the thresholds in low external noise, Nmult, multiplicative
internal noise that increases with the contrast of the
stimulus to produce Weber-law behavior, b, the gain
on the target stimulus in the perceptual template, and
c the transduction non-linearity in the system. For the
average data, these values were: Nadd, = 0.02,
Nmult, = 0.05, b = 0.90, and c = 1.60. These values are
representative.

3.3. Summary

Over the time range of this study, there was no consis-
tent improvement in luminance-object (first-order) orienta-
tion judgments. While we cannot absolutely rule out
changes in performance (negative as well as positive), there
is no consistent perceptual learning. This finding adds to
observations in the literature where training simple, low-
level tasks at fovea may result in little or no perceptual
2 Indeed, two observers in the luminance character experiment partic-
ipated for additional days of practice, and unexpectedly performance
deteriorated—in some cases dramatically. It is unclear whether this
reflected a real and paradoxical effect of practice in this case, or issues with
motivation in a situation in which learning typically does not occur.
learning in clear displays (Dorais & Sagi, 1997; Fiorentini
& Berardi, 1981; Furmanski & Engel, 2000; Lu & Dosher,
2004; Matthews, Liu, Geesaman, & Qian, 1999; Rama-
chandran & Braddick, 1973). In contrast to several other
examples, no learning is exhibited for this task in high noise
displays either. While there is no compelling explanation as
to why certain tasks are not susceptible of improvement (at
least over this time scale), perceptual training studies doc-
umenting failures to learn are more likely for foveal tasks.
Equivalent tasks carried out in the periphery generally will
exhibit perceptual learning improvements. Perhaps the
fovea is already optimized for these luminance letter
stimuli3.

4. Experiment 2 results

4.1. Contrast threshold versus external noise contrast and

practice

The log2 contrast thresholds, averaged over staircases
and observers, were analyzed as a function of session
(day) of practice separately for each external noise level.
Regression analyses show performance improvements with
practice for this second-order texture object orientation
task, with steeper improvements in low external noise lev-
els. The average slope of log2 thresholds as a function of
3 One reviewer suggested that the lack of perceptual learning for this
first-order task might reflect the fact that the size of the stimuli was well
above the first-order acuity limit. However, based on the equivalence of
letter identification over a wide range of viewing distances (Parish &
Sperling, 1991) and based on the observed transfer of learning over scales
(Lu & Dosher, 2004), the current results are likely to hold over a wide
range of letter sizes.
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day (consistent with an exponential improvement in perfor-
mance with practice) ranged from �0.14 in the lowest
external noise to �0.04 in the highest external noise level
(first four slopes, p < .05; next four slopes, ns, for each
external noise condition considered separately).

So, there is significant, consistent learning in the second-
order texture task. The larger learning effect in low noise
suggests that stimulus enhancement (gain amplification) is
the mechanism of perceptual learning. A quantitative anal-
ysis of the mechanism evaluates the threshold versus exter-
nal noise contrast (TVC) functions. The log2 contrast
thresholds for the average data (Fig. 4) are shown as a
function of contrast of external noise (TVC) at each of
the two criterion accuracy levels (3/1 and 2/1 staircases, left
and right, respectively). The curves of individual observers
were very similar (see Appendix B). The smooth curves cor-
respond to the fits of the perceptual template model (see
below). The solid lines correspond to the first day (heavy
solid line) and the fifth day (lighter solid line) of practice,
which differ predominantly in low external noise; training
has little or no effect on performance in high external noise.

4.2. Perceptual template model

The mechanism of perceptual learning was evaluated
using perceptual template models (PTM) with improve-
ments in external noise exclusion or filtering only, stimulus
enhancement only, both, or neither. The best-fitting model,
as determined through nested significance tests, is shown as
smooth curves in Fig. 4. All four observers showed signif-
icant perceptual learning through stimulus enhancement
but no significant change in external noise exclusion. The
Fig. 4. Contrast thresholds, averaged over observers, as a function of
external noise contrast (TVC functions) for five practice days in the texture
(second-order) letter task. Data are shown for two criteria (3/1 and 2/1
staircases). The dark heavy lines are Day 1, and the lighter heavy lines are
Day 5. Smooth curves are the fit of a PTM model with perceptual learning
through stimulus enhancement (see Table 1 for parameter values).
best-fitting model (Table 1) assumes that improvements
are restricted to stimulus enhancement, showing improve-
ments in low external noise. This model did not differ sig-
nificantly from a ‘‘Full’’ model with perceptual learning
improving both stimulus enhancement and external noise
exclusion (all nested-F tests with p > .10 except JP
p > .05, see Table 1). The stimulus enhancement model
provides a significantly improved fit relative to a model
with no improvement due to learning (all nested-F tests
with p < .001). In this best-fitting model, perceptual learn-
ing is captured in improved relative stimulus enhancement,
which is equivalent to a (relative) reduction in internal
additive noise, Aa, for each practice day. The first day is
set at 1, Aa(1) � 1.0. Improvements due to practice take
the form of a reduction in additive noise (Na (k) = Aa (k)
Nadd, Aa 6 1.0). For the average data, the values of the
four parameters of the basic PTM were: Nadd, = 0.07,
Nmult, = 0.08, b = 0.53, and c = 1.40. These values are rep-
resentative of those for the individuals. For the average
data, the ratio of last day to first day (Aa (5)/Aa (1)) is
0.624; the ratios for individual observers are 0.558, 0.468,
0.400, and 0.805. The pattern of improvements for interme-
diate days is somewhat variable for each observer, but
show general improvements over intermediate days.

In summary, perceptual learning operates on texture
objects primarily through learned improvements in stimu-
lus enhancement and does not substantially alter task per-
formance in high external noise—at least when the texture
pattern of the objects overlaps with the spectral properties
of the external noise. The observer has learned to ‘‘up-
weight’’ the stimulus. The implications of this finding both
for perceptual learning of second-order stimuli and more
generally for the perceptual template framework are con-
sidered in Section 5.

4.3. Practice of luminance stimuli following texture practice

Following practice on the texture object orientation
task, the same observers performed the luminance object
task for five sessions. The regression slopes of log2 contrast
thresholds, averaged over staircases and observers as a
function of day of practice did not differ significantly from
0 for any of the eight external noise levels (range from
�0.03 to 0, each p > 0.15). Although there is day-to-day
variation in performance (especially in low noise condi-
tions), and perhaps a hint of bias towards negative slopes
(performance improvements), there were no statistically
reliable improvements in performance, consistent with
Experiment 1.The results of the analysis with the perceptu-
al template model (PTM) were consistent with a ‘‘null,’’ or
no-practice effect, since the fit of this model did not signif-
icantly reduce the quality of the fit relative to a ‘‘full’’ mod-
el with all possible practice effects. Two observers, JD and
YC, did show some marginal variation in thresholds in low
external noise, but these appeared to be daily fluctuations
not systematic improvements in performance. We show
the average threshold (TVC) data in Fig. 5. Although a



Fig. 5. Average threshold versus contrast (TVC) data for luminance task
of Experiment 2b with best-fitting, no learning, PTM model shown as the
smooth curve.

Table 1
PTM parameters Experiment 2

Observers

Parameters JD JP VC YC AV

Na 0.05 0.05 0.05 0.07 0.07
Nm 0.03 0.03 0.08 0.06 0.08
b 0.46 0.55 0.49 0.49 0.53
c 1.83 1.80 1.68 1.46 1.40
Aa (2) 0.77 0.61 0.58 1.00 0.85
Aa (3) 1.00 0.64 0.55 0.85 0.83
Aa (4) 0.92 0.57 0.55 0.92 0.82
Aa (5) 0.56 0.47 0.40 0.81 0.62
r2 0.897 0.907 0.801 0.843 0.930
FFull vs.NO-SE (df = 8,64) 3.5132*** 4.3429**** 6.1206**** 5.1575**** 3.5079***

FSEvs.NULL (df = 4,72) 9.114**** 7.9698**** 14.6002**** 11.5502**** 10.5852****

FFull vs.NO-NE (df = 8,64) 1.3122ns 2.0789# 1.2622ns 0.3006ns 0.8833ns

*** p < .001.
**** p < .0001.

# p < .10.

4 Although the monitor was linearized, the human perceptual systems
may introduce first-order ‘‘contamination’’ due to asymmetries in the
perception of physically equal dark and light deviations from mean
luminance. Even if this contamination were as high as 15% (Lu & Sperling,
2001a, 2001b), the first-order information would only be at about 27% of
threshold, suggesting a very small impact in the second-order task.

2002 B.A. Dosher, Z.-L. Lu / Vision Research 46 (2006) 1996–2007
result of no perceptual learning for these first-order stimuli
might, by itself, have reflected complete transfer of learning
from the texture to the luminance objects, the consistency
with the results of Experiment 1 suggest instead that the
luminance (first-order) system does not consistently exhibit
learning. Prior optimization of performance through sec-
ond-order task practice did not trigger subsequent
improvements with practice in the first-order task.

4.4. Comparisons of thresholds for the texture and luminance
task

The thresholds for second-order tasks are typically high-
er than for the comparable first-order task. Lin and Wilson
(Lin & Wilson, 1996) computed indices of 1.3–2.5 times
higher second-order thresholds in a variety of task compar-
isons. In this case, we chose to compare the average thresh-
olds of the last two days of practice on the texture task and
the first 2 days of practice on the following luminance task
in the same individuals. The thresholds reflect the threshold
difference from neutral luminance in both cases. The ratio
of second-order to first-order log thresholds in the average
data was 1.8, and the ratios were 2.8, 1.8, 1.2, and 2.9,
respectively, for observers JD, JP, VC, and YC. (VC has
relatively high thresholds in both tasks.) These are compat-
ible with higher estimates of b, or gain, of the perceptual
template for the signal stimulus for luminance than for tex-
ture objects: The b’s for the luminance objects were 1.14,
0.98, 0.63, and 0.98 for the four observers, and 0.85 for
the average data; the corresponding values were 0.46,
0.55, 0.49, 0.49, and 0.53 for the texture objects, or an aver-
age ratio of 1.83 to 1, or almost two to one, compatible
with the empirical ratios, as well as those cited by Lin
and Wilson (Lin & Wilson, 1996). Interestingly, the sec-
ond-order elevation ratios are higher in low external noise
(average about 2.5) and lower in high external noise
(average about 1.7). This observation merits further
investigation4.

4.5. Summary

Practice on texture object orientation judgments result-
ed in a systematic improvement in performance in low
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external noise conditions, corresponding to improvements
in stimulus enhancement due to perceptual learning. The
thresholds of the texture task are elevated by an average
factor of 1.8 compared to the luminance task, consistent
with prior reports for other kinds of judgments (e.g., Lin
& Wilson, 1996). Subsequent practice with luminance
object orientation judgments did not result in systematic
performance improvements. This appears to reflect a fun-
damental difference in the sensitivity to practice for texture
(second-order) stimuli and luminance (first-order) stimuli.
This result parallels that spatial attention effects for sec-
ond-order motion stimuli (Lu, Liu, & Dosher, 2000).

5. General discussion

5.1. Summary

Two experiments, yielding three data sets, investigated
the ability for observers to learn and improve their per-
ceptual performance in first-order and in second-order
object (letter) orientation judgments. Surprisingly, (regu-
lar/mirror) orientation judgments for first-order letters
at fovea were not consistently susceptible of improve-
ment—whether in low or in high levels of external noise.
In a previous study, oblique Gabor orientation judg-
ments at fovea showed no learning in low external noise,
but did show significant learning in high external noise
(Lu & Dosher, 2004) for orientation judgments around
45�. They also showed no learning in either low or high
noise for orientation judgments about the vertical. In the
current study, there was no consistent evidence for per-
ceptual learning for first-order stimuli, whether they were
trained initially, or following training on second-order
stimuli. It does not appear that further training would
have guaranteed learning, since several observers who
trained with first-order stimuli for additional sessions, if
anything, showed worsening performance. It is possible
that this lack of learning reflects the pre-existing knowl-
edge of letter characters at fovea. Significant learning did
occur for orientation judgments of letters defined by a
second-order texture pattern, where performance
improvements predominantly occurred in low external
noise conditions.

The pattern of learning in these experiments has a
strong and direct analogy to the effects of attention on
motion direction discrimination (left or right) judgments:
attention had little or no effect on first-order motion judg-
ments, but resulted in significant improvements in low
external noise on second-order motion judgments (Lu
et al., 2000). (It is of course possible that either learning
or attention may impact both first-order motion or first-
order orientation judgments under certain circumstances
(Allen & Ledgeway, 2003).) The importance of attention
and of perceptual learning for second-order stimuli sug-
gests an influential role for stimulus amplification, corre-
sponding to stimulus enhancement in the PTM, for
these stimuli. Further research should evaluate the claim
that stimulus enhancement is characteristically associated
with state-change related performance improvements in
second-order stimuli. In the current experiment, the grain
of the texture that defines the letter is relatively similar to
the grain of the external noise. Filtering out other sections
of the broad spectrum of external noise should still be of
value, however, this may already be reasonably optimized
even without practice in fovea (i.e., Dosher, Liu, Blair, &
Lu, 2004).

5.2. When learning fails

The observations of weak or no consistent learning in
the task of first-order letter object orientation discrimina-
tion adds to the list of tasks in the literature for which
little or no learning has been reported (Dorais & Sagi,
1997; Fiorentini & Berardi, 1981; Furmanski & Engel,
2000; Lu & Dosher, 2004; Matthews et al., 1999; Rama-
chandran & Braddick, 1973). It appears that many of
these cases are simple, low level tasks displayed at fovea
without external noise. Based on our prior findings for
orientation discrimination about the vertical (Lu &
Dosher, 2004) we thought it possible that perceptual
learning might not occur, or if it did, learning would
occur in high external noise, reflecting learned external
noise exclusion. We have no firm understanding of
why we do not find the same pattern in the current let-
ter-orientation task as in the earlier oblique Gabor orien-
tation task. Some cases of failures of learning (Herzog &
Fahle, 1997; Rubin, Nakayama, & Shapley, 1997) occur
for extremely fine discriminations where initial perfor-
mance is below normal threshold accuracy levels (60%),
but this is not the case here: the two orientations differ
clearly, and the staircase procedures keep performance
levels near 80%. We can only speculate that the lack
of capacity for substantial learning may reflect the
over-learned status of letters. The result points out, how-
ever, the lack in the field at large of a firm predictive
analysis of when perceptual learning occurs and when
it does not.

5.3. Level of perceptual learning

The pattern of little or no learning in the luminance
letter (first-order) task, combined with successful learning
in the texture letter task, is consistent with a locus of
learning at the second, post-rectification, level of the sec-
ond-order pathway. This learning may be based on rep-
resentations at the level of V2 or higher (Fig. 2B).
Although V1 neurons can respond to second-order or
texture stimuli (e.g., Chaudhuri & Albright, 1977), it is
likely that important second-order processing occurs
between V2 and V4 (Baker & Mareschal, 2001; Landy
& Graham, 2004; Lennie, 1998). The analysis of Baker
(Baker & Mareschal, 2001) is that the second stage filters
in second-order ‘‘. . .processing could be any of the quasi-
linear neurons of early visual cortical areas, though the
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low preferred spatial frequencies in our data suggest a
greater contribution from second tier areas (A18, V2)’’
(p. 15). Landy and Graham (2004) suggest that, although
V1 cells may exhibit some simpler non-linearity, it is
unlikely that V1 is the substrait of such functions as tex-
ture and region segregation, and that ‘‘these functions
probably occur in V2 through V4. . .’’

The output of early linear filters, corresponding to first-
order processing, is rectified, and then subjected to
analysis by larger scale linear templates or filters in the
second-order stages. This process is limited by internal
noise at both stages, as well as by any external noise
(Sperling, 1989). Given the reductions in precision report-
ed for most second-order tasks (Lin & Wilson, 1996;
Lu & Sperling, 1999), it appears that significant internal

limiting noise must occur associated with the latter stage
of processing. Stimulus enhancement (relative stimulus
amplification) overcomes this internal limiting noise.

We propose that perceptual learning for the texture-
defined letters takes place late in the second-order path-
way. If instead we had observed, for example, parallel
patterns of learning in the first-order and second-order
tasks, we might have concluded that the locus (or at
least one major locus) of improvement was in the first-
order layer. Stimulus enhancement might occur through
re-weighting or strengthening of the connections from
the first layer of analysis to the second layer of the
‘‘sandwich,’’ or from the second-order filters to the tem-
plate, resulting in a useful relative amplification of the
stimulus in relation to internal noise sources (Fig. 6). It
is reasonable to assume that the rectified channels may
not naturally have strong connection to the higher-order
object templates or filters, reflecting the fact that we do
not normally read checkerboard letters. Re-weighting,
or ‘‘upweighting,’’ of the connections between early sen-
sory representations and later decision analysis is consis-
Fig. 6. A schematic two-level architecture for second-order task process-
ing and perceptual learning. Learning occurs at the second-order stage,
after rectification, through reweighting of the first-order inputs.
tent with our recent proposals of perceptual learning
through multi-channel re-weighting (Dosher & Lu,
1998; Dosher & Lu, 1999b; Petrov, Dosher, & Lu,
2005a; Petrov, Dosher, & Lu, 2005b).
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Appendix A

The Perceptual Template Model (Lu & Dosher, 1999)
quantitatively models human performance in signal detec-
tion and discrimination. In the PTM, perceptual inefficien-
cies are attributed to three limitations: internal additive
noise that is associated with absolute thresholds in percep-
tual tasks; perceptual templates that is often tuned to a
range of stimulus features and often allows unnecessary
influence of external noise or distractors on performance;
and internal multiplicative noise that is associated with
Weber’s Law behavior of the perceptual system. The basic
PTM consists of four parameters in the basic PTM (Lu &
Dosher, 1998): gain to the signal stimulus (b), exponent of
the non-linear transducer function (c), internal additive
noise (Nadd), and coefficient of the multiplicative internal
noise (Nmul). The three mechanisms of perceptual learning
were implemented by multiplying the corresponding noise5

in the PTM with learning parameters Aadd (t), Aext (t), and
Amul (t) in each training block t, with Aadd (1) =
Aext (1) = Amul (1) = 1.0 (Dosher & Lu, 1998; Dosher &
Lu, 1999b, Lu & Dosher, 2004). In the most saturated
PTM with all three mechanisms of perceptual learning,
thresholds are expressed as functions of external noise by
in the following equation:

cs¼
1

b
ð1þðAmulðtÞNmulÞ2ÞðAextðtÞN extÞ2cþðAaddðtÞN addÞ2

ð1=d 02�ðAmulðtÞNmulÞ2Þ

" # 1
2c

.

ðA1Þ
All eight possible versions of PTM models, consisting of

various combinations of the three mechanisms of perceptu-
al learning, were fit to each set of TvC functions, separated
by training and transfer sessions. A least-square minimiza-
tion procedure based on fmins in Matlab 6.5 (Mathworks,
1998) was used to search for the best-fitting parameters for
each PTM: (1) log (ctheory) was calculated from the model
using an initial set of parameters for each external noise
condition, performance criterion, and training block; (2)
Least-square L was calculated by summing the squared dif-
ferences sqdiff = [log(ctheory) � log (c)]2 across all the con-
ditions; (3) Model parameters were adjusted by fmins to
5 In the PTM, stimulus enhancement is mathematically equivalent to
internal additive noise reduction Lu and Dosher (1998).
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search for the minimum L using gradient descend and re-it-
erating steps (1) and (2). The proportion of variance
accounted for by the model form was calculated using
the r2 statistic

r2 ¼ 1:0�
P

½logðctheoryÞ � logðcÞ�2P
½logðctheoryÞ �meanðlogðcÞÞ�2

; ðA2Þ

where
P

and mean() were over all the conditions.
The quality of the fits of the eight forms of PTM was

statistically compared to select the best fitting model for
each data set. The best fitting model, statistically equivalent
to the fullest yet with minimum number of parameters,
identified the mechanism(s) of perceptual learning. When
appropriate, F-tests for nested models were used:

F ðdf1; df2Þ ¼
ðf 2

full � r2reducedÞ=df1
ð1� r2fullÞ=df2

; ðA3Þ

where df1 = kfull � kreduced, and df2 = N � kfull. The k’s are
the number of parameters in each model, and N is the num-
ber of predicted data points.
Appendix B

See Fig. 7.
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