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1. INTRODUCTION

Consider the linear, autonomous, scalar differential equation

0
X(0)= —pox(0)+ [ x(t+5) du(s), (1)

where u, is a real number, u: (—o0,0)— R is a nondecreasing function,
and [°  du< 0.

Equation (1) occurs in certain biological applications (see e.g. [2]).

If po> [ du then any solution of (1) belonging to a bounded,
continuous initial function tends to zero as t — oo (see e.g. [9]).

If po < [° . du then it is easy to see that there are unbounded solutions.
More precisely, there is a positive real number A, such that e’ is a
solution of (1) on R.

In the critical case po=(°  du it is shown in [6] that under the
condition

[ st duts) < oo @)

any solution of (1) belonging to a bounded, continuous initial function
tends to a constant as ¢ — co.

The different methods of proving the convergence of solutions of dif-
ferential equations with infinite delay have the same type of condition for
the delay term as (2) [3-8]. The question arises whether Condition (2) is
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necessary for the convergence of all solutions of (1) belonging to bounded,
continuous initial functions.

The purpose of this paper is to prove that (2) is a sufficient and
necessary condition under which all solutions of (1) belonging to bounded,
continuous initial functions converge to a finite limit as 1 — oo.

2. PRELIMINARIES

Let R, R™, R and 7 be the intervals (— cc, ), (— o0, 0], [0, ), and
[0, 1], respectively. Let BC denote the set of real-valued bounded,
continuous functions on R ™. Define IC = {¢ € BC: ¢(s)eI}. The function
x:R - R is said to be a solution of (1) on R* through (0, @), ¢ € BC, if
x(s)=¢(s) for se R~ and (1) holds on R*. It is easy to see that for any
@ € BC there is a unique solution of (1) through (0, ¢) on R* [1]. In this
paper, by a solution of (1) we always mean a solution through (0, ¢) for
some ¢ € BC, and this solution is denoted by x(¢).

For a given ¢ € BC and reR™ let us define the set IC , by

IC,,={yelC: y(s)=o(s) for se [—r, 0]}.

Without loss of generality we may assume that u is normalized such
that it is continuous from the left, lim _, _ p(s)=0. Then, clearly,
[“ » du(s)= p(u) for u<0. Moreover, if (2) holds, then by changing the
order of integration we obtain

[ sa=]" (j du) du(s)

Zﬁ% (jm dp(s)> du=J0 p(u) du, (3)

e

that is, p is integrable on R ™.

3. THE RESULT

The sufficiency of Condition (2) is contained in a more general result in
[6] A different method is used in [5] to obtain the sufficiency of (2)
whenever the initial functions are bounded and uniformly continuous on
R~. For the sake of completeness, we also give here a proof of the
sufficiency of (2) for arbitrary initial functions from BC by using the idea
of [S].
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THEOREM.  Assume po= [ , du. Then all solutions of (1) converge to a
finite limit as t - oo if and only if (2) holds.

Proof. Sufficiency of (2). Let ¢ € BC be given and let x =x(¢). Define
M =sup, _, x(s) and m=inf __, x(s). First we show that x(¢) e [m, M] for
1 >0, that is, x is bounded. Let

u(t)= max {x(1), M}.

O0<s<t

If x(r) < u(t) then D*u(r) = limsup, .o, (1/h)(u(t + h)—u(t)) = 0. If
x(1)=u(t) then clearly D*u(r)<max{0,x'()}. On the other hand,
x(t)=u(t) implies x(¢) > x(¢+s) for all s<0. Thus, from Eq. (1) we get
that x'(¢)<0. Therefore D*u(1)<0 for all r>0. Consequently, x(t)<
u(t) < M for all > 0. Similarly, x(¢) = m for all 1 >0, which was stated.

Let a=Hminf,  _ x(¢), b=limsup, x(¢). For the existence of
lim, , , x(¢) it suffices to prove that a=b. Suppose the contrary, i.e., a <b.
Let ce(a, b) and let ¢ >0 be given such that

b+s+%(c—b—£)exp<—-[0 y(s)ds)<b.

—

There exists such an ¢ >0 by continuity, because the left hand side of the
inequality is less than b at ¢ =0. The function y is integrable on R~ by (3).

Let T, be defined such that ¢ > T, implies x(¢)<b+¢& Choose T,> T,
such that x(7T,)=c and

0

(M—m) fw W(Ty—u) du<i(b+e—c) exp<—f u(s)ds).

For t>T, let

v(t)= max x(s).
Ty<s<t
Now, x(¢)<uv(t) implies D*v(t)=0, and x(t)=0v(t), x'(1)<0 imply
D*o(t)<0. Assume that x(¢) =v(r) and x'(¢)>0. Then D*o(1) < x'(t) and
by using Eq. (1)

xX(1) = (j: 4 f:: + f: ) (x(1+ ) — x(2)) du(s)

To—1 Ty—1t
<f (b+s—x(z))du(s)+(M—m)f du(s)
T —1t

— 0

sfrr' du(s)(b + & — x(1)) + (M — m) er du(s).

w0 -0
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Since the right-hand side of this inequality is nonnegative for 1 > T, we
have

Ty—1t Tt
D*v(t)<J du(sfb+e—v(t))+(M—m) j du(s)

-

for all 1> T,. Using that v(T,)=c and a well-known differential inequality,
one obtains for ¢ = T, that

Tr—u

v(t)<b+g+(c——b—£)exp<—f; J

2V -

du(s) du)

Ty—-u

du(s) exp <—jl '[Trr du(s) dr) du

u -

+L (M—m) |

— oL

<b+e+(c—b—¢)

xexp(—f; u(Tz—u)du>+J’; (M —m) (T, —u) du

.
<b+s+§(c—b—e)exp<—j u(s)ds><b,

— oC

which implies limsup, ,  x(z)<b, a contradiction. Thus, lim, . x(z)
exists.

Necessity of (2). First we show the following simple statements.
Claim 1. If @ e IC then 0< x(p)(¢)< 1 for 1 20.

Proof. This is the same as that of the boundedness in the proof of the
sufficiency of (2).

Claim 2. If ¢ e BC and ¢ has compact support (i.e., ¢ is zero outside
of a compact subset of R ™), then for >0 we have

@0 +] [ o)) dadus)

0 0
=0O)+] [ o) dudus) 4)

s

Proof. (4) can be obtained from Eq. (1) by integrating it from 0 to ¢
and using the fact that
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[" (o)) = @)1+ 5)) )

—

"L o)) du )

o Al iy

-4 ﬁ% [ xtow) dudus),

since ¢ has compact support.

Claim 3. If ¢ e IC and ¢ has compact support, then either x(¢)(z) =0
or x(¢)(z) does not converge as ¢t — co. Similarly, if ¢ €IC and 1 — ¢ has
compact support, then either x(¢)(¢) > 1 or x(¢)(¢) does not converge as
t— 0.

Proof. By Claim 1, x(@)(t)el for t>0. Suppose the contrary, ie.,
x(q))( )—a, ae (0, 1]. If T is so large that x(¢)(¢) = a/2 for 1 = T, then for

oo+ f

oo Y+

0
x()(u) du du(s) > g L-_ 15| dus).

Hence and from % |s| du(s)= oo, the left-hand side of (4) tends to
infinity as ¢ — oo. This is impossible since ¢ has compact support and thus
the right-hand side of (4) is a finite constant. The second part can be
shown from the first one by applying it for 1—¢ and using that

x(1—o)t)=1—x()(1).

Claim 4. For any T>0, ¢>0 there exists r=r(T, £¢)>0 such that for
all peIC and Y €IC_,

lx(@)(1) = x(¥)(1) <e (1€ [0, T]).
Proof. Let y(t)=x(o)(t)—x(y)(t) for teR Then y(t)=0 for

te[—r, 0] and we have

0
V()= —po )+ S0+ [ pi+s)duts)  (120),

where  f(r, t)=)""" y(t+s)du(s). From ¢,y ecIC it follows that
S(r,t)— 0 as r - oo uniformly in ¢ on [0, T]. Let 6 >0 be given and let r
be so large that | f(r, t)] <é for re[0, T]. Define z(¢t)=|y(¢)|, teR. It is
easy to see that

D*2(1) < —pozlt) +5+j 2r+s)du(s)  (te[0, T).
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Multiply this inequality by ¢’ and define v(7) = ¢'z(1), te R. Obviously

. - ~0
Dro(r) e ™o+ e? [ o(t+5) du(s) (te [0, TT)
By integrating on [0, ], 0<¢< T, changing the order of integration, and
using v(0) =0, we get

1

0
v(t) el ot e’ j J v(u+ s) duls) du
0 u
t+y

0
:e"OTaz+e“°Tf f v(u) du du(s)

—tv0

<eTTS + e | vw)du (1€ [0, T])
0

Applying Gronwall’s inequality, one obtains that
v(1) < e T exp(poTe™™) -6 (1[0, T]),

which completes the proof of Claim 4.

Now, we give a function ¢ € IC such that x(¢)(t) does not converge as
t — co. Two cases can be distinguished by Claim 3.

Case 1. There i1s a function ¢ €IC such that either ¢ or 1 —¢ has
compact support and x(¢)(¢) does not converge as ¢ — c0.

Case 2. If pelC and ¢ has compact support, then x(¢)(¢z)—0 as
t—>oo. If pelC and 1-—¢ has compact support, then x(¢)(z)—1
as t— o0.

If Case | holds, there is nothing to prove. Assume that Case 2 is satisfied.
Let , be given by

s+1 if se[—1,0]

‘/"’(S)z{o i s< —1

(see Fig. 1). Then x(y,)(¢) >0 as r— 0. So there exists 7, >0 such that
x(Yo)(ty) <1/3. Claim 4 implies that there is r,>1 such that for any
yelC one has x(¥)(1,) < 1/3.

Wo.r
Let :,001 OeICwO‘,O be defined by
Yols) if sel[—rq,0]
Yi(s)=< —s—rg if se[—ro—1,—rq]

1 if s<—rqg—1
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(see Fig. 1). Then 1 —y, has compact support. Therefore, x(¥,)(t) — 1 as
t — o0. It follows that there is ¢, > max{1, ¢,} such that x(y,)(z,) > 2/3. By
Claim 4 there exists r;>r,+1 such that for all yelIC, , one has
x(P)(ty)>2/3.

Suppose that rg, r(, e, For_ 15 os L1y o Loy ADd Yo, Wy, o, Yo are
given, k> 1.

Let us define ¥, €1C,, . as
Yo 1(5) if se[—ry_;,0]
Youls)=<s+ry_+1 if sel—ry_1—1,—ry_]
0 if s<—ry_,—1

(see Fig. 1). Then x{(¥,.)(¢) =0 as ¢t > oc. Consequently, one can choose
1y >max {2k, t,, _,} such that x(¥,)(t5) < 1/3. From Claim 4 it follows

that there exists ry >ry _,+1 such that for all yeIC,, . we have
x(P ) (ty) <1/3.
Let ¢5 . €1C,,, ,, be defined by

Yaul(s) if se[—ry,0]
l//2k+l(s)= —S8§—7ry if se[_rzk_l’_rz’(]

1 if s< —ry—1
¢ /4’& X (4)
(o]

-1 X
0 tO t

o 1 X (¥4)

_r0-1 —ro -1 0 tO '(1 t

1 X (¢2k)
¢2k S ) \ ~———
- -1-r - t
"2k-1" 2k-1 L N 1
V2k+1 1 xGopeq)
/ —
t hd ; } es e coe ——————
AP A S - t
"2 ok okT1 2k-1 T 0ty to toray



24 T. KRISZTIN

(see Fig. 1). Now x(io, ,)(f) = 1 as 1 > oo, since | — ), ,, has compact
support. Then there is 15, , , > max {2k + 1, 15, } with x(¢, . Wtae ) > 2/3.
Claim 4 implies that we can find r,, , | > r,, + 1 such that x()(¢5 , 1) >2/3
for all !/j € ICW2k+ 1 P2k 41"

This induction defines the sequences {¥, ),/ ,, {6}, —o, {ra) i, Itis
easy to see that (}/_,IC, . contains a unique function ¢ given by

(e

r0 if se U [—r2k9_r2k,,l—l]
(=0

1 if se d —For g1, —Fay—1

o(s) = kL:)O[ Ut 1 w—1]
S+ry_+1 if se[—1—ry_, =ty ;]1Kk=0,1,.)
—§—Fay if sel[—1—ry,—ryl (k=0,1,..),
\

where r_, =0.

Since p e _, IC we have

Vi, ri?

x(@)ty)<1/3 (k=0,1,.)

and

X(@ )ty 1) >2/3 (k=0,1,..).

Therefore, x(¢)(¢) does not converge as t — 0.
The proof is complete.
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