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1. INTRODUCTION 

Consider the linear, autonomous, scalar differential equation 

x’(f)= -pnx(f)+jO X(f + s) &(J), (1) 
-r 

where p. is a real number, p: ( - co, 0) + R is a nondecreasing function, 
and JYa, dp < GO. 

Equation (1) occurs in certain biological applications (see e.g. [2]). 
If p. > jyco dp then any solution of (1) belonging to a bounded, 

continuous initial function tends to zero as t + co (see e.g. [9]). 
If cl0 < JYm dp then it is easy to see that there are unbounded solutions. 

More precisely, there is a positive real number A, such that e”” is a 
solution of (1) on R. 

In the critical case p. = JYz dp it is shown in [6] that under the 
condition 

i 
’ I4 44s) < 00 (2) 
-cz 

any solution of (1) belonging to a bounded, continuous initial function 
tends to a constant as t + cc. 

The different methods of proving the convergence of solutions of dif- 
ferential equations with infinite delay have the same type of condition for 
the delay term as (2) [3-81. The question arises whether Condition (2) is 
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necessary for the convergence of all solutions of (1 ) belonging to bounded, 
continuous initial functions. 

The purpose of this paper is to prove that (2) is a sufficient and 
necessary condition under which all solutions of (1) belonging to bounded, 
continuous initial functions converge to a finite limit as t + co. 

2. PRELIMINARIES 

Let R, R -, R + and I be the intervals ( - co, cz ), ( - co, 01, [0, so ), and 
[0, 11, respectively. Let BC denote the set of real-valued bounded, 
continuous functions on R-. Define IC = { ~0 E BC: p(s) E I}. The function 
x: R + R is said to be a solution of (1) on R+ through (0, cp), cp E BC, if 
x(s) = q(s) for SE RP and (1) holds on R+. It is easy to see that for any 
cp E BC there is a unique solution of (1) through (0, cp) on R+ [I]. In this 
paper, by a solution of (1) we always mean a solution through (0, cp) for 
some cp E BC, and this solution is denoted by x(cp). 

For a given cp E BC and Y E R + let us define the set IC,,,, by 

IC,,,= {$EIC: $(s)=cp(s) for SE [-r,O]}. 

Without loss of generality we may assume that ,U is normalized such 
that it is continuous from the left, lim,Y+ --2 p(s) =O. Then, clearly, 
.I” rn 44) = PL(U) f or u 6 0. Moreover, if (2) holds, then by changing the 
order of integration we obtain 

that is, ,U is integrable on R ~. 

3. THE RESULT 

The sufficiency of Condition (2) is contained in a more general result in 
[6]. A different method is used in [S] to obtain the sufficiency of (2) 
whenever the initial functions are bounded and uniformly continuous on 
R-. For the sake of completeness, we also give here a proof of the 
sufficiency of (2) for arbitrary initial functions from BC by using the idea 
of [S]. 
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THEOREM. Assume p,, = j’? m d,u. Then all solutions of (1) converge to a 
finite limit as t + co if and only if (2) holds. 

Proof. Sufficiency of (2). Let cp E BC be given and let x =x(q). Define 
M=sup,,,x(s) and m=inf,., x(s). First we show that x(t) E [m, M] for 
t>O, that is, x is bounded. Let 

If x(t) < u(t) then D’u(t) %!limsup ,+,+(l/h)(u(t + h)-u(t)) = 0. If 
x(t)=u(t) then clearly D+U(t)<max{O,x’(t)}. On the other hand, 
x(t)=u(t) implies x(t)>x(t+s) for all s<O. Thus, from Eq. (1) we get 
that x’(t) < 0. Therefore D+u(t) 6 0 for all t 3 0. Consequently, x(t) < 
u(t) 6 M for all t >, 0. Similarly, x(t) > m for all t > 0, which was stated. 

Let a = lim inf, _ m x(t), b = lim sup, _ ocI x(t). For the existence of 
lim , _ a, x(t) it suffices to prove that a = 6. Suppose the contrary, i.e., a < b. 
Let c E (a, 6) and let E > 0 be given such that 

b+E+i(c-b-c)exp( -I”:, p(s)ds)<b. 

There exists such an E > 0 by continuity, because the left hand side of the 
inequality is less than b at E = 0. The function p is integrable on R- by (3). 

Let T, be defined such that t > T, implies x(t) < b + E. Choose T, 2 T, 
such that x( T,) = c and 

(M-m) iz ,u(TI-u)du<i(b+E-c) exp 
T2 

(-[I, AsI ds). 

For t > T, let 

u(t) = Tfy: ~ x(s). . . 

Now, x(t)< u(t) implies D’u(t)=O, and x(t) = u(t), x’(t) 60 imply 
D’u(t) < 0. Assume that x(t) = u(t) and x’(t) > 0. Then D+u(t) <x’(t) and 
by using Eq. (1) 

Q s T*-’ (b+E--x(t))dp(s)+(M-mm) IT’-’ dp(s) 
T ,  ~ I -m 

< 
s 

yi’dp(s)(b+s-x(t))+(M-m) jT’prdp(s). 
-m 
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Since the right-hand side of this inequality is nonnegative for t 2 T, , we 
have 

D’C(l),<jT2 -I 
-c 

dp(s)(b+E-u(t))+(M-m) jT’  ~’ d/L(s) 
-^I 

for all t 3 T,. Using that v( T,) = c and a well-known differential inequality, 
one obtains for t > T, that 

<b+&+(C--6-E) 

’ /i(Tz-u)du 
T2 

+ j’ (M-rn)/~(T,-u)du 
T >  

<b+.a+f(C--b--F)exp( -j”, p(s)ds)<b, 

which implies lim sup, _ cu x(t) < b, a contradiction. Thus, lim, _ m x(t) 
exists. 

Necessity oj’(2). First we show the following simple statements. 

Claim 1. If cpEIC then O<x(cp)(t)<l for t>O. 

Proof This is the same as that of the boundedness in the proof of the 
sufficiency of (2). 

Claim 2. If cp E BC and cp has compact support (i.e., cp is zero outside 
of a compact subset of R - ), then for t > 0 we have 

=q(O)+j’ j” cp(u)dudAs). 
-x Y (4) 

ProojY (4) can be obtained from Eq. (1) by integrating it from 0 to t 
and using the fact that 
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since cp has compact support. 

Claim 3. If cp E IC and cp has compact support, then either x(q)(t) -+ 0 
or x(q)(t) does not converge as t -+ co. Similarly, if cp E IC and 1 - cp has 
compact support, then either x(q)(t) + 1 or x(cp)( t) does not converge as 
t+cO. 

Proof By Claim 1, x(cp)(t)eZ for t 20. Suppose the contrary, i.e., 
x(cp)(t)-+cr, cr~(O, 11. If Tis so large that x(cp)(t)>a/2 for t>T, then for 
t>T 

x(v)(f)+P,, i:+,y x(cp)(u) du 44s) 2; j;--, I4 44s). 

Hence and from jym 1.~1 dp(s) = cc, the left-hand side of (4) tends to 
infinity as t -+ cc. This is impossible since cp has compact support and thus 
the right-hand side of (4) is a finite constant. The second part can be 
shown from the first one by applying it for I- cp and using that 
41 -cp)(t)= 1 -x(cp)(t). 

Claim 4. For any T > 0, E > 0 there exists r = r( T, E) > 0 such that for 
all cp~1C and ~~EIC,,, 

Ix(cpMt) - x(ll/Nt)l < 6 (t E L-0, Tl). 

Proof Let y(t)=x(cp)(t)-x($)(t) for tER. Then y(t)=0 for 
tE [-r,O] and we have 

y’(t)= -I*oAt)+f(rt t)+j” .v(t+s)dh) (t20), I 

where f(r, t)=jII,-ry(t+s)dp(s). From cp, II/ EIC it follows that 
f(r, t) -+ 0 as r -+ cc uniformly in t on [0, T]. Let 6 > 0 be given and let r 

be so large that If(r, t)l < 6 for tE [0, T]. Define z(t) = Iy(t)l, te R. It is 
easy to see that 

D’z(t)< -poz(t)+d+ j” 41 + s) 44s) (t E EO, Tl 1. , 
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Multiply this inequality by Pilr and define t!(t) = P”~“z( t), t E R. Obviously 

By integrating on [0, t], 0 d t 6 T, changing the order of integration, and 
using v(0) = 0, we get 

s 

I 

d etco TT6 + poepo7 u(u) du (t E Ilo, Tl 1. 
0 

Applying Gronwall’s inequality, one obtains that 

v(t)<e ‘“‘T exp(poTeP”‘).6 (ZE [0, T]), 

which completes the proof of Claim 4. 

Now, we give a function 50 E IC such that x(q)(t) does not converge as 
t + co. Two cases can be distinguished by Claim 3. 

Case 1. There is a function cp E IC such that either cp or 1 - cp has 
compact support and x(q)(t) does not converge as t -+ co. 

Case 2. If cp E IC and cp has compact support, then x(q)(t) + 0 as 
t --f m. If cp E IC and 1 - cp has compact support, then x(q)(t) -+ 1 
as r+co. 

If Case 1 holds, there is nothing to prove. Assume that Case 2 is satisfied. 
Let ijo be given by 

$0(s) = {;+ l if .YE[-l,O] 
if s< -1 

(see Fig. 1). Then x(ijo)(t) + 0 as t -+ co. So there exists to > 0 such that 
x(ll/,)(t,) < l/3. Claim 4 implies that there is y. > 1 such that for any 

9 E I%.r, one has x($)(t,) < l/3. 
Let $ I E IC,,,, be defined by 

if SE [ -ro, 0] 
if SE [ -ro- 1, -ro] 
if s< -r,-I 
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(see Fig. 1). Then 1 - $ r has compact support. Therefore, x(tj , )(t) -+ 1 as 
t -+ co. It follows that there is t, > max{ 1, to} such that x(t,bl)(tl) > 2/3. By 
Claim 4 there exists r, > r. + 1 such that for all $ E IC,,,,, one has 
aw > 2/3. 

Suppose that ro, rl, . . . . r2&-,, to, t,, . . . . t,,-, and tie, $,, . . . . tiZkPl are 
given, k > 1. 

Let us define $2k~ICtiLum,,r2km, as 

11/2k(s)= s+r2k-l+l 

1 

$2k - L(S) if sE[-rr,,-,,O] 

if s~[-r2k~I-1,-r2k~I] 

0 if s< -rZk-, - 1 

(see Fig. 1). Then x(tiZk)( t) + 0 as t + co. Consequently, one can choose 
t,, > max { 2k, t,, ~ I } such that x( tiZk)( t,,) < l/3. From Claim 4 it follows 
that there exists r2k > r2kp r + 1 such that for all $ E IC+,,,,,, we have 
x(+)(t*k) < l/3. 

Let +2k+, E ICtiZk,r2k be defined by 

if SE [ -rZk, 0] 

if SE [-r2k- 1,-r,,] 
if s< -rZk - 1 

$2, 
x (ti2k) 

. . . ‘;--------* 
-r -1-r 

2k-1 2k-1 
-1 0 

t0 t2k 
t 

. . . w 

-r2k -1 -r 2k-r2k-, -1 -r 2k-1 -1 0 to t2k t2k:l 

FIGURE 1 
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(see Fig. I). Now .x($~~+ ,)(t) + I as t + a, since I - tilk, , has compact 
support. Then there is t,, + , >maxj2k+ 1, tzk) with ~(~*~+~)(f~~+,)>2:‘3. 
Claim 4 implies that we can find rzA + , > rZk + 1 such that x($)( tzk + , ) > 2/3 
for all + E ICti2k+ ,,r2i, , 

This induction defines the sequences (I/,},:=~~, jt,l),:ln, {r,),::,. It is 
easy to see that n;_,, IC,,,,, contains a unique function cp given by 

ds) = 
1 if SE i, [-rzk.+,, -r2k-11 

k=O 

s+r2kpI+1 if SE [-I -r2kp,r -rZk ,] (k=O, 1, . ..) 
-s - r2k if SE r-1 -rZk,-r2k] (k = 0, 1, . ..). 

r 

0 if SE il, [-r,,,-r,,-,-l] 
k=O 

where r ~, = 0. 

Since rp E n;=, ICtik,rk, we have 

d(P)ttZk) < 1/3 (k = 0, 1, . ..) 

and 

x((P)(~~~ + I ) > 2/3 (k=O, 1, . ..). 

Therefore, x(q)(t) does not converge as t + co. 
The proof is complete. 
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