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Abstract

There are perfect formulas for the constructions of biorthogonal uniwavelets. Let

φ(x)=
∑
k∈Z

pkφ(2x − k), φ̃(x)=
∑
k∈Z

p̃kφ̃(2x − k)

be a pair of biorthogonal uniscaling functions, then a pair of biorthogonal uniwavelet
associated with the above biorthogonal uniscaling functions can be easily expressed as

ψ(x)=
∑
k∈Z
(−1)k−1p̃1−kφ(2x − k), ψ̃(x)=

∑
k∈Z
(−1)k−1p1−kφ̃(2x − k).

However, it seems that there is not such a good formula of similar structure for biorthogonal
multiwavelets. In this paper, we will give a procedure for constructing compactly supported
biorthogonal multiwavelets, which makes construction of biorthogonal multiwavelets easy
like in the construction of biorthogonal uniwavelet. Our approach is also suitable for the
case of compactly supported orthogonal multiwavelets. Four examples for constructing
multiwavelets are given.
 2002 Elsevier Science (USA). All rights reserved.
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1. Introduction

Since Geronimo et al. [1] presented the examples of multiwavelets by using
fractal interpolation functions, the construction of multiwavelets has been studied
by many authors (see [2–5]). The compactly supported orthogonal multiscaling
functions constructed by Geronimo et al. are both symmetric and continuous.
One of the associated orthogonal multiwavelets is symmetric while the other is
antisymmetric. However, as we know, so good properties are either impossible or
incompatible with each other for a single compactly supported scaling function.
It turns out that many researchers proceed to study multiwavelets. Multiwavelets
with the above properties can be constructed easily. From this respect, applica-
tions of multiwavelets are more extensive than those of uniwavelet. Strela [6]
shown that the multiwavelets are superior to the uniwavelet in the effects of GHM-
multiwavelets andD4-wavelet on image compression. The study of biorthogonal
multiwavelets began in [7]; later, Hardin et al. [8] and Goh [9] followed. However,
as yet there has not been a general method to obtain biorthogonal multiwavelets.
The main objective of this paper is to give a procedure constructing compactly
supported multiwavelets.

The paper is organized as follows: In Section 2, we briefly recall the concept of
multiresolution analysis of multiplicityr. In Section 3, we give our main result,
a constructive procedure of compactly supported biorthogonal multiwavelets by
using biorthogonal compactly supported multiscaling functions. In Section 4, four
examples are also given.

2. Multiresolution analysis of multiplicity r

The multiwavelets are associated with multiresolution analysis of multiplicity
r; i.e., multiwavelets can be constructed by multiresolution analysis with multi-
plicity r.

Let �(x)= (φ1, φ2, . . . , φr)
T , φ1, φ2, . . . , φr ∈L2(R),

�(x)=
∑
k∈Z
Pk�(2x − k) (1)

for somer × r matrices{Pk}k∈Z called the two-scale matrix sequence.�(x) is
called multiscaling function with multiplicityr.

(1) can be rewritten as

�̂(w)= P(z)�̂
(
w

2

)
, (2)

wherez= e−iw/2, and

P(z)= 1

2

∑
k∈Z
Pkz

k (3)
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called the two-scale matrix symbol of the two-scale matrix sequence{Pk}k∈Z
of �.

Define a subspaceVj ⊂ L2(R) by

Vj = closL2(R)〈φ�:j,k : 1 � �� r, k ∈Z〉, j ∈Z; (4)

here and afterwards, forf� ∈ L2, we will use the notation

f�:j,k = 2j/2f�(2
j x − k).

As usual,�(x) in (1) generates a multiresolution analysis{Vj }j∈Z of L2(R),
if {Vj }j∈Z defined in (4) satisfy the following properties:

(1) · · · ⊂ V0 ⊂ V1 ⊂ V2 ⊂ · · · ;
(2) closL2(R)(

⋃
j∈ZVj )= L2(R);

(3)
⋂
j∈Z Vj = {0};

(4) f (x) ∈ Vj ⇔ f (2x) ∈ Vj+1, j ∈ Z;
(5) the family{φ�:j,k: 1 � �� r, k ∈Z} is a Riesz basis forVj .

Let Wj , j ∈Z, denote the complementary subspace ofVj in Vj+1, and vector-
valued function�(x)= (ψ1,ψ2, . . . ,ψr )

T , ψ� ∈ L2, �= 1,2, . . . , r, constitutes
a Riesz basis forWj , i.e.,

Wj = closL2(R)〈ψ�:j,k : 1 � �� r, k ∈ Z〉, j ∈ Z. (5)

From condition (5), it is clear thatψ1(x),ψ2(x), . . . ,ψr(x) are inW0 ⊂ V1.
Hence there exists a sequence of matrices{Qk}k∈Z such that

�(x)=
∑
k∈Z
Qk�(2x − k). (6)

By the two-scale relation (6) of�, we have

�̂(w)=Q(z)�̂
(
w

2

)
, (7)

where

Q(z)= 1

2

∑
k∈Z
Qkz

k. (8)

As such, the family{φ�:j,k,ψ�:j,k : 1 � �� r, k ∈ Z} constitutes a Riesz basis of
Vj+1, i.e.,

Vj+1 = Vj + Wj . (9)



4 S. Yang et al. / J. Math. Anal. Appl. 276 (2002) 1–12

3. Construction of biorthogonal multiwavelets

For column vector functionsΛ andΓ with elements inL2(R), define

〈Λ,Γ 〉 =
∫
R

Λ(x)Γ (x)T dx.

We call �(x) = (φ1, φ2, . . . , φr)
T and�̃(x) = (φ̃1, φ̃2, . . . , φ̃r )

T a pair of bior-
thogonal multiscaling functions, if〈

�(·), �̃(· − n)〉 = δ0,nIr , n ∈ Z. (10)

�(x)= (ψ1,ψ2, . . . ,ψr)
T and�̃(x)= (ψ̃1, ψ̃2, . . . , ψ̃r )

T will be said to be a
pair of biorthogonal multiwavelets associated with multiscaling functions� and
�̃, if �, �̃ and�, �̃ satisfy the following equations:〈

�(·), �̃(· − n)〉 = 〈
�(·), �̃(· − n)〉 =O, (11)〈

�(·), �̃(· − n)〉 = δ0,nIr , n ∈Z, (12)

whereO andIr denote the zero matrix and unity matrix, respectively.
Similar to (1) and (6),�̃ and �̃ also satisfy the following two-scale matrix

equations:

�̃(x)=
∑
k∈Z
P̃k�̃(2x − k), (13)

�̃(x)=
∑
k∈Z
Q̃k�̃(2x − k). (14)

By taking Fourier transform for the both sides of (13) and (14), we have

ˆ̃�(w)= P̃ (z) ˆ̃�
(
w

2

)
, (15)

ˆ̃
�(w)= Q̃(z) ˆ̃�

(
w

2

)
, (16)

where

P̃ (z)= 1

2

∑
k∈Z
P̃kz

k, (17)

Q̃(z)= 1

2

∑
k∈Z
Q̃kz

k. (18)

In the case of uniwavelet (i.e.,r = 1), there is a simple procedure for
finding uniwavelet if uniscaling function is known. In the case of multiwavelets,
however, it seems that a simple approach obtaining multiwavelets has not been
discovered yet. In the following, we will proceed to investigate the construction
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of multiwavelets and give a approach for constructing a pair of biorthogonal
multiwavelets associated with a given pair of biorthogonal multiscaling functions.
The given method is very simple like in the case of uniwavelet.

To study the biorthogonal multiwavelets, we need the following

Lemma 1. Letη= (η1, η2, . . . , ηr )
T , η̃ = (η̃1, η̃2, . . . , η̃r )

T , whereη1, η2, . . . , ηr ,

η̃1, η̃2, . . . , η̃r ∈ L2. Thenη and η̃ are a family of biorthogonal functions if and
only if∑

k∈Z
η̂(w+ 2kπ) ˆ̃η(w+ 2kπ)∗ = Ir , |z| = 1; (19)

here and throughout, the asterisk denotes complex conjugation of transpose.

Proof. Let η and η̃ are a family of biorthogonal functions. For everyn ∈ Z, we
have

δ0,nIr = 〈
η(·), η̃(· − n)〉 = 1

2π

∞∫
−∞

η̂(w) ˆ̃η(w)∗einw dw

=
∞∑

k=−∞

1

2π

2(k+1)π∫
2kπ

η̂(w) ˆ̃η(w)∗einw dw

= 1

2π

2kπ∫
0

[∑
k∈Z
η̂(w+ 2kπ) ˆ̃η(w+ 2kπ)∗

]
einw dw

which implies (19) holds. The converse is obvious.✷
Theorem 1. Let �(x) and �̃(x) defined in(1) and (13), respectively, be a pair
of biorthogonal multiscaling functions,P(z) and P̃ (z) defined in(3) and (17),
respectively, be two-scale matrix symbols. ThenP(z) andP̃ (z) satisfy the identity

P(z)P̃ (z)∗ + P(−z)P̃ (−z)∗ = Ir , |z| = 1. (20)

Equivalently, the two-scale matrix sequences{Pk}, {P̃k} satisfy∑
i∈Z
PiP̃

T
i+2k = 2δk,0Ir , |z| = 1. (21)

Further, suppose� and �̃ are a pair of biorthogonal multiwavelets associated
with � and �̃, respectively, andQ(z) and Q̃(z) are two-scale matrix symbols.
Then


P(z)Q̃(z)∗ + P(−z)Q̃(−z)∗ =O,
P̃ (z)Q(z)∗ + P̃ (−z)Q(−z)∗ =O,
Q(z)Q̃(z)∗ +Q(−z)Q̃(−z)∗ = Ir .

(22)
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Equivalently,∑
i∈Z
PiQ̃

T
i+2k =O, (23)

∑
i∈Z
P̃iQ

T
i+2k =O, (24)

∑
i∈Z
QiQ̃

′T
i+2k = 2δ0,kIr . (25)

Theorem 1 can be proved easily by Lemma 1.
Define two matricesMP,Q(z), M̃P̃ ,Q̃(z) by

MP,Q(z)=
[
P(z) P (−z)
Q(z) Q(−z)

]
, M̃P̃ ,Q̃(z)=

[
P̃ (z) P̃ (−z)
Q̃(z) Q̃(−z)

]
. (26)

Then (20) and (22) are equivalent to the following single equation:

MP,Q(z)M̃P̃ ,Q̃(z)= I2r , |z| = 1. (27)

Lemma 2. Let �(x) and �̃(x), a pair of compactly supported biorthogonal
multiscaling functions with multiplicityr, satisfy the following equations:

�(x)=
M∑
k=0

Pk�(2x − k), (28)

�̃(x)=
M∑
k=0

P̃k�̃(2x − k). (29)

Set�′(x)= (�(2x)T ,�(2x − 1)T )T , �̃
′
(x)= (�̃(2x)T , �̃(2x − 1)T )T . Then

(1) �′(x) and �̃
′
(x) are also a pair of compactly supported biorthogonal

multiscaling functions with multiplicity2r, and supp�′(x) ⊂ [0, �M/2�],
�̃

′
(x)⊂ [0, �M/2�], where�x� = inf{n: n� x, n ∈ Z};

(2) �′(x) and�̃
′
(x) satisfy the following two-scale matrix equations:

�′(x)=
�M/2�∑
k=0

[
P2k P2k+1
P2k−2 P2k−1

]
�′(2x − k), (30)

�̃
′
(x)=

�M/2�∑
k=0

[
P̃2k P̃2k+1
P̃2k−2 P̃2k−1

]
�̃

′
(2x − k). (31)

Proof. (1) The biorthogonality of�′(x) and�̃
′
(x) is clear.
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(2) By the definition of�′(x), we have

�′(x)=
[

�(2x)
�(2x − 1)

]
=

[ ∑M
k=0Pk�(4x − k)∑M

k=0Pk�(4x − k − 2)

]

=
[ ∑�M/2�

k=0 P2k�(4x − 2k)+ ∑�M/2�
k=0 P2k+1�(4x − k − 1)∑�M/2�

k=0 P2k�(4x − 2(k+ 1))+ ∑�M/2�
k=0 P2k+1�(4x − 2k − 3)

]

=
�M/2�∑
k=0

[
P2k P2k+1
P2k−2 P2k−1

][
�(2(2x)− k)

�(2(2x − 1)− k)
]

=
�M/2�∑
k=0

[
P2k P2k+1
P2k−2 P2k−1

]
�′(2x − k).

This means (30) holds. By (30), we obtain that supp�′(x) ⊂ [0, �M/2�].
Similarly, (31) can be deduced.✷

According to Lemma 2, without loss of generality, we only discuss the prob-
lems about construction of multiwavelets with 3-coefficient. We give the main
result of this paper below.

Theorem 2. Let �(x) and �̃(x) be a pair of3-coefficient compactly supported
biorthogonal multiscaling functions satisfying the following equations:

�(x)= P0�(2x)+ P1�(2x − 1)+ P2�(2x − 2), (32)

�̃(x)= P̃0�̃(2x)+ P̃1�̃(2x − 1)+ P̃2�̃(2x − 2). (33)

Assume that there exists an integeri, 0 � i � 2, such that the matrixD defined in
the following equation is invertible:

D2 = (
2Ir − PiP̃ Ti

)−1
PiP̃

T
i . (34)

Define

Qj =DPj , j �= i,
Qj = −D−1Pj , j = i,
Q̃j =DT P̃j , j �= i,
Q̃j = −(DT )−1P̃j , j = i,

i, j ∈ {0,1,2}. (35)

Then the following equations defining�(x) and�̃(x) are a pair of biorthogonal
multiwavelets associated with�(x) and�̃(x):

�(x)=Q0�(2x)+Q1�(2x − 1)+Q2�(2x − 2),

�̃(x)= Q̃0�̃(2x)+ Q̃1�̃(2x − 1)+ Q̃2�̃(2x − 2).
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Proof. For convenience, leti = 1. By (23)–(25), it suffices to show that{Q0,Q1,

Q2, Q̃0, Q̃1, Q̃2} satisfy the following equations:

P0Q̃2
T =O, (36)

P0Q̃
T
0 + P1Q̃

T
1 + P2Q̃

T
2 =O, (37)

P̃0Q
T
2 =O, (38)

P̃0Q
T
0 + P̃1Q

T
1 + P̃2Q

T
2 =O, (39)

Q0Q̃
T
2 =O, (40)

Q̃0Q
T
2 =O, (41)

Q0Q̃
T
0 +Q1Q̃

T
1 +Q2Q̃

T
2 = 2Ir . (42)

If {Q0,Q1,Q2, Q̃0, Q̃1, Q̃2} are given by (35), then Eqs. (36), (38), (40) and (41)
are obtained immediately from (21).

For (37), we have from (21) that

P0Q̃
T
0 + P1Q̃

T
1 + P2Q̃

T
2 = P0P̃

T
0 D − P1P̃

T
1 D

−1 + P2P̃
T
2 D

= [
P0P̃

T
0 + P2P̃

T
2

]
D − P1P̃

T
1 D

−1

= [
2Ir − P1P̃

T
1

]
D − P1P̃

T
1 D

−1

= [(
2Ir − P1P̃

T
1

)
D2 − P1P̃

T
1

]
D−1 =O.

Similarly, (39) can be derived. Finally, since

Q0Q̃
T
0 +Q1Q̃

T
1 +Q2Q̃

T
2 =DP0P̃

T
0 D +D−1P1P̃

T
1 D

−1 +DP2P̃
T
2 D

=D[
P0P̃

T
0 + P2P̃

T
2

]
D +D−1P1P̃

T
1 D

−1

=D[
2Ir −P1P̃

T
1

]
D +D−1P1P̃

T
1 D

−1

=D−1[D2(2Ir − P1P̃
T
1

)
D2 − P1P̃

T
1

]
D−1

=D−1[D2P1P̃
T
1 + P1P̃

T
1

]
D−1

=D−1[D2 + Ir
]
P1P̃

T
1 D

−1

=D[
P1P̃

T
1 +D−2P1P̃

T
1

]
D−1

=D2IrD
−1 = 2Ir,

(42) then follows. This completes the proof of Theorem 2.✷
Corollary 1. Let �(x) defined in(32) be 3-coefficient compactly supported or-
thogonal multiscaling function. Assume that there exists an integeri, 0 � i � 2,
such that the matrixH defined in the following equation is invertible and sym-
metric:

H 2 = (
2Ir − PiPTi

)−1
PiP

T
i . (43)
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Let {
Qj =HPj , j �= i,
Qj = −H−1Pj , j = i, i, j ∈ {0,1,2}. (44)

Then the following equation defining�(x) is orthogonal multiwavelet associated
with �(x):

�(x)=Q0�(2x)+Q1�(2x − 1)+Q2�(2x − 2).

Remark. According to the matrix theory, ifB is an invertible matrix satisfying
A2 = B, then matrixA is not unique. Hence, matricesD andH defined in (34)
and (43), respectively, are not unique. Further, by Theorem 1 (or Corollary 1)
we declare that there exist many distinct multiwavelets associated with a pair of
biorthogonal multiscaling functions (or an orthogonal multiscaling functions).

4. Examples

We will illustrate by some examples how to use our method to construct bior-
thogonal (or orthogonal) multiwavelets.

Example 1 (Construction of biorthogonal multiwavelets). Let�(x)= (φ1, φ2)
T

and �̃(x) = (φ̃1, φ̃2)
T , supp�(x) = supp�̃(x) = [−1,1], be a pair of 3-

coefficient biorthogonal multiscaling functions satisfying the following equations
[9]:

�(x)= P−1�(2x + 1)+ P0�(2x)+ P1�(2x − 1),

�̃(x)= P̃−1�̃(2x + 1)+ P̃0�̃(2x)+ P̃1�̃(2x + 1),

where

P−1 =
[ 1

2
1
5

−1 −2
5

]
, P0 =

[
1 0

0 1
2

]
, P1 =

[ 1
2 −1

5

1 −2
5

]
,

P̃−1 =
[ 1

2
5
4

− 7
16 −35

32

]
, P̃0 =

[
1 0

0 1
2

]
, P̃1 =

[ 1
2 −5

4
7
16 −35

32

]
.

Supposei = 0. Using (34) and (35) we obtain

D =
[

1 0

0
√

7
7

]
,

Q−1 =
[ 1

2
1
5

−
√

7
7 −2

√
7

35

]
, Q0 =

[−1 0

0 −
√

7
2

]
,

Q1 =
[ 1

2 −1
5√

7
7 −2

√
7

35

]
, Q̃−1 =

[ 1
2

5
4

−
√

7
16 −5

√
7

32

]
,
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Q̃0 =
[−1 0

0 −
√

7
2

]
, Q̃1 =

[ 1
2 −5

4√
7

16 −5
√

7
32

]
.

From Theorem 2 we conclude that

�(x)=
1∑

k=−1

Qk�(2x − k), �̃(x)=
1∑

k=−1

Q̃k�̃(2x − k)

are a pair of biorthogonal multiwavelets associated with�(x), �̃(x).

Example 2 (Construction of orthogonal multiwavelets). Let�(x) = (φ1, φ2)
T ,

supp�(x) = [0,2], be 3-coefficient orthogonal multiscaling function satisfying
the following equation [10]:

�(x)= P0�(2x)+ P1�(2x − 1)+ P2�(2x − 2),

where

P0 =
[

0 2+√
7

4

0 2−√
7

4

]
, P1 =

[ 3
4

1
4

1
4

3
4

]
, P2 =

[
2−√

7
4 0

2+√
7

4 0

]
.

Supposei = 1. Using (43) and (44) in Corollary 1, we obtain

H =
[

7+√
7

14
7−√

7
14

7−√
7

14
7+√

7
14

]
,

Q0 =
[

0 3
4

0 1
4

]
, Q1 =

[
−2+√

7
4 −2−√

7
4

−2−√
7

4 −2+√
7

4

]
, Q2 =

[ 1
4 0
3
4 0

]
.

Form Corollary 1,

�(x)=
2∑
k=0

Qk�(2x − k)

is orthogonal multiwavelet associated with�(x).

Example 3 (Construction of orthogonal multiwavelets). Let�(x)= (φ1, φ2)
T be

3-coefficient orthogonal multiscaling function satisfying the following equation
[11,12]:

�(x)= P0�(2x)+ P1�(2x − 1)+ P2�(2x − 2),

where

P0 = 1

2

[
1 1√

2sinθ
√

2sinθ

]
, P1 =

[
1 0
0

√
2cosθ

]
,

P2 = 1

2

[
1 −1

−√
2sinθ

√
2sinθ

]
.
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Supposei = 1. Using (43) and (44) in Corollary 1, we have

H =
[

1 0
0 tanθ

]
, H−1 =

[
1 0
0 cothθ

]
,

whereθ satisfies that sinθ �= 0, cosθ �= 0,

Q0 = 1

2

[
1 1√

2cosθ
√

2cosθ

]
, Q1 =

[−1 0
0 −√

2sinθ

]
,

Q2 = 1

2

[
1 −1

−√
2cosθ

√
2cosθ

]
.

By Corollary 1,

�(x)=
2∑
k=0

Qk�(2x − k)

is orthogonal multiwavelet associated with�(x).
It is clear that our method is simpler than that of the papers [11,12], while the

obtained orthogonal multiwavelets coincide.

Example 4 (Trivial example—construction of orthogonal uniwavelet). LetφD3 be
Daubechies scaling function [13], i.e.,

φD3 (x)=
1+ √

3

4
φD3 (2x)+

3+ √
3

4
φD3 (2x − 1)+ 3− √

3

4
φD3 (2x − 2)

+ 1− √
3

4
φD3 (2x − 3).

SinceφD3 (x) is a 4-coefficient orthogonal scaling function, from Lemma 2, let
�(x)= (φD3 (2x),φD3 (2x − 1))T . Then

�(x)=
[ 1+√

3
4

3+√
3

4
0 0

]
�(2x)+

[
3−√

3
4

1−√
3

4
1+√

3
4

3+√
3

4

]
�(2x − 1)

+
[

0 0
3−√

3
4

1−√
3

4

]
�(2x − 2)

is an orthogonal multiscaling function with multiplicity 2. Using Corollary 1, we
obtain

�(x)=
[
ψD3 (2x)

ψD3 (2x − 1)

]
=

[ √
3−1
4

3−√
3

4
0 0

][
φD3 (4x)

φD3 (4x − 1)

]

+
[−3+√

3
4

1+√
3

4

−
√

3−1
4 −3−√

3
4

][
φD3 (4x − 2)

φD3 (4x − 3)

]

+
[

0 0
3+√

3
4

1+√
3

4

][
φD3 (4x − 4)

φD3 (4x − 5)

]
.
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Hence

ψD3 (x)=
√

3− 1

4
φD3 (2x)+

3− √
3

4
φD3 (2x − 1)− 3+ √

3

4
φD3 (2x − 2)

+ 1+ √
3

4
φD3 (2x − 3).

The orthogonal wavelet constructed by using our method is the same as the
wavelet obtained by using method in [13]. Of course, the method in the literature
[13] is simpler than our method. But in the case of multiwavelets, the larger
multiplicity r is, the more advantageous our method is.
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