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Abstract

We prove that any 3-graded Lie algebra generated by an element of degree −1 and another
of degree 1 over a 3eld K of characteristic zero is isomorphic to a 3-graded Lie subalgebra of
sl2(K[t]=(p(t) · K[t])) endowed with its usual 3-gradation, for some p(t)∈K[t]. We also give
a thorough description of the ideals in the free case. c© 2002 Elsevier Science B.V. All rights
reserved.

MSC: 17B70; 16W10

1. Introduction

A Z-graded Lie algebra g of the form

g = g−1 ⊕ g0 ⊕ g1 (1)

over a 3eld K is called a 3-graded Lie algebra.
Such algebras include the complexi3cation of a semisimple Lie algebra of hermitian

type (which is a 3-graded Lie algebra with respect to the Harish–Chandra decompo-
sition), Heisenberg algebras and some in3nite dimensional examples as well (see, for
instance, [7,10]). They also generalize the so-called Kantor–Koecher–Tits algebras or
KKT algebras for short, which correspond to the concept of Jordan pair written in terms
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of Lie algebras [8,9]. They are those 3-graded Lie algebras spanned by homogeneous
elements of degrees −1 and 1 and whose center contains no nonzero homogeneous
element of degree zero. This second condition, although crucial in many situations, is
a strong assumption; relaxing it, one still obtains very interesting, even more natural
and uniform results and the real role of such assumption in the global theory becomes
clearer. This procedure behaves in much the same way as waiving the nondegeneracy
property of the Poisson bivector in symplectic geometry to consider the more general
setting of Poisson manifolds.

In this article we are going to deal with 3-graded Lie algebras spanned by a pair of
generators, that is, by a homogeneous element of degree 1 and another of degree −1.
Although, in our opinion, generalizations of sl2(K) of that kind do not need further
motivations, we want to point out that they could be useful to study the general case, by
analyzing its 3-graded subalgebras generated by pairs of elements conveniently chosen.
This is done for instance in [1] where the free case in a pair of generators is utilized to
prove commutations relations for the arbitrary case. Those relations have been applied
to the description of reproducing kernels for Hilbert spaces of holomorphic functions
associated with the holomorphic discrete series representations (see [2]).

If one considers a complex semisimple Lie algebra of hermitian type, one obtains a
unitary representation for each of its 3-graded subalgebras by restriction of a unitary
representation of the 3rst. In this way, it would be interesting to examine a likely
relation between the characterization proved in Theorem 16 and the Wallach set in
unitarizable highest weight modules over the complex hermitian Lie algebra in ques-
tion. Although the last subject has been studied extensively in, for instance, [4,6] and
even considerably simpli3ed in [5], it remains very technical in essence and perhaps a
connection with 3-graded algebras could bring in some new elucidation on this matter.

Here, we have tried to advance the subject as far as possible without any additional
hypothesis over K besides charK =0; the case when K is algebraically closed will be
treated on another occasion. It is somewhat surprising how proli3c and computable the
theory reveals to be even under so feeble hypotheses.

The fact that a 3-graded Lie algebra g in a pair of generators is realizable as a
subalgebra of sl2(K[t]=(p(t) ·K[t])) for some p(t)∈K[t] gives a measure of its center.
For instance, the free case examined below has center zero since it can be seen as a
3-graded subalgebra of sl2(K[t]). Of course, this is not the case of the tridimensional
Heisenberg Lie algebra, for instance.

We reproduce here a direct proof of the embedding of the free case into sl2(K[t])
without making use of KKT algebras as is carried out in [1]. For a comparison between
the free KKT algebra and the free 3-graded Lie algebra, both in a pair of generators,
when charK �=2; 3, see [3] and Remark 3.

We assume charK = 0 throughout the article. In order to prove embedding results
for a 3-graded Lie algebra in a pair of generators, we start looking at the free example.

1.1. The free case

A 3-graded Lie Algebra g(x; y) over K generated by variables x of degree 1 and y
of degree −1 is free if the following property holds: given any 3-graded Lie algebra h
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over K and elements x′ ∈ h1 and y′ ∈ h−1, there is a unique homomorphism of graded
Lie algebras  : g(x; y) → h such that  (x) = x′ and  (y) = y′.

The uniqueness of g(x; y) is immediate. In order to prove its existence, we consider
FL(x; y) the free Lie algebra over K in two variables x and y with the natural bigra-
dation given by the number nx of occurrences of x and ny of y in a Lie monomial
(recall that the elements of FL(x; y) are linear combinations of expressions of the form
[x1; : : : ; [xm−2; [xm−1; xm]] : : : ] with xi=x or y; m=1; 2; : : : ; called Lie monomials) and
let I be the ideal of FL(x; y) spanned by the homogeneous elements of FL(x; y) such
that |nx − ny|¿ 2.

I is a graded ideal since it is spanned by homogeneous elements. Therefore,
g = FL(x; y)=I inherits the bigradation of FL(x; y) and the natural projection
� : FL(x; y) → g becomes a homomorphism of bigraded Lie algebras.

From its bigradation, we obtain the Z-gradation for g: to a homogeneous element of
bidegree (m; n), we assign the degree m− n. For this Z-gradation, we 3nally have

g = g−1 ⊕ g0 ⊕ g1;

which is a 3-gradation of g such that deg(x + I) = 1 and deg(y + I) =−1.
Now, given an arbitrary 3-graded Lie algebra h over K and elements x′ ∈ h1 and

y′ ∈ h−1, let K : FL(x; y) → h be the homomorphism de3ned by K (x)=x′ and K (y)=y′.
Since K (I) = 0; K descends to a homomorphism  : g → h such that  ◦ �= K . From
the fact that x+I; y+I are generators for g, it is immediate that  is a homomorphism
of graded Lie algebras with respect to the 3-gradations of g and h and that such a
homomorphism is unique.

1.2. Commutativity of iterated brackets

Let g be any 3-graded Lie algebra over K . For z ∈ g1; w∈ g−1 de3ne

[[z; w]]1 = [z; w]; [[z; w]]i = [z; [w; [[z; w]]i−1]]; 1 = 2; 3; : : : :

Let I : g → g be the identity map, Ai : g → g; i=0; 1; : : : such that A0 = I on g1;−I on
g−1 and zero on g0; Ai = ad[[z; w]]i ; i = 1; 2; : : : and we write for short A = A1.

Lemma 1. [[z; w]; [[z; w]]m] = 0; z ∈ g1; w∈ g−1; m a positive integer.

Proof. By induction. For m=1 it is trivial. Suppose the result is valid for m6p; for
some positive integer p. First we prove some auxiliary relations:

(i) Ai+1z = AAiz; p¿ i¿ 0.
The case i = 0 is trivial and for p¿ i¿ 1:

Ai+1z =−[[z; Aiw]; z] =−[z; [Aiw; z]] =−[Aiz; [z; w]] = AAiz:

(ii) Ai+1w =−AAiw; i¿ 0.

Ai+1w =−[[z; Aiw]; w] =−[[z; w]; Aiw] =−AAiw:
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(iii) For integers i; j¿ 0; if i + j = p then

[Ai+1z; Ajw] = A[z; Apw] + [Aiz; Aj+1w]:

In fact, suppose p¿ 2.

[Ai+1z; Ajw] = [AAiz; Ajw] = A[Aiz; Ajw] + [Aiz; Aj+1w]:

Now AAi[z; Ajw] = 0. This follows from induction hypothesis if j¡p. For j=p, one
has i = 0 and AAi[z; Ajw] = 0 since Ai is zero on g0.

Hence, A[Aiz; Ajw] = A[AiAjw; z] + AAi[z; Ajw] = A[AiAjw; z] = (−1)j−1A[AiAjw; z] =
(−1)j−1A[AjAiw; z] = (−1)i+jA[AjAiw; z] =−A[Apw; z] = A[z; Apw].

Therefore, [Ai+1z; Ajw] = A[z; Apw] + [Aiz; Aj+1w], which is clearly valid for p = 1.
Back to the proof of the lemma, we have for m = p + 1:

Ap+1[z; w] = [Ap+1z; w] + [z; Ap+1w] =−[Ap+1z; A0w] + [z; Ap+1w]

= −(p + 1)A[z; Apw]− [A0z; Ap+1w] + [z; Ap+1w] (by (iii))

⇒ (p + 2)Ap+1[z; w] =−[z; Ap+1w] + [z; Ap+1w] = 0;

3nishing the proof.

Let

K[tn] ≡ {q(tn) | q(t)∈K[t]}:
Given p(t)∈K[t] and S ⊂ K[t], we denote

p(t) · S ≡ S · p(t) ≡ {p(t) · q(t) | q(t)∈ S};

sl2(p(t)K[t]) ≡
{(

a(t) b(t)

c(t) d(t)

)
∈M2(p(t)K[t]) | a(t) + d(t) = 0

}
:

Recall that sl2(K[t]) is also a 3-graded Lie algebra over K with respect to the gradation

sl2(K[t])−1 =

{(
0 0

p(t) 0

)∣∣∣∣∣p(t)∈K[t]

}
;

sl2(K[t])0 =

{(
p(t) 0

0 −p(t)

)∣∣∣∣∣p(t)∈K[t]

}
;

sl2(K[t])1 =

{(
0 p(t)

0 0

)∣∣∣∣∣p(t)∈K[t]

}
;

sl2(K[t])i = {0} ⊂ sl2(K[t]); i∈Z \ {−1; 0; 1}
and sl2(p(t)K[t]) is a 3-graded subalgebra of sl2(K[t]); p(t)∈K[t].
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Theorem 2. Let g(x; y) be the free 3-graded Lie algebra over K generated by vari-
ables x of degree 1 and y of degree −1.
The homomorphism im;n : g(x; y) → sl2(K[t]) de7ned by

im;n(x) =

(
0 tm

0 0

)
; im;n(y) =

(
0 0

tn 0

)

is a monomorphism of 3-graded Lie algebras for each pair (m; n) of positive integers.

Proof. Let im;n : g(x; y) → sl2(K[t]) be the homomorphism de3ned by

im;n(x) =

(
0 tm

0 0

)
; im;n(y) =

(
0 0

tn 0

)
:

It is a homomorphism of 3-graded Lie algebras. The set B formed by x; y; [[x; y]]i ;
[[[x; y]]i ; x]; [[[x; y]]i ; y]; i=1; 2; : : : ; spans g(x; y) by Lemma 1. On the other hand; the
image of these elements by im;n in sl2(K[t]) consists of linearly independent matrices.
Therefore B is a basis for g(x; y) and im;n is a monomorphism of 3-graded Lie algebras.

Let

i = i1;1

or, in other words, the homomorphism i : g(x; y) → sl2(K[t]) de3ned by

i(x) =

(
0 t

0 0

)
; i(y) =

(
0 0

t 0

)
:

It is easy to see that this monomorphism is also a monomorphism of graded Lie
algebras with respect to the total gradation of g(x; y) and the N-gradation of sl2(K[t])
where the homogeneous elements of degree n are the zero trace matrices whose entries
have the form ctn; c∈K . It is called canonical embedding of g(x; y).

Remark 3. Notice that these results are diLerent from embeddings for the free KKT
algebra in a pair of generators. In the latter case; since a KKT algebra is the Lie
algebra associated with a Jordan pair; only the adjoint action of g(x; y)0 is regarded;
not g(x; y)0 itself; which makes the proof a lot easier. We have proved that both Lie
algebras coincide in charK=0. It is known from the theory of Jordan pairs that the free
KKT algebra in a pair of generators can be embedded into sl2(K[t]) if charK �=2; 3.
However; this does not hold for g(x; y) if charK ¿ 3. We refer the reader to [3] for
more details.

Lemma 4.

i(g(x; y)) =

{(
p(t) q(t)

r(t) −p(t)

)∣∣∣∣∣ q(t); r(t)∈ tK[t2]; p(t)∈ t2K[t2]

}
:
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Proof. We know that set B formed by (ad x ad y=2)i[x; y]; (ad x ad y=2)ix;
(ad y ad x=2)iy; i = 0; 1; : : : ; is a basis of g(x; y) by Lemma 1 and Theorem 2. The
proof is now a straightforward computation.

Notational remarks: Given a ring R, with unit element 1∈R, we write

E =

(
0 1

0 0

)
; H =

(
1 0

0 −1

)
; F =

(
0 0

1 0

)
:

By means of the monomorphism i : g(x; y) → sl2(K[t]), we identify

x = tE; y = tF and g(x; y) = i(g(x; y))

as described above in Lemma 4, unless otherwise speci3ed.
Let " : g(x; y) → g(x; y) denote the isomorphism of Lie algebras de3ned by

"(x) = y; "(y) = x;

which turns out to be an involution i.e. " 2(z) = z; z ∈ g(x; y) and an isomorphism of
graded Lie algebras between g(x; y) and g(x; y)op (recall that g(x; y)op = g(x; y) as Lie
algebras but g(x; y)opi = g(x; y)−i). Hence g(x; y) is symmetric with respect to " (i.e.
a 3-graded Lie algebra endowed with an involution that reverses degrees).

2. Ideals of the free algebra

Example 5. Here we list some examples of ideals of g(x; y) generated by one or two
elements which will be useful later in this article.

(1) I = 〈a; b〉; a =

(
0 t

0 0

)
; b =

(
0 0

t 0

)
.

Of course; in this case I = g(x; y).

(2) Id = 〈a〉; a =

(
t2 0

0 −t2

)
.

Id =

{(
p(t) q(t)

r(t) −p(t)

)∣∣∣∣∣p(t)∈ t2K[t2]; q(t); r(t)∈ t3K[t2]

}
:

(3) Il = 〈a〉; a =

(
0 0

t 0

)
.

Il =

{(
p(t) q(t)

r(t) −p(t)

)∣∣∣∣∣ r(t)∈ tK[t2]; p(t)∈ t2K[t2]; q(t)∈ t3K[t2]

}
:
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(4) Iu = 〈a〉; a =

(
0 t

0 0

)
.

Iu =

{(
p(t) q(t)

r(t) −p(t)

)∣∣∣∣∣ q(t)∈ tK[t2]; p(t)∈ t2K[t2]; r(t)∈ t3K[t2]

}
:

(5) Ic = 〈a〉; a =

(
0 t

ct 0

)
; c∈K∗ ≡ K − {0}.

Ic = K · a⊕Id; Id as in case (2):

Proof. Let us prove; for instance; that the ideal (4) has the explicit form shown above.
Let I be an ideal of g(x; y) generated by an element a∈ g(x; y). It consists of linear

combinations of elements of the form

[x1; : : : ; [xm−1; [xm; a]] · · · ]; xi ∈ g(x; y): (2)

In fact, if I′ is the subspace of g(x; y) spanned by such elements, clearly it is also an
ideal of g(x; y) which contains a and is contained in I. Hence one must have I′=I.

In the present situation,

a = tE

and it is easy to see that

t2nH; t2n+1F; t2n−1E ∈Iu; n¿ 1:

Let

X =

(
p(t) q(t)

r(t) −p(t)

)
∈Iu; r(t); q(t)∈ tK[t2]; p(t)∈ t2K[t2]:

Since every element (2) but a is equal to zero modM2(t2K[t]), one has

X ≡ k · amodM2(t2K[t]); k ∈K;

and hence

r(t) ≡ 0mod t2K[t];

justifying the above description of Iu. The proof in the other cases is similar.

Lemma 6. The quotient g(x; y) by any nonzero (not necessarily graded) ideal is 7nite
dimensional. In particular; if g is an in7nite dimensional 3-graded Lie algebra in a
pair of generators over K then

g ∼= g(x; y):
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Proof. Let

g ∼= g(x; y)=I

where I is a nonzero ideal of g(x; y) and

A =

(
p(t) q(t)

r(t) −p(t)

)
; r(t); q(t)∈ tK[t2]; p(t)∈ t2K[t2]

a nonzero element of I. Suppose q(t) �=0. Since

t2+2nq(t)F; t3+2nq(t)H; t4+2nq(t)E ∈I; n¿ 0;

it is clear that g is 3nite dimensional. Similarly; p(t) �=0 or r(t) �=0 implies g is 3nite
dimensional as well.

Of course, the ideal I= g(x; y) is generated by x= tE and y= tF . The next lemma
tells us that it is not spanned by just one element.

Lemma 7. The ideal I = g(x; y) cannot be spanned by one element.

Proof. Suppose otherwise that

g(x; y) = 〈a〉; a =

(
p(t) q(t)

r(t) −p(t)

)
; q(t); r(t)∈ tK[t2]; p(t)∈ t2K[t2]:

Recall that any element of 〈a〉 has the form k · a + c; where k ∈K and c is linear
combination of elements

[x1; : : : ; [xm−1; [xm; a]] : : : ]; xi ∈ g(x; y)

with m¿ 1. Hence for x = tE we have

tE ≡ k · amodM2(t2K[t2]); for some k ∈K

and

t ≡ k · q(t)mod t2K[t2]:

Therefore

k �=0 and q(t) �≡ 0mod t2K[t2]: (3)

Repeating the argument for y = tF; we obtain

r(t) �≡ 0mod t2K[t2] (4)

and we get a contradiction:

(tE)21 = 0;

(tE)21 ≡ k · r(t)mod t2K[t2] �≡ 0:
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Let projij :M2(K[t]) → K[t] denote the projection onto the (i; j) entry, i.e. projij(A)
= Aij; A∈M2(K[t]); 16 i; j6 2.

Lemma 8. Suppose I is a non-zero ideal of g(x; y). Let Vij =projij(I). Then there
exist polynomials p12(t); p21(t)∈ tK[t2]; p11(t); p22(t)∈ t2K[t2] such that

Vij = K[t2] · pij(t):

Moreover;
(i) pij �=0 and pij(t) is unique up to a nonzero multiplicative constant;
(ii) p11(t) = cp22(t); for some c∈K∗;
(iii) p11(t) = dtp12(t) or p12(t) = dtp11(t); for some d∈K∗;
(iv) p11(t) = etp21(t) or p21(t) = etp11(t); for some e∈K∗.

Proof. Since I �=0; one has Vij �=0. Let pij(t) be a minimum degree polynomial in
Vij. Since I is invariant by the action of

(ad tE ad tF)=2 and (ad tF ad tE)=2

one has

t2 · pij(t) ⊂ Vij

and hence

K[t2] · pij(t) ⊂ Vij:

Given n(t)∈Vij; let q(t) and r(t) be the quotient and remainder of the division of n(t)
by pij(t); respectively. Since deg r(t)¡ degpij(t) or r(t) = 0; it follows that

q(t)∈K[t2]

and therefore

r(t) = n(t)− q(t)pij(t)∈Vij:

By the minimality of the degree of pij(t) in Vij; it follows r(t) = 0 and

n(t)∈K[t2] · pij(t):

Therefore;

Vij = K[t2] · pij(t):

(i) Now suppose pij(t) satis3es that equality. Clearly pij(t) is nonzero and unique
up to a nonzero multiplicative constant for each pair (i; j).

(ii) The second assertion follows from V11 = V22.
(iii) Since I is invariant by the action of

ad tF; ad tE;

one has

tp12(t)∈V11; tp11(t)∈V12
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and hence

degp11(t)6 degp12(t) + 1; degp12(t)6 degp11(t) + 1

or

‖degp11(t)− degp12(t)‖6 1:

Since degp11(t) is even and degp12(t) is odd, one must have

‖degp11(t)− degp12(t)‖= 1:

If degp11(t) = degp12(t) + 1 then p11(t) = dtp12(t).
Otherwise degp12(t) = degp11(t) + 1 and p12(t) = dtp11(t), for some d∈K∗.
(iv) Same as (iii).

Recall that a nonzero polynomial is said to be monic if its leading coeMcient (the
coeMcient of the nonzero term of maximum degree) is 1. We adopt the convention
that the polynomials pij(t) are monic; such polynomials are called minimal polynomials
of I.

Corollary 9. Let pij(t) be minimal polynomials of I. Then
(i) they are unique;
(ii) p11(t) = p22(t);
(iii) p11(t) = tp12(t) or p12(t) = tp11(t);
(iv) p11(t) = tp21(t) or p21(t) = tp11(t).

Proof. Immediate from Lemma 8.

Example 10. We list the minimal polynomials corresponding to the ideals described
in Example 5.
(1) g(x; y) : p11(t) = p22(t) = t2; p12(t) = p21(t) = t.
(2) Id : p11(t) = p22(t) = t2; p12(t) = p21(t) = t3.
(3) Il : p11(t) = p22(t) = t2; p12(t) = t3; p21(t) = t.
(4) Iu : p11(t) = p22(t) = t2; p12(t) = t; p21(t) = t3.
(5) Ic : p11(t) = p22(t) = t2; p12(t) = p21(t) = t.

Proof. This follows from the explicit description of such ideals in Example 5.

De*nition 11. Given a subspace I of g(x; y) and p(t)∈K[t2] a monic polynomial;
we call the subspace of g(x; y)

p(t) ·I = {p(t)a | a∈I}
the multiple of I with factor p(t)∈K[t2].

If I is an ideal of g(x; y) so is p(t)I and conversely; in this case p(t)I is a
3-graded ideal if and only if I is a 3-graded ideal of g(x; y). The multiplication by
p(t) induces a one-to-one correspondence between the sets of generators of the two
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ideals. In particular, if one of them is 3nitely generated so is the other and they have
the same minimum number of generators. Also it is clear that the minimal polynomials
of p(t)I are those corresponding to I multiplied by p(t).

Theorem 12. A nonzero ideal I of g(x; y) falls into one of the following classes:

(I) I=p(t)g(x; y)=〈a; b〉; a=

(
0 tp(t)

0 0

)
; b=

(
0 0

tp(t) 0

)
; monic p(t)∈K[t2].

(II) I = p(t)Id = 〈a〉; a =

(
t2p(t) 0

0 −t2p(t)

)
; monic p(t)∈K[t2].

(III) I = p(t)Il = 〈a〉; a =

(
0 0

tp(t) 0

)
; monic p(t)∈K[t2].

(IV) I = p(t)Iu = 〈a〉; a =

(
0 tp(t)

0 0

)
; monic p(t)∈K[t2].

(V) I = p(t)Ic = 〈a〉; a =

(
0 tp(t)

ctp(t) 0

)
; c∈K∗; monic p(t)∈K[t2].

These classes are disjoint and their descriptions contain no repetition.

Proof. We analyze the possibilities stated in Corollary 9 for the minimal polynomials
pij.

(a) First suppose

p11(t) = tp12(t); p21(t) = tp11(t):

We have

p12(t) = tp(t);

for some p(t)∈K[t2]. Then

p11(t) = t2p(t); p21(t) = t3p(t):

It follows I = p(t)I′, where I′ is an ideal with minimal polynomials

q11(t) = t2; q12(t) = t; q21(t) = t3:

We show that I′ =Iu, where Iu = 〈a〉; a = tE.
Indeed, choose( ∗ t

∗ ∗

)
∈I′:
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(The symbol ‘∗’ at a position means that we are not interested in the actual entry of
the matrix at that position.)

Since(
t2 0

∗ −t2

)
;

(
0 0

t3 0

)
∈I′ (5)

we have(
t2 0

0 −t2

)
;

( ∗ t

0 ∗

)
∈I′: (6)

Finally from (6), it follows:

a =

(
0 t

0 0

)
∈I′: (7)

Now it is immediate that I′ = 〈a〉.
(b) Suppose now

p11(t) = tp21(t); p12(t) = tp11(t)

for the ideal I.
Then "(I) is an ideal described in (a) and therefore I is a multiple of

Il = 〈a〉; a = tF:

In fact, the involution " permutes the classes of ideals (III) and (IV).
(c) Let

p12(t) = tp11(t); p21(t) = tp11(t):

We can write

p11(t) = t2p(t)

for some p(t)∈K[t2].
Then

p12(t) = t3p(t); p21(t) = t3p(t):

I = p(t)I′, where I′ is an ideal with minimal polynomials

q11(t) = t2; q12(t) = t3; q21(t) = t3:

We show that

I′ =Id; where Id = 〈a〉; a =

(
t2 0

0 −t2

)
:
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Indeed, choose(
t2 ∗
∗ −t2

)
∈I′:

Since (
0 t5

0 0

)
;

(
0 0

t5 0

)
∈I′ (8)

one has(
0 tn

0 0

)
;

(
0 0

tn 0

)
∈I′ for n = 5; 7; 9 : : :

and we can start over choosing this time an element of the form(
t2 c1t3

c2t3 −t2

)
∈I′; c1; c2 ∈K: (9)

Then there exist elements(
c3t4 t3

0 −c3t4

)
;

(
c4t4 0

t3 −c4t4

)
∈I′ for certain c3; c4 ∈K (10)

and (
t4 0

c5t5 −t4

)
;

(
t4 c6t5

0 −t4

)
∈I′ for certain c5; c6 ∈K: (11)

From relations (9) and (10), we conclude(
t2 + c7t4 0

0 −t2 − c7t4

)
∈I′ for some c7 ∈K: (12)

From relations (8) and (11), we have(
t4 0

0 −t4

)
∈I′: (13)

Finally from (12) and (13), it follows:

a =

(
t2 0

0 −t2

)
∈I′: (14)

From its minimal polynomials, it is clear that I′ = 〈a〉.
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(d) Finally, suppose

p11(t) = tp12(t); p11(t) = tp21(t):

One has

p12(t) = tp(t)

for some p(t)∈K[t2]. Then

p11(t) = t2p(t); p21(t) = tp(t):

I = p(t)I′, where I′ is an ideal with minimal polynomials

q11(t) = t2; q12(t) = t; q21(t) = t:

We want to check that either

I′ =Ic = 〈a〉; a =

(
0 t

ct 0

)
for some c∈K∗

or

I′ = g(x; y):

We start with an element of the form( ∗ t

∗ ∗

)
∈I′:

(As before, the symbol ‘∗’ means that the actual entry of the matrix is not relevant
here.)

From(
t2 0

∗ −t2

)
;

(
0 0

t3 0

)
∈I′; (15)

we have(
0 t

∗ 0

)
∈I′ and then

(
0 t

ct 0

)
∈I′ for some c∈K: (16)

Therefore,(
t2 0

0 −t2

)
;

(
0 t3

0 0

)
∈I′: (17)

From (15) and (17), we conclude that

I′ =V1 ⊕V2; (18)
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where

V1 =I′ ∩
{(

0 c1t

c2t 0

)∣∣∣∣∣ c1; c2;∈K

}

and

V2 =

{(
p(t) q(t)

r(t) −p(t)

)∣∣∣∣∣p(t)∈ t2K[t2]; r(t); q(t)∈ t3K[t2]

}
:

From (16), we know that dimV1¿ 1.
If dimV1 = 2 (over K) then I′ = g(x; y). Otherwise, dimV1 = 1 and

a =

(
0 t

ct 0

)

forms a basis for V1. In this case, it follows that I′ = 〈a〉. Notice that c �=0 since
otherwise q21(t) = t3.

Concluding the proof, we notice that two ideals corresponding to distinct choices of
p(t) in the same class are diLerent, since they have diLerent minimal polynomials. If
two ideals lie in distinct classes they are diLerent as well. The reason is the same,
except for classes (I) and (V), but, in that case, an ideal of type (V) will be generated
by one element whereas one in (I) will not.

Corollary 13. If I is an ideal of g(x; y) then t2I ⊂ I.

Proof. It is enough to verify this statement for the ideals of Example 5.

Proposition 14. If I �=0 is a 3-graded ideal of g(x; y) and p11(t); p12(t); p21(t) its
corresponding minimal polynomials then

I = K[t2](p11(t)H) + K[t2](p12(t)E) + K[t2](p21(t)F)

(In other words; {p11(t)H;p12(t)E; p21(t)F} forms a basis of I over K[t2].)

Proof. It follows from Lemma 8. Alternatively; since I is a multiple of an ideal listed
in Example 5; it suMces to check the statement for the 3-graded ones in the latter case.

3. Embedding theorems

Theorem 15. Let I be an ideal of g(x; y) and Ĩ the ideal inside sl2(tK[t]) generated
by I. Then the homomorphism

iI : g(x; y)=I → sl2(tK[t])=Ĩ;
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iI(a +I) = a + Ĩ; a∈ g(x; y);

is a monomorphism of Lie algebras.

Proof. It is obvious that iI is a well-de3ned homomorphism; we need now to prove
that iI is injective. Since

g(x; y)=(g(x; y) ∩ Ĩ) ∼= (g(x; y) + Ĩ)=Ĩ

it is enough to show that

g(x; y) ∩ Ĩ =I:

Clearly

I ⊂ g(x; y) ∩ Ĩ:

On the other hand; any element of Ĩ is a linear combination of monomials of the form

tm(ad tE)n1 (ad tF)n2 (ad tH)n3X;

where m; n1; n2; n3¿ 0 and X is one of the (one or two) generators of I; listed in
Theorem 12.

We now consider matrices de3ned over K(t), the 3eld of rational functions in t.
Hence one can write

tm(ad tE)n1 (ad tF)n2 (ad tH)n3X = tn(ad tE)n1 (ad tF)n2 (ad t2H)n3X;

where n = m− n3 ∈Z. In order that an element belongs to g(x; y) ∩ Ĩ it is necessary
that each monomial in a linearly independent expansion as above satis3es

n = 2k ∈Z:
Now if n = 2k¿ 0, such a monomial belongs to I by Corollary 13. Otherwise n =
−2k; k ¿ 0, and we can write the monomial as

(ad tE)n1 (ad tF)n2 (ad t2H)n3−2k(ad tH)2kX:

But (ad tH)2k acts on X as the multiplication by ct2k , where c∈K , for any generator
X listed in Theorem 12. Again, by Corollary 13, the monomial lies in I and so does
the element of g(x; y) ∩ Ĩ.

We now study the 3-graded ideals I of g(x; y), as described in Theorem 12, case by
case, to show that the quotient g(x; y)=I can be embedded in sl2(K[t]=〈p(t)〉); 〈p(t)〉=
p(t)K[t].

(I)

I = 〈a; b〉; a =

(
0 p(t)

0 0

)
; b =

(
0 0

p(t) 0

)
; nonzero p(t)∈ tK[t2]:

Let

ĩ : g(x; y) → sl2(K[t]=〈p(t)〉)
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such that

ĩ(x) = (t + 〈p(t)〉)E; ĩ(y) = (t + 〈p(t)〉)F:
(

b(t) a(t)

c(t) −b(t)

)
∈ ker ĩ if and only if

a(t)∈p(t)K[t] ∩ tK[t2]; b(t)∈p(t)K[t] ∩ t2K[t2]; c(t)∈p(t)K[t] ∩ tK[t2]

or, equivalently,

a(t)∈p(t)K[t2]; b(t)∈ tp(t)K[t2]; c(t)∈p(t)K[t2]:

Therefore ker ĩ =I and

ĩ : g(x; y) → sl2(K[t]=〈p(t)〉)
induces a monomorphism

i : g(x; y)=I → sl2(K[t]=〈p(t)〉)
such that

i(x +I) = (t + 〈p(t)〉)E; i(y +I) = (t + 〈p(t)〉)F:
(IV) To study class (IV), we consider the embedding i3;1 instead of i1;1. Recall that

i3;1(x) = t3E; i3;1(y) = tF:

Hence an ideal I in class (IV) assumes the form

I = 〈a〉; a =

(
0 p(t)

0 0

)
for nonzero p(t)∈ t3K[t4]:

Let

ĩ : g(x; y) → sl2(K[t]=〈p(t)〉)
such that

ĩ(x) = (t3 + 〈p(t)〉)E; ĩ(y) = (t + 〈p(t)〉)F:
(

b(t) a(t)

c(t) −b(t)

)
∈ ker ĩ if and only if

a(t)∈p(t)K[t] ∩ t3K[t4]; b(t)∈p(t)K[t] ∩ t4K[t4]; c(t)∈p(t)K[t] ∩ tK[t4]:

They are, respectively, equivalent to

a(t)∈p(t)K[t4]; b(t)∈p(t)tK[t4]; c(t)∈p(t)t2K[t4]:
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Hence ker ĩ =I and

ĩ : g(x; y) → sl2(K[t]=〈p(t)〉)
induces a monomorphism

i : g(x; y)=I → sl2(K[t]=〈p(t)〉)
such that

i(x +I) = (t3 + 〈p(t)〉)E; i(y +I) = (t + 〈p(t)〉)F:
(III) We embed g(x; y) into sl2(K[t]) by means of

i1;3 : g(x; y) → sl2(K[t])

de3ned as

i1;3(x) = tE; i1;3(y) = t3F:

An ideal I in class (III) has the form

I = 〈a〉; a =

(
0 0

p(t) 0

)
for nonzero p(t)∈ t3K[t4]:

Let

ĩ : g(x; y) → sl2(K[t]=〈p(t)〉)
such that

ĩ(x) = (t + 〈p(t)〉)E; ĩ(y) = (t3 + 〈p(t)〉)F:
Similarly to (IV), ker ĩ =I and

ĩ : g(x; y) → sl2(K[t]=〈p(t)〉)
descends to the monomorphism

i : g(x; y)=I → sl2(K[t]=〈p(t)〉)
such that

i(x +I) = (t + 〈p(t)〉)E; i(y +I) = (t3 + 〈p(t)〉)F:
(II)

I = 〈a〉; a =

(
p(t) 0

0 −p(t)

)
for nonzero p(t)∈ t2K[t2]:

We de3ne

ĩ : g(x; y) → sl2(K[t]=〈p(t)〉)
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such that

ĩ(x) = (t + 〈p(t)〉)E; ĩ(y) = (t + 〈p(t)〉)F:
Then (

b(t) a(t)

c(t) −b(t)

)
∈ ker ĩ if and only if

a(t)∈p(t)K[t] ∩ tK[t2]; b(t)∈p(t)K[t] ∩ t2K[t2]; c(t)∈p(t)K[t] ∩ tK[t2]:

They are, respectively, equivalent to

a(t)∈ tp(t)K[t2]; b(t)∈p(t)K[t2]; c(t)∈ tp(t)K[t2]:

Therefore ker ĩ =I and

ĩ : g(x; y) → sl2(K[t]=〈p(t)〉)
descends to the monomorphism

i : g(x; y)=I → sl2(K[t]=〈p(t)〉)
given by

i(x +I) = (t + 〈p(t)〉)E; i(y +I) = (t + 〈p(t)〉)F:
We have proved the following result:

Theorem 16. Any 3-graded Lie algebra generated by an element of degree 1 and
another of degree −1 over a 7eld K of characteristic zero can be realized as a
3-graded Lie subalgebra of sl2(K[t]=〈p(t)〉) for some p(t)∈K[t]. Moreover; it is
symmetric if and only if it is isomorphic; as a graded Lie algebra; to the 3-graded
Lie subalgebra generated by

(t + 〈p(t)〉)E and (t + 〈p(t)〉)F
inside sl2(K[t]=〈p(t)〉) for some p(t)∈K[t] (further embeddings are given in the
proof).

It seems somewhat evident to us that Theorem 16 could be used to obtain a clas-
si3cation or similar description of the 3-graded Lie algebras in a pair of generators.
Moreover, since the same 3-graded Lie algebra can be embedded into sl2(K[t]=〈p(t)〉)
in many diLerent ways, it would be interesting to understand how it depends on the
chosen polynomial p(t)∈K[t] and selection of representatives for the generators in
sl2(K[t]=〈p(t)〉).
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