Convergence to type I distribution of the extremes of sequences defined by random difference equation

Paweł Hitczenko
Departments of Mathematics and Computer Science, Drexel University, Philadelphia, PA 19104, USA

Received 12 March 2011; received in revised form 29 May 2011; accepted 17 June 2011
Available online 25 June 2011

Abstract

We study the extremes of a sequence of random variables $\left(R_{n}\right)$ defined by the recurrence $R_{n}=$ $M_{n} R_{n-1}+q, n \geq 1$, where R_{0} is arbitrary, $\left(M_{n}\right)$ are iid copies of a non-degenerate random variable $M, 0 \leq M \leq 1$, and $q>0$ is a constant. We show that under mild and natural conditions on M the suitably normalized extremes of $\left(R_{n}\right)$ converge in distribution to a double-exponential random variable. This partially complements a result of de Haan, Resnick, Rootzén, and de Vries who considered extremes of the sequence $\left(R_{n}\right)$ under the assumption that $\mathbb{P}(M>1)>0$. (C) 2011 Elsevier B.V. All rights reserved.

MSC: primary 60G70; secondary 60F05
Keywords: Random difference equation; Convergence in distribution; Extreme value

1. Introduction

We consider a special case of the following random difference equation:

$$
\begin{equation*}
R_{n}=Q_{n}+M_{n} R_{n-1}, \quad n \geq 1 \tag{1.1}
\end{equation*}
$$

where R_{0} is arbitrary and $\left(Q_{n}, M_{n}\right), n \geq 1$, are iid copies of a two-dimensional random vector (Q, M), and (Q_{n}, M_{n}) is independent of R_{n-1}. Later on we specialize our discussion to a nondegenerate M, and $Q \equiv q$, a positive constant. Much of the impetus for studying equations like (1.1) stems from numerous applications of such schemes in mathematics and other disciplines

[^0]of science. We refer the reader to [7,20] for examples of fields in which Eq. (1.1) has been of interest. Further examples of more recent applications are mentioned in [12], and for examples of statistical issues arising in studying solutions of (1.1) see [2].

A fundamental theoretical result that goes back to Kesten [14] asserts that if

$$
\begin{equation*}
E \ln |M|<0 \quad \text { and } \quad E \ln |Q|<\infty \tag{1.2}
\end{equation*}
$$

then the sequence $\left(R_{n}\right)$ converges in distribution to a random variable R, which necessarily satisfies the distributional identity

$$
\begin{equation*}
R \stackrel{d}{=} M R+Q \tag{1.3}
\end{equation*}
$$

(see also [20] for a detailed discussion of the convergence properties of $\left(R_{n}\right)$). In the same paper, Kesten showed that if $P(|M|>1)>0$ and (1.2) holds then, under some mild additional conditions on M and Q, the limiting distribution is always heavy-tailed, that is, $\mathbb{P}(|R|>t) \sim$ $C t^{-\kappa}$ for a suitably chosen $\kappa>0$. A different proof of this result was given by Goldie in [9]. By contrast, it was shown in [10] that in the complementary case $|M| \leq 1$ if $|Q| \leq q$ then the tail of R has decay no slower than exponential.

Interestingly, much more work has been done on the heavy-tailed situation. This is perhaps at least partially a result of the fact that many of the processes appearing in applications (for example GARCH processes in financial mathematics) are in fact heavy-tailed. Nonetheless, the case $|M| \leq 1$ and $Q \equiv q$ contains a number of interesting situations, including the class of Vervaat perpetuities; see e.g. [20]. Vervaat perpetuities correspond to M being a $\operatorname{Beta}(\alpha, 1)$ random variable for some $\alpha>0$ and $Q=1$ in which case one gets

$$
\begin{equation*}
R \stackrel{d}{=} 1+M_{1}+M_{1} M_{2}+M_{1} M_{2} M_{3}+\cdots \tag{1.4}
\end{equation*}
$$

(some authors prefer not to have a 1 at the beginning, which corresponds to taking $Q=M$). Particular cases of Vervaat perpetuities include the Dickman distribution appearing in number theory (see [6]), in the analysis of the limiting distribution of the Quickselect algorithm (see [16]), and in the limit theory of functionals of success epochs in iid sequences of random variables [19, Section 4.7]. Further connections are referenced in [13] and we refer the reader there for more information. For recent work on perfect simulation of Vervaat perpetuities see [8] or [5].

In this note we will be interested in the extremal behavior of the sequence $\left(R_{n}\right)$. For any sequence of random variables $\left(Y_{n}\right)$ we let $\left(Y_{n}^{*}\right)$ be the sequence of partial maxima, i.e. $Y_{n}^{*}=$ $\max _{k \leq n} Y_{k}, n \geq 1$. With this notation, we will seek constants $\left(a_{n}\right)$ and $\left(b_{n}\right)$ such that for all x,

$$
\begin{equation*}
P\left(a_{n}\left(R_{n}^{*}-b_{n}\right) \leq x\right) \longrightarrow G(x), \quad n \rightarrow \infty, \tag{1.5}
\end{equation*}
$$

where G is a non-degenerate distribution function.
Under the assumption that $\mathbb{P}(M>1)>0$, the extremes of the sequence $\left(R_{n}\right)$ when both M and Q are non-negative were studied in [4] and were shown to converge (after suitable normalization) to Fréchet (i.e. Type II) distribution with parameter κ. Here, we consider the complementary case, namely that of a light-tailed limiting distribution R. Of course, in this situation one expects convergence in (1.5) to a Gumbel (i.e. a double-exponential or Type I) distribution, provided that there is convergence at all. The latter need not be the case, however. Indeed, if $Q=1$ and M has a two-point distribution $\mathbb{P}(M=1)=p=1-\mathbb{P}(M=0)$ then as is seen from (1.4), R has a geometric distribution with parameter $1-p$ and thus no
constants $\left(a_{n}\right),\left(b_{n}\right)$ exist for which (1.5) holds for a non-degenerate distribution G (see [15, Example 1.7.15]). Our main aim here is to show that under fairly general and natural conditions on M (and for a degenerate Q), (1.5) does hold for suitable constants $\left(a_{n}\right),\left(b_{n}\right)$ and a doubleexponential distribution $G(x)=\exp \left(-\mathrm{e}^{-x}\right),-\infty<x<\infty$.

2. Extremal behavior

Following the authors of [4] we assume that both M and Q are non-negative. As we mentioned earlier, we assume that $Q=q>0$ is a constant. So, we consider

$$
\begin{equation*}
R_{n}=M_{n} R_{n-1}+q, \quad n \geq 1, \quad R_{0} \text {-given } \tag{2.6}
\end{equation*}
$$

where M_{n} and R_{n-1} on the right-hand side are independent and where $\left(M_{n}\right)$ is a sequence of iid copies of a random variable M satisfying

$$
\begin{equation*}
0 \leq M \leq 1, \quad M \text {-non-degenerate. } \tag{2.7}
\end{equation*}
$$

(The non-degeneracy assumption is to eliminate the possibility that R itself is degenerate.) Clearly, this is more than (1.2) and thus implies the convergence in distribution of $\left(R_{n}\right)$. Furthermore, it has been known since [10] that in that case the tail of the limiting variable R is no heavier than exponential. Note that if M is bounded away from 1 then R is actually a bounded random variable. To exclude this situation we assume that the right endpoint of M is 1 , that is that

$$
\begin{equation*}
\sup \{x: \mathbb{P}(M>x)>0\}=1 \tag{2.8}
\end{equation*}
$$

Finally, we need to eliminate the possibility that R is a geometric variable. To this end it is enough to assume that

$$
\begin{equation*}
\mathbb{P}(M=0)=0, \tag{2.9}
\end{equation*}
$$

since this guarantees that the distribution of R is continuous (see e.g. [1, Theorem 1.3]).
We will prove the following theorem:
Theorem 1. Let (R_{n}) satisfy (2.6) with M satisfying (2.7)-(2.9). Then there exist sequences $\left(a_{n}\right)$, $\left(b_{n}\right)$ such that for every real x

$$
\mathbb{P}\left(a_{n}\left(R_{n}^{*}-b_{n}\right) \leq x\right) \rightarrow \exp \left(-\mathrm{e}^{-x}\right), \quad \text { as } n \rightarrow \infty
$$

3. Proof of Theorem 1

We first outline our proof which generally follows the approach of [4] (see also references therein for earlier developments). Writing out (2.6) explicitly we see that

$$
\begin{equation*}
R_{n}=q+q M_{n}+q M_{n} M_{n-1}+\cdots+q M_{n} \cdots M_{2}+M_{n} \cdots M_{1} R_{0} \tag{3.10}
\end{equation*}
$$

Under our assumption (2.7) (as a matter of fact, under the first part of (1.2) as well) the product $\prod_{k=1}^{n} M_{k}$ goes to 0 a.s. Consequently, the extremal behavior of $\left(R_{n}\right)$ is the same regardless of the choice of the initial variable R_{0}. It is particularly convenient to choose R_{0} such that it satisfies (1.3) as then so does every $R_{k}, k \geq 1$, making the sequence $\left(R_{n}\right)$ stationary. Extremal behavior of stationary sequences is quite well understood (see e.g. [15, Chapter 3]) and we will take advantage of that. To find the extremal behavior of $\left(R_{n}\right)$ one has to do three things:
(i) analyze the extremal behavior of the associated independent sequence (\hat{R}_{n}) consisting of iid random variables equidistributed with R,
(ii) verify that the sequence $\left(R_{n}\right)$ satisfies the $D\left(u_{n}\right)$ condition for sequences $\left(u_{n}\right)$ of the form $u_{n}=b_{n}+x / a_{n}$, for any x and suitably chosen sequences $\left(a_{n}\right),\left(b_{n}\right)$, and
(iii) show that the sequence (R_{n}) has the extremal index and find its value.

Some of the difficulties with carrying out this program are caused by the fact that, contrary to the heavy-tailed situation, little is known about the tail asymptotics in the case of light tails. A notable exception is the case of Vervaat perpetuities (see [19, Section 4.7] for a discussion). General results on the light-tail case are scarce (see $[10,12,11]$) and less precise than Kesten's result in the heavy-tailed situation. As a consequence, less precise information about the norming constants $\left(a_{n}\right),\left(b_{n}\right)$ will be available. Our substitute for Kesten's result will be two-sided bounds obtained recently in [11].

We will treat the three items above in separate subsections.

3.1. The associated independent sequence

We appeal to the general theory of extremes as described in e.g. [15, Chapter 1]. First, we know from [1, Theorem 1.3] that (2.9) and the non-degeneracy assumption on M imply that R has continuous distribution function F_{R}. Therefore, the condition (1.7.3) of Theorem 1.7.13 of [15] is satisfied and thus, for every $x>0$ there exist $u_{n}=u_{n}(x)$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n \mathbb{P}\left(R>u_{n}\right)=\mathrm{e}^{-x} \tag{3.11}
\end{equation*}
$$

In fact, since R is continuous, u_{n} may be taken to be

$$
u_{n}(x)=F_{R}^{-1}\left(1-\frac{\mathrm{e}^{-x}}{n}\right)
$$

where F_{R} is the probability distribution function of R. The question now is whether u_{n} 's may be chosen to be linear functions of x, i.e. whether there exist constants a_{n} and $b_{n}, n \geq 1$, such that for $x>0$ we have

$$
\begin{equation*}
u_{n}(x)=\frac{x}{a_{n}}+b_{n}, \quad n \geq 1 . \tag{3.12}
\end{equation*}
$$

To address that question we will utilize a recent result of [11] which states that there exist absolute constants $c_{i}, i=0,1,2,3$, such that for sufficiently large $y>0$,

$$
\exp \left\{c_{0} y \ln p_{\frac{c_{1}}{y}}\right\} \leq \mathbb{P}(R>y) \leq \exp \left\{c_{2} y \ln p_{\frac{c_{3}}{y}}\right\}
$$

where, following [10], for $0<\delta<1$ we set

$$
\begin{equation*}
p_{\delta}=\mathbb{P}(1-\delta<M \leq 1)=1-F_{M}(1-\delta) \quad \text { and } \quad p_{0}=\lim _{\delta \rightarrow 0} p_{\delta}=\mathbb{P}(M=1) \tag{3.13}
\end{equation*}
$$

Notice that by (2.8) p_{δ} is strictly positive for $\delta \in(0,1)$. Now, if

$$
\mathbb{P}\left(R>u_{n}\right)=\frac{\mathrm{e}^{-x}}{n},
$$

then

$$
\exp \left\{c_{0} u_{n} \ln p_{\frac{c_{1}}{u_{n}}}\right\} \leq \frac{\mathrm{e}^{-x}}{n}
$$

Therefore, if the w_{n} 's are chosen such that

$$
\exp \left\{c_{0} w_{n} \ln p_{\frac{c_{1}}{w_{n}}}\right\}=\frac{\mathrm{e}^{-x}}{n}
$$

then $u_{n} \geq w_{n}$. By the same argument, if the v_{n} 's are such that

$$
\exp \left\{c_{2} v_{n} \ln p_{\frac{c_{3}}{v_{n}}}\right\}=\frac{\mathrm{e}^{-x}}{n},
$$

then $\mathbb{P}\left(R>v_{n}\right) \leq \frac{\mathrm{e}^{-x}}{n}$, so $u_{n} \leq v_{n}$. Hence for every $x>0$,

$$
w_{n}(x) \leq u_{n}(x) \leq v_{n}(x)
$$

and thus for every $n \geq 1$ there would exist $0 \leq \alpha_{n} \leq 1$ such that

$$
u_{n}=\alpha_{n} w_{n}+\left(1-\alpha_{n}\right) v_{n} .
$$

If both $\left(v_{n}\right)$ and $\left(w_{n}\right)$ were linear, say,

$$
w_{n}(x)=\frac{x}{a_{n}^{\prime}}+b_{n}^{\prime}, \quad v_{n}(x)=\frac{x}{a_{n}^{\prime \prime}}+b_{n}^{\prime \prime},
$$

for some $\left(a_{n}^{\prime}\right),\left(b_{n}^{\prime}\right),\left(a_{n}^{\prime \prime}\right)$, and $\left(b_{n}^{\prime \prime}\right)$, then (3.12) would hold with

$$
a_{n}=\left(\frac{\alpha_{n}}{a_{n}^{\prime}}+\frac{1-\alpha_{n}}{a_{n}^{\prime \prime}}\right)^{-1} \quad \text { and } \quad b_{n}=\alpha_{n} b_{n}^{\prime}+\left(1-\alpha_{n}\right) b_{n}^{\prime \prime}
$$

It therefore suffices to show the existence of linear norming for partial maxima of iid random variables $\left(W_{n}\right)$ whose common distribution F_{W} satisfies

$$
1-F_{W}(y)=\exp \left\{c_{0} y \ln p_{c_{1} / y}\right\}, \quad \text { for } y \geq y_{0},
$$

where $p_{c_{1} / y}$ is given by (3.13) for some fixed random variable M satisfying (2.7)-(2.9).
In accordance with [15, Theorem 1.5.1], to show that

$$
\mathbb{P}\left(a_{n}^{\prime}\left(W_{n}-b_{n}^{\prime}\right) \leq x\right) \rightarrow \exp \left(-\mathrm{e}^{-x}\right),
$$

holds for every real x, the constants $\left(a_{n}^{\prime}\right)$ and $\left(b_{n}^{\prime}\right)$ must be constructed such that for every such x,

$$
n\left(1-F_{W}\left(b_{n}^{\prime}+x / a_{n}^{\prime}\right)\right) \rightarrow \mathrm{e}^{-x}, \quad \text { as } n \rightarrow \infty,
$$

i.e. that

$$
\begin{equation*}
n \exp \left\{c_{0}\left(b_{n}^{\prime}+\frac{x}{a_{n}^{\prime}}\right) \ln p_{\frac{c_{1}}{b_{n}^{\prime}+x / a_{n}^{\prime}}}\right\} \rightarrow \mathrm{e}^{-x}, \quad \text { as } n \rightarrow \infty . \tag{3.14}
\end{equation*}
$$

Choose b_{n}^{\prime} such that

$$
\begin{equation*}
c_{0} b_{n}^{\prime} \ln p_{c_{1} / b_{n}^{\prime}}=-\ln n \tag{3.15}
\end{equation*}
$$

Then the left-hand side of (3.14) is

$$
\exp \left\{c_{0} b_{n}^{\prime}\left(\ln p_{\frac{c_{1}}{b_{n}^{\prime}+x / a_{n}^{\prime}}}-\ln p_{c_{1} / b_{n}^{\prime}}\right)\left(1+\frac{x}{a_{n}^{\prime} b_{n}^{\prime}}\right)+c_{0} \frac{x}{a_{n}^{\prime}} \ln p_{c_{1} / b_{n}^{\prime}}\right\}
$$

To choose $\left(a_{n}^{\prime}\right)$, first note that the difference of logarithms in the first summand is negative. Hence, if for any $n, a_{n}^{\prime} \leq-K \ln p_{c_{1} / b_{n}^{\prime}}$ for some $K<c_{0}$ then the exponent is no more than $-x c_{0} / K<-x$. Therefore, for any admissible choice of $\left(a_{n}^{\prime}\right)$ we must have $\liminf _{n} a_{n}^{\prime} / \ln p_{c_{1} / b_{n}^{\prime}} \leq-c_{0}$ which implies in particular that $a_{n}^{\prime} b_{n}^{\prime} \rightarrow \infty$. Thus, the exponent in the above formula is asymptotic to

$$
c_{0} b_{n}^{\prime}\left(\ln p \frac{c_{1}}{b_{n}^{\prime}+x / a_{n}^{\prime}}-\ln p_{c_{1} / b_{n}^{\prime}}\right)+c_{0} \frac{x}{a_{n}^{\prime}} \ln p_{c_{1} / b_{n}^{\prime}} .
$$

We can further assume that for each $n 1-c / b_{n}^{\prime}$ is a differentiability point of F_{M} and that the derivative, f_{M}, is finite at $1-c_{1} / b_{n}^{\prime}$. It then follows that the exponent is asymptotic to

$$
-c_{0} \frac{c_{1} x}{a_{n}^{\prime} b_{n}^{\prime} p_{c_{1} / b_{n}^{\prime}}} f_{M}\left(1-\frac{c_{1}}{b_{n}^{\prime}}\right)+c_{0} \frac{x}{a_{n}^{\prime}} \ln p_{c_{1} / b_{n}^{\prime}}
$$

and thus we may choose

$$
\begin{equation*}
a_{n}^{\prime}=c_{0}\left(\frac{c_{1}}{b_{n}^{\prime} p_{c_{1} / b_{n}^{\prime}}} f_{M}\left(1-\frac{c_{1}}{b_{n}^{\prime}}\right)-\ln p_{c_{1} / b_{n}^{\prime}}\right) . \tag{3.16}
\end{equation*}
$$

3.2. The $D\left(u_{n}\right)$ condition

To check that the $D\left(u_{n}\right)$ condition holds for sequences of the form $b_{n}+x / a_{n}$ we proceed in the same fashion as [4, Proof of Theorem 2.1]; the argument there was, in turn, based on [17, Proof of Lemma 3.1]. Recall that, according to [15, Lemma 3.2.1(ii)], it suffices to show that if $1 \leq i_{1}<\cdots<i_{r}<j_{1}<\cdots<j_{s} \leq n$ are such that $j_{1}-i_{r} \geq \lambda n$ for $\lambda>0$ then

$$
\mathbb{P}\left(\bigcap_{k=1}^{r}\left\{R_{i_{k}} \leq u_{n}\right\} \cap \bigcap_{m=1}^{s}\left\{R_{j_{m}} \leq u_{n}\right\}\right)-\mathbb{P}\left(\bigcap_{k=1}^{r}\left\{R_{i_{k}} \leq u_{n}\right\}\right) \mathbb{P}\left(\bigcap_{k=1}^{r}\left\{R_{i_{k}} \leq u_{n}\right\}\right) \rightarrow 0,
$$

as $n \rightarrow \infty$. Set $I=\left\{i_{1}, \ldots, i_{r}\right\}$ and $J=\left\{j_{1}, \ldots, j_{s}\right\}$ and for any set A of positive integers let $R_{A}^{*}=\max _{a \in A} R_{a}$.

It follows from (2.6) that for $j>i$ we have

$$
\begin{aligned}
R_{j} & =q+q M_{j}+\cdots+q M_{j} \cdots M_{i+2}+M_{j} \cdots M_{i+1} R_{i} \\
& =: S_{j, i}+M_{j} \cdots M_{i+1} R_{i}
\end{aligned}
$$

where for $j>i$ we have set

$$
S_{j, i}:=q+q M_{j}+\cdots+q M_{j} \cdots M_{i+2}
$$

Hence, for any $\epsilon_{n}>0$ we obtain

$$
\begin{aligned}
\left\{R_{J}^{*} \leq u_{n}\right\} & =\bigcap_{j \in J}\left\{S_{j, i_{r}}+M_{j} \cdots M_{i_{r}+1} R_{i_{r}} \leq u_{n}\right\} \\
& \supset \bigcap_{j \in J}\left\{S_{j, i_{r}} \leq u_{n}-\epsilon_{n}\right\} \cap\left\{M_{j} \cdots M_{i_{r}+1} R_{i_{r}} \leq \epsilon_{n}\right\} \\
& =\bigcap_{j \in J}\left\{S_{j, i_{r}} \leq u_{n}-\epsilon_{n}\right\} \backslash \bigcup_{j \in J}\left\{M_{j} \cdots M_{i_{r}+1} R_{i_{r}}>\epsilon_{n}\right\} .
\end{aligned}
$$

Note that R_{k} and $S_{n, m}$ are independent whenever $m \geq k$, so $\left\{R_{i}: i \in I\right\}$ and $\left\{S_{j, i_{r}}: j \in J\right\}$ are independent, and hence we get

$$
\begin{aligned}
& P\left(R_{I}^{*} \leq u_{n}, R_{J}^{*} \leq u_{n}\right) \geq P\left(R_{I}^{*} \leq u_{n}\right) P\left(S_{J, i_{r}}^{*} \leq u_{n}-\epsilon_{n}\right) \\
& \quad-P\left(\bigcup_{j \in J} M_{j} \cdots M_{i_{r}+1} R_{i_{r}}>\epsilon_{n}\right) .
\end{aligned}
$$

Also,

$$
\left\{S_{J, i_{r}}^{*} \leq u_{n}-\epsilon_{n}\right\} \supset\left\{R_{J}^{*} \leq u_{n}-2 \epsilon_{n}\right\} \cap \bigcap_{j \in J}\left\{M_{j} \cdots M_{i_{r}+1} R_{i_{r}} \leq \epsilon_{n}\right\}
$$

which further leads to

$$
\begin{aligned}
& P\left(R_{I}^{*} \leq u_{n}, R_{J}^{*} \leq u_{n}\right) \geq P\left(R_{I}^{*} \leq u_{n}\right) P\left(R_{J}^{*} \leq u_{n}-2 \epsilon_{n}\right) \\
& \quad-2 P\left(\bigcup_{j \in J} M_{j} \cdots M_{i_{r}+1} R_{i_{r}}>\epsilon_{n}\right) .
\end{aligned}
$$

By essentially the same argument we also get

$$
\begin{aligned}
& P\left(R_{I}^{*} \leq u_{n}, R_{J}^{*} \leq u_{n}\right) \leq P\left(R_{I}^{*} \leq u_{n}\right) P\left(R_{J}^{*} \leq u_{n}+2 \epsilon_{n}\right) \\
& \quad+2 P\left(\bigcup_{j \in J} M_{j} \cdots M_{i_{r}+1} R_{i_{r}}>\epsilon_{n}\right)
\end{aligned}
$$

Combining these two estimates we obtain

$$
\begin{aligned}
& \left|P\left(R_{I}^{*} \leq u_{n}, R_{J}^{*} \leq u_{n}\right)-P\left(R_{I}^{*} \leq u_{n}\right) P\left(R_{J}^{*} \leq u_{n}\right)\right| \\
& \quad \leq \max \left\{P\left(R_{J}^{*} \leq u_{n}\right)-P\left(R_{J}^{*} \leq u_{n}-2 \epsilon_{n}\right), P\left(R_{J}^{*} \leq u_{n}+2 \epsilon_{n}\right)-P\left(R_{J}^{*} \leq u_{n}\right)\right\} \\
& \quad+2 P\left(\bigcup_{j \in J} M_{j} \cdots M_{i_{r}+1} R_{i_{r}}>\epsilon_{n}\right) .
\end{aligned}
$$

Thus condition $D\left(u_{n}\right)$ will be verified once we show that both terms in the sum on the right-hand side vanish as $n \rightarrow \infty$. To handle the first term we use stationarity and the fact that $j_{s} \leq n$ to find that the maximum above is bounded by

$$
\sum_{j \in J} P\left(u_{n}-2 \epsilon_{n} \leq R_{j} \leq u_{n}+2 \epsilon_{n}\right) \leq n P\left(u_{n}-2 \epsilon_{n} \leq R \leq u_{n}+2 \epsilon_{n}\right) .
$$

Recall that the $\left(u_{n}\right)$ satisfy (3.11) and (3.12). Thus, setting $\epsilon_{n}=\epsilon / a_{n}$ with $\epsilon>0$ sufficiently small we get

$$
n P\left(u_{n}-2 \epsilon_{n} \leq R \leq u_{n}+2 \epsilon_{n}\right) \rightarrow \mathrm{e}^{-(x-2 \epsilon)}-\mathrm{e}^{-(x+2 \epsilon)}=O(\epsilon) .
$$

Turning attention to the second term, using $M_{k} \leq 1$ we see that

$$
\begin{aligned}
\mathbb{P}\left(\bigcup_{j \in J} M_{j} \cdots M_{i_{r}+1} R_{i_{r}}>\epsilon / a_{n}\right) & \leq \sum_{j \in J} \mathbb{P}\left(M_{j} \cdots M_{i_{r}+1} R_{i_{r}}>\epsilon / a_{n}\right) \\
& \leq n P\left(M_{j_{1}-i_{r}} \cdots M_{1} R_{0}>\epsilon / a_{n}\right)
\end{aligned}
$$

Intersect the event underneath this probability with $\left\{R>2 b_{n}\right\}$ and its complement to see that this term is bounded by

$$
\begin{equation*}
n \mathbb{P}\left(R>2 b_{n}\right)+n \mathbb{P}\left(M_{j_{1}-i_{r}} \cdots M_{1}>\epsilon /\left(2 a_{n} b_{n}\right)\right) . \tag{3.17}
\end{equation*}
$$

Furthermore, since for any $T>0$ and sufficiently large $n, 2 b_{n}=b_{n}+\frac{a_{n} b_{n}}{a_{n}}>b_{n}+T / a_{n}$, the first term (3.17) is bounded by

$$
n \mathbb{P}\left(R>2 b_{n}\right) \leq n \mathbb{P}\left(R>b_{n}+T / a_{n}\right) \rightarrow \mathrm{e}^{-T},
$$

and thus goes to 0 upon letting $T \rightarrow \infty$. Turning to the second term in (3.17) we see that by Markov's inequality and independence of the M_{k} 's it is bounded by

$$
\begin{equation*}
\frac{2 n a_{n} b_{n}}{\epsilon}(E M)^{j_{1}-i_{r}} . \tag{3.18}
\end{equation*}
$$

We need to see that this vanishes as $n \rightarrow \infty$. Recall that $E M<1$ and $j_{1}-i_{r} \geq \lambda n$ where $\lambda>0$, so $(\mathbb{E} M)^{j_{1}-i_{r}}$ decays exponentially fast in n. Furthermore,

$$
a_{n} b_{n} \leq K \max \left\{a_{n}^{\prime}, a_{n}^{\prime \prime}\right\} \cdot \max \left\{b_{n}^{\prime}, b_{n}^{\prime \prime}\right\} .
$$

Recall that b_{n}^{\prime} and $b_{n}^{\prime \prime}$ satisfy (3.15) (with different constants). Thus they both are $O(\ln n)$ as are $\ln p_{c_{1} / b_{n}^{\prime}}$ and $\ln p_{c_{3} / b_{n}^{\prime \prime}}$. Hence,

$$
a_{n}^{\prime} \leq K\left(\frac{c_{1}}{b_{n}^{\prime}} f_{M}\left(1-\frac{c_{1}}{b_{n}^{\prime}}\right) \frac{1}{p_{c_{1} / b_{n}^{\prime}}}+\ln n\right) .
$$

Since f_{M} is an integrable function, we may assume that $\frac{c_{1}^{\prime}}{b_{n}^{\prime}} f_{M}\left(1-c_{1} / b_{n}^{\prime}\right)=O(1)$ as $n \rightarrow \infty$. Finally, recall that (b_{n}^{\prime}) satisfies (3.15). Therefore,

$$
p_{c_{1} / b_{n}^{\prime}}=\exp \left(-\frac{\ln n}{c_{0} b_{n}^{\prime}}\right)=n^{-1 / c_{0} b_{n}^{\prime}} \geq n^{-\alpha}, \quad \alpha>0
$$

where the last inequality follows from the fact that $b_{n}^{\prime} \rightarrow \infty$ as $n \rightarrow \infty$ which is evident from (3.15). It follows that $n a_{n} b_{n}$ has a polynomial growth in n and thus that for every $\epsilon>0$ (3.18) goes to 0 as $n \rightarrow \infty$.

3.3. The extremal index

We establish the following fact about the extremal index of $\left(R_{n}\right)$. It implies, in particular, that if M does not have an atom at 1 , then the extremal behavior of $\left(R_{n}\right)$ is exactly the same as it would be for independent R_{n} 's.

Proposition 2. Let $\left(R_{n}\right)$ be a stationary sequence satisfying the recurrence (2.6). Then (R_{n}) has the extremal index θ whose value is

$$
\theta=\limsup _{n} \mathbb{P}\left(M R+q \leq u_{n} \mid R>u_{n}\right)=1-p_{0}=1-\mathbb{P}(M=1) .
$$

Proof. Again following the authors of [4] we rely on Theorem 4.1 of Rootzén [18]. Since we have shown that $D\left(u_{n}\right)$ holds for every sequence u_{n} of the form $b_{n}+x / a_{n}, x>0$, it remains to verify condition (4.3) of that theorem, i.e. to show that

$$
\limsup _{n \rightarrow \infty}\left|\mathbb{P}\left(R_{\lceil n \epsilon\rceil} \leq u_{n} \mid R_{0}>u_{n}\right)-\theta\right| \rightarrow 0, \quad \text { as } \epsilon \searrow 0 .
$$

To this end, for given $\epsilon>0$, let $m:=m_{\epsilon}:=\lceil n \epsilon\rceil$. Then

$$
\mathbb{P}\left(R_{m}^{*} \leq u_{n} \mid R_{0}>u_{n}\right)=\mathbb{P}\left(R_{m} \leq u_{n} \mid R_{m-1}^{*} \leq u_{n}, R_{0}>u_{n}\right) \mathbb{P}\left(R_{m-1}^{*} \leq u_{n} \mid R_{0}>u_{n}\right) .
$$

By the Markov property, for $m \geq 2$ the first probability on the right-hand side is

$$
\begin{aligned}
& \mathbb{P}\left(R_{m} \leq u_{n} \mid R_{m-1} \leq u_{n}\right)=\mathbb{P}\left(M_{m} R_{m-1}+q \leq u_{n} \mid R_{m-1} \leq u_{n}\right) \\
& \quad=\mathbb{P}\left(M R+q \leq u_{n} \mid R \leq u_{n}\right) .
\end{aligned}
$$

Continuing in the same fashion we find that

$$
\begin{aligned}
\mathbb{P}\left(R_{m}^{*} \leq u_{n} \mid R_{0}>u_{n}\right) & =\mathbb{P}^{m-1}\left(M R+q \leq u_{n} \mid R \leq u_{n}\right) \mathbb{P}\left(R_{1} \leq u_{n} \mid R_{0}>u_{n}\right) \\
& =\left(1-\mathbb{P}\left(M R+q>u_{n} \mid R \leq u_{n}\right)\right)^{m-1} \mathbb{P}\left(M R+q \leq u_{n} \mid R>u_{n}\right) .
\end{aligned}
$$

So, clearly,

$$
\limsup _{n} \mathbb{P}\left(R_{m}^{*} \leq u_{n} \mid R_{0}>u_{n}\right) \leq \limsup _{n} \mathbb{P}\left(M R+q \leq u_{n} \mid R>u_{n}\right) .
$$

On the other hand,

$$
\begin{aligned}
n \mathbb{P}\left(M R+q>u_{n} \mid R \leq u_{n}\right) & =n \frac{\mathbb{P}\left(M R+q>u_{n}, R \leq u_{n}\right)}{\mathbb{P}\left(R \leq u_{n}\right)} \leq n \frac{\mathbb{P}\left(M R+q>u_{n}\right)}{1-\mathbb{P}\left(R>u_{n}\right)} \\
& =n \frac{\mathbb{P}\left(R>u_{n}\right)}{1-\mathbb{P}\left(R>u_{n}\right)} \rightarrow \mathrm{e}^{-x},
\end{aligned}
$$

as $n \rightarrow \infty$ by the very choice of $\left(u_{n}\right)$. Thus

$$
\limsup _{n} n \mathbb{P}\left(M R+q>u_{n} \mid R \leq u_{n}\right) \leq \mathrm{e}^{-x}=: c<\infty
$$

and so

$$
\liminf _{n}\left(1-\mathbb{P}\left(M R+q>u_{n} \mid R \leq u_{n}\right)\right)^{m-1} \geq \mathrm{e}^{-c \epsilon}
$$

and hence

$$
\limsup _{n} \mathbb{P}\left(R_{m}^{*} \leq u_{n} \mid R_{0} \leq u_{n}\right) \geq \mathrm{e}^{-c \epsilon} \limsup _{n} \mathbb{P}\left(M R+q \leq u_{n} \mid R>u_{n}\right) .
$$

It follows that

$$
\begin{aligned}
& \lim _{\epsilon \searrow 0} \limsup _{n \rightarrow \infty}\left\{\left(1-\mathbb{P}\left(M R+q>u_{n} \mid R \leq u_{n}\right)\right)^{m-1} \mathbb{P}\left(M R+q \leq u_{n} \mid R>u_{n}\right)\right\} \\
& \quad=\limsup _{n \rightarrow \infty} \mathbb{P}\left(M R+q \leq u_{n} \mid R>u_{n}\right) .
\end{aligned}
$$

We now turn to evaluating

$$
\limsup _{n \rightarrow \infty} \mathbb{P}\left(M R+q \leq u_{n} \mid R>u_{n}\right) .
$$

It is clear that if $p_{0}>0$ then for every n such that $u_{n} \geq q$ we have $\mathbb{P}\left(M R+q \leq u_{n} \mid R>u_{n}\right)=$ $1-p_{0}$, so assume that $p_{0}=0$ and write

$$
\begin{aligned}
\mathbb{P}\left(M R+q \leq u_{n} \mid R>u_{n}\right) & =1-\mathbb{P}\left(M R+q>u_{n} \mid R>u_{n}\right) \\
& =1-\frac{\mathbb{P}\left(M R+q>u_{n}, R>u_{n}\right)}{\mathbb{P}\left(R>u_{n}\right)} .
\end{aligned}
$$

It remains to show that the numerator in the last expression is of lower order than the denominator. To do that, let $\left(t_{n}\right)$ be a sequence converging to infinity but in such a way that $t_{n}=o\left(b_{n}\right)$. Then

$$
\begin{aligned}
\mathbb{P}\left(M R+q>u_{n}, R>u_{n}\right) & =\int_{u_{n}}^{\infty} \mathbb{P}\left(M t+q>u_{n}\right) \mathrm{d} F_{R}(t) \\
& =\left(\int_{u_{n}}^{u_{n}+t_{n}}+\int_{u_{n}+t_{n}}^{\infty}\right) \mathbb{P}\left(M t+q>u_{n}\right) \mathrm{d} F_{R}(t) .
\end{aligned}
$$

Note that the probability under the integral is an increasing function of t. Bounding it trivially by 1 in the second term we see that this term is bounded by $\mathbb{P}\left(R>u_{n}+t_{n}\right)$. This can be further bounded by

$$
\mathbb{P}\left(R>b_{n}+\frac{x}{a_{n}}+t_{n}\right)=\mathbb{P}\left(R>b_{n}+\frac{x+a_{n} t_{n}}{a_{n}}\right) \leq \mathbb{P}\left(R>b_{n}+\frac{x+T}{a_{n}}\right),
$$

whenever $a_{n} t_{n} \geq T$. It follows by the choice of $\left(u_{n}\right)$ and the $D\left(u_{n}\right)$ condition that

$$
\frac{\mathbb{P}\left(R>u_{n}+t_{n}\right)}{\mathbb{P}\left(R>u_{n}\right)} \leq \mathrm{e}^{-T}
$$

for arbitrarily large T and sufficiently large n and thus it vanishes as $n \rightarrow \infty$. The first integral is bounded by

$$
\mathbb{P}\left(M\left(u_{n}+t_{n}\right)+q>u_{n}\right) \mathbb{P}\left(u_{n}<R<u_{n}+t_{n}\right) \leq \mathbb{P}\left(M>1-\frac{t_{n}+q}{u_{n}+t_{n}}\right) \mathbb{P}\left(R>u_{n}\right) .
$$

Since the first term goes to $p_{0}=0$ as $n \rightarrow \infty$, we see that this term is $o\left(\mathbb{P}\left(R>u_{n}\right)\right)$ as $n \rightarrow \infty$. This shows that the extremal index is 1 when $p_{0}=0$ and completes the proof.

4. Remarks

1. The main drawback of Theorem 1 is that it does not give a good handle on the norming constants $\left(a_{n}\right)$ and $\left(b_{n}\right)$. This is generally caused by a lack of precise information about the tails of the limiting random variable R. However, even in the rare cases in which more precise information about tails of R is available, the formulas seem to be too complicated to make the precise statements about $\left(a_{n}\right)$ and $\left(b_{n}\right)$ practical. For example, for when $q=1$ and M has a $\operatorname{Beta}(\alpha, 1)$ distribution, $\alpha>0$ (i.e. R is a Vervaat perpetuity), Vervaat [19, Theorem 4.7.7] (on the basis of earlier arguments of de Bruijn [3]) found the expression for the density of R. This, in principle, could be used to get precise enough asymptotics of the tail function of R and thus determine the asymptotic values of $\left(b_{n}\right)$ and $\left(a_{n}\right)$. However, the nature of these formulas makes obtaining explicit asymptotic expressions for $\left(a_{n}\right)$ and $\left(b_{n}\right)$ difficult if not impossible. As far as we know, Vervaat perpetuities provide the only class of examples (within our restrictions on M and Q) for which the asymptotics of the tail function is known. On the other hand, Theorem 1 typically gives the order of the magnitude of $\left(a_{n}\right)$ and $\left(b_{n}\right)$.
2. The expression (3.16) for $\left(a_{n}^{\prime}\right)$ often simplifies to $a_{n}^{\prime} \sim-c_{0} \ln p_{c_{1} / b_{n}^{\prime}}$ (with corresponding simplification for $\left(a_{n}\right)$). This will happen, for example, whenever $p_{0}=0$ and $\delta f_{M}(1-\delta) / p_{\delta}$ is bounded as $\delta \rightarrow 0$, and in particular, when M is a $\operatorname{Beta}(\alpha, \beta)$ random variable, $\alpha, \beta>0$. In that case, b_{n}^{\prime} may be chosen to be asymptotic to $\frac{\ln n}{c_{0} \beta \ln \ln n}$ and then $a_{n}^{\prime} \sim c_{0} \beta \ln \ln n$. Hence, $\left(a_{n}\right)$ and $\left(b_{n}\right)$ are of order $\ln \ln n$ and $\ln n / \ln \ln n$, respectively. Note that Vervaat perpetuity corresponds to $\beta=1$ and Dickman distribution to $\alpha=\beta=1$.
3. There are, however, situations for which the above remark is not true. The following situation was considered in [12, Theorem 6]. Let M have density given by

$$
f_{M}(t)=K \exp \left\{-\frac{1}{\left(1-t^{r}\right)^{1 /(r-1)}}\right\}, \quad 1<r<\infty, 0<t<1
$$

where $K=K_{r}$ is a normalizing constant. Then, as $\delta \searrow 0$,

$$
\begin{aligned}
p_{\delta} & \sim\left(1-(1-\delta)^{r}\right)^{r /(r-1)} \exp \left\{-\left(1-(1-\delta)^{r}\right)^{-1 /(r-1)}\right\} \\
& \sim(r \delta)^{r /(r-1)} \exp \left\{-(r \delta)^{-1 /(r-1)}\right\},
\end{aligned}
$$

and so

$$
\frac{c_{1} f_{M}\left(1-c_{1} / b_{n}^{\prime}\right)}{b_{n}^{\prime} p_{c_{1} / b_{n}^{\prime}}} \sim\left(\frac{b_{n}^{\prime}}{c_{1} r^{r}}\right)^{1 /(r-1)} .
$$

On the other hand,

$$
-\ln p_{c_{1} / b_{n}^{\prime}} \sim\left(\frac{b_{n}^{\prime}}{c_{1}}\right)^{1 /(r-1)}+\frac{r}{r-1} \ln \left(b_{n}^{\prime} / r c_{1}\right)=\left(\frac{b_{n}^{\prime}}{c_{1}}\right)^{1 /(r-1)}\left(1+O\left(\frac{\ln b_{n}^{\prime}}{b_{n}^{\prime 1 /(r-1)}}\right)\right)
$$

so the two terms appearing in (3.16) are of the same order. Here again, the norming constants $\left(a_{n}\right),\left(b_{n}\right)$ in Theorem 1 may be determined up to absolute multiplicative factors and are of order $(\ln n)^{1 / r}$ and $(\ln n)^{(r-1) / r}$, respectively.
4. Consider another example from [12] in which

$$
f_{M}(t)=K \exp \left(-\int_{1-t}^{1} \frac{\mathrm{e}^{1 / s}}{s} \mathrm{~d} s\right), \quad 0<t<1
$$

Then (see [12, Lemma 8]) $\ln p_{\delta} \sim-\delta \mathrm{e}^{1 / \delta}$ as $\delta \rightarrow 0$. Similarly, one can check that

$$
\frac{\delta f_{M}(1-\delta)}{p_{\delta}} \sim \frac{\delta \mathrm{e}^{-\delta \mathrm{e}^{1 / \delta}} \mathrm{e}^{\delta \mathrm{e}^{1 / \delta}}}{\delta \mathrm{e}^{-1 / \delta}}=\mathrm{e}^{1 / \delta}
$$

so this time the first term in the expression (3.16) is of higher order than the second. It follows from the asymptotics above that $a_{n}^{\prime} \sim(\ln n) / c_{0} c_{1}$ and $b_{n}^{\prime} \sim c_{1} \ln \ln n$ and hence $\left(a_{n}\right),\left(b_{n}\right)$ are of order $\ln n$ and $\ln \ln n$, respectively.

Acknowledgments

The author was supported in part by the NSA grant \#H98230-09-1-0062.

References

[1] G. Alsmeyer, A. Iksanov, U. Rösler, On distributional properties of perpetuities, J. Theoret. Probab. 20 (2009) 666-682.
[2] C. Baek, V. Pipiras, H. Wendt, P. Abry, Second order properties of distribution tails and estimation of tail exponents in random difference equations, Extremes 12 (2009) 361-400.
[3] N.G. de Bruijn, The asymptotic behaviour of a function occurring in the theory of primes, Arch. Mat. Astron. Fys. 22 (1930) 1-14.
[4] L. de Haan, S.I. Resnick, H. Rootzén, C.G. de Vries, Extremal behaviour of solutions to a stochastic difference equation with applications to ARCH processes, Stochastic Process. Appl. 32 (2) (1989) 213-224.
[5] L. Devroye, O. Fawzi, Simulating the Dickman distribution, Statist. Probab. Lett. 80 (2010) 242-247.
[6] K. Dickman, On the frequency of numbers containing prime factors of a certain relative magnitude, J. Indian Math. Soc. 15 (1951) 25-32.
[7] P. Embrechts, C.M. Goldie, Perpetuities and random equations, in: Asymptotic Statistics (Prague, 1993), in: Contrib. Statist., Physica, Heidelberg, 1994, pp. 75-86.
[8] J.A. Fill, M.L. Huber, Perfect simulation of Vervaat perpetuities, Electron. J. Probab. 15 (2010) 96-109.
[9] C.M. Goldie, Implicit renewal theory and tails of solutions of random equations, Ann. Appl. Probab. 1 (1) (1991) 126-166.
[10] C.M. Goldie, R. Grübel, Perpetuities with thin tails, Adv. Appl. Probab. 28 (1996) 463-480.
[11] P. Hitczenko, On tails of perpetuities, J. Appl. Probab. 47 (2010) 1191-1194.
[12] P. Hitczenko, J. Wesołowski, Perpetuities with thin tails, revisited, Ann. Appl. Probab. 19 (2009) 2080-2101. Corrected version available at http://arxiv.org/abs/0912.1694.
[13] H.-K. Hwang, T.-H. Tsai, Quickselect and the Dickman function, Combin. Probab. Comput. 11 (2002) 353-371.
[14] H. Kesten, Random difference equations and renewal theory for products of random matrices, Acta Math. 131 (1973) 207-248.
[15] M.R. Leadbetter, G. Lindgren, H. Rootzén, Extremes and related properties of random sequences and processes, in: Springer Series in Statistics, Springer-Verlag, New York, 1983.
[16] H.M. Mahmoud, R. Modarres, R.T. Smythe, Analysis of QUICKSELECT: an algorithm for order statistics, RAIRO Inform. Théor. Appl. 29 (1995) 255-276.
[17] H. Rootzén, Extreme value theory of moving average processes, Ann. Probab. 14 (1986) 612-652.
[18] H. Rootzén, Maxima and exceedances of stationary Markov chains, J. Appl. Probab. 20 (1988) 371-390.
[19] W. Vervaat, Success Epochs in Bernoulli Trials (with Applications in Number Theory), in: Mathematical Centre Tracts, vol. 42, Mathematisch Centrum, Amsterdam, 1972.
[20] W. Vervaat, On a stochastic difference equation and a representation of nonnegative infinitely divisible random variables, Adv. Appl. Probab. 11 (4) (1979) 750-783.

[^0]: E-mail address: phitczenko@math.drexel.edu.
 URL: http://www.math.drexel.edu/~phitczen.

