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Abstract

Let Q be an affine semigroup generatingZd, and fix a finitely generatedZd-graded moduleM
over the semigroup algebrak[Q] for a fieldk. We provide an algorithm to compute a minimalZd-
graded injective resolution ofM up to any desired cohomological degree. As an application, we
derive an algorithm computing the local cohomology modulesHi

I (M) supported on any monomial

(that is,Zd-graded) idealI . Since these local cohomology modules are neither finitely generated nor
finitely cogenerated, part of this task is defining a finite data structure to encode them.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Injective resolutions are fundamental homological objects in commutative algebra. For
general noetherian rings with arbitrary gradings, however, injective modules are so big,
and injective resolutions so intractable, that effective computations are never made using
them. But when the ring in question is an affine semigroup ring of dimensiond, the
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natural grading byZd is substantially better behaved:Z
d-graded injective modules can be

expressed polyhedrally and are therefore quite explicit. In this paper we provide algorithms
to computeZ

d-graded injective resolutions over affine semigroups rings. Part of this task
is finding a finite data structure to express the output.

As an application, we provide an algorithm to compute the local cohomology, supported
on an arbitrary monomial ideal, of a finitely generatedZ

d-graded module over a normal
affine semigroup ring. As far as we are aware, this is the first algorithm to compute local
cohomology for any general class of modules over any class of nonregular rings.

Our motivation was to make a systematic study of conditions on a support ideal
that cause the local cohomology of its ambient ring to have infinite Bass numbers.
In particular, when does the local cohomology contain an infinite-dimensional vector
subspace annihilated by a maximal ideal? A counterexample to Grothendieck’s conjectured
answer of ‘never’ was provided byHartshorne(1969–1970), and our motivation was to
characterize when Grothendieck’s conjecture fails. That such infinite behavior occurs only
in nonregular contexts suggested that we work over affine semigroup rings, which are
among the simplest singular rings. We have not yet implemented the algorithms in this
paper, as doing so would only be the first step to providing examples of the infinite-
dimensional socle phenomenon: it still remains to find an algorithm computing theZd-
graded socle degrees.

To makeour context precise, letQ ⊂ Z
d be an affine semigroup, that is, a finitely

generated submonoid ofZ
d. We assume thatQ is sharp, meaning thatQ has no units, and

thatQ generatesZd as a group. Consider the semigroup algebrak[Q] = ⊕
a∈Q k·{xa} over

a field k. The modules that concern us comprise the categoryM of Z
d-graded modules

H = ⊕
α∈Zd Hα for which there exists a bound independent ofα on the dimensions of

the graded piecesHα as vector spaces overk. The injective objects inM are described in
Section 2, and every finitely generatedZd-graded module lies inM. Our maintheorem
concerning injectives is the following.

Theorem 1.1. Fix a finitely generatedZd-graded module M over an affine semigroup
ring k[Q] and an integer n≥ 0. The first n stages in a minimalZd-graded injective
resolution of M can be expressed in a finite, algorithmically computable data structure.

A more precise version, along with a pointer to the algorithms that do the job, is
stated in Theorem 4.7. Thedata structure consists of a list ofmonomial matrices, as we
define inSection 2, generalizing those forQ = N

d in Miller (2000). The idea of the
algorithm inTheorem 1.1is to do all computations usingirreducible resolutions(Miller ,
2002) as faithful approximations to injective resolutions. Background onirreducible hulls
is presented inSection 2; thealgorithms for working with them constituteSection 3. The
derivation of an algorithm for injective resolutions is then completed inSection 4.

Even more seriously than is the case with injective resolutions, a substantial part of
building an algorithm to compute local cohomology is finding a finite data structure to
express the output. Indeed, unlike injectives in our categoryM, and in stark contrast with
the regular case (even without a grading (Huneke and Sharp, 1993; Lyubeznik, 1993)), the
local cohomologyH i

I (M) often hasneither a finite generating setnor a finite cogenerating
set (Hartshorne, 1969–1970; Helm and Miller, 2003). This remains true even whenM is
finitely generated andI ⊆ k[Q] is a Z

d-graded ideal—that is, generated by monomials.
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Our solution is to decomposeZd into tractable regions on which the local cohomology is
constant.

Definition 1.2. SupposeH is aZ
d-graded module over an affine semigroup ringk[Q]. A

sector partition of H is

1. a finite partitionZ
d = ·⋃S∈S Sof the latticeZ

d into sectors, each of which is required
to consist of the lattice points in a finite disjoint union of rational polyhedra defined as
intersections of half-spaces forhyperplanes parallel to facets ofQ;

2. a finite-dimensional vector spaceHS for each sectorS ∈ S, along with isomorphisms
Hα → HS for all Z

d-graded degreesα ∈ S; and

3. vector space homomorphismsHS
xT−S−→ HT whenever there existα ∈ S andβ ∈ T

satisfyingβ − α ∈ Q, such that for all choices ofα andβ, thediagram commutes:

xβ−α

Hα −−−→ Hβ

↓ ↓
xT−S

HS −−−→ HT

Write S � H to indicate the above sector partition. (The commutativity of the above
diagram implies immediately thatxS−S is the identity, and thatxR−T xT−S = xR−S.)

The finite data structure of a sector partitionS � H , including the spacesHS and
the mapsxT−S, clearly suffice to reconstructH up to isomorphism. The second half of
this paper is devoted to computing sector partitions forH when H = H i

I (M) is a local
cohomology module.

Theorem 1.3. For any finitely generatedZd-graded module M over a normal semigroup
ring k[Q] and any monomial ideal I , each local cohomology module Hi

I (M) has an
algorithmically computable sector partitionS � H i

I (M).

Section 5demonstrates how sector partitions arise for the cohomology of any complex
of injectives over a normal semigroup ring. Algorithms for producing these sector
partitions, particularly the expressions of sectors as unions of polyhedral sets of lattice
points, occupySection 6. Theproof of Theorem 1.3, by expressing local cohomology as
the cohomology of a complex of injectives (algorithmically computed byTheorem 1.1) in
the usual way, occurs inSection 7. That section also treats complexity issues. The main
thrust is that for fixed dimensiond, the running times of our algorithms are all polynomial
in the Bass numbers of the finitely generated input moduleM and the number of facets
of Q, times the usual factor arising from the complexity of Gröbner basis computation,
where it occurs. Ifd is allowed to vary, then the numbers of polyhedra comprising sectors
increase exponentially withd.

Theorem 1.3allows the computation of many features of local cohomology modules.
For example, Hilbert series simply record the vector space dimensions in each of the
finitely many sectorsS ∈ S. Our algorithms can actually calculate these dimensions
without computing the maps in part 3 ofDefinition 1.2, making iteasier to determine when
(for example)H i

I (M) is nonzero. Future algorithmic methods (currently open problems)
include the calculation of associated primes and locations of socle degrees (even if there
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are infinitely many) using a sector partition as input. In particular, because of the finiteness
of the number of polyhedra partitioning sectors, we believe that the socle degrees should
lie alongpolyhedrally describable subsets ofZ

d.

1.1. Historical context

There have been a number of recent algorithmic computations inlocal cohomology,
such as those byWalther (1999) (based on abstract methods ofLyubeznik (1993)),
Eisenbud et al.(2000), Miller (2000), Mustaţǎ (2000), andYanagawa(2002). These and
related papers fall naturallyinto a number of categories. For instance, the last three
deal with Z

d-graded modules over polynomial rings ind variables;in particular, they
compute local cohomology with support on monomial ideals. In contrast, the paper
(Eisenbud et al., 2000) works with coarser gradings—but still with monomial support,
while Walther (1999) requires no grading at all. As the gradings used become coarser, the
papers increasingly depend on Gröbner bases: the monomial ideal papers require very little
(if any) Gröbner basis computation; the coarser gradings depend heavily on commutative
Gröbner bases; and the nongraded methods rely on noncommutative Gröbner bases over
the Weyl algebra.

Regardless of the methods, all of the above papers share one fundamental aspect: the
base ring is regular (usually a polynomial ring,in the algorithmic setting). The reason for
restricting to these rings is that local cohomology over them behaves in many respects
like a finitely generated module, even though it usually fails to be finitely generated.
For example,Lyubeznik(1993) andWalther (1999) take advantage of the fact that local
cohomology modules over regular rings are finitely generated (indeed, holonomic) over
the corresponding algebra of differential operators, and that the algebra of differential
operators of a regular ring is easily presented, at least in characteristic zero.

Generally speaking, our methods lie somewhere between the monomial and coarsely
graded methods described above, relying on a mix of Gröbner bases and integer
programming. The principle underlying our computation of injective resolutions is that
one should attempt to recover entireZ

d-graded modules from theirQ-graded parts. This
idea originated for polynomial rings inMiller (1998), Mustaţǎ (2000), andMiller (2000),
was transferred in a restricted form to semigroup rings inYanagawa(2001), and was
developed generally for semigroup-graded noetherian rings inHelm and Miller(2003). In
the present context, the recovery of a module from itsQ-graded part suggested that we
compute injective resolutions via the irreducible resolutions ofMiller (2002).

Origins of the notion of sector partition can be seen in the Hilbert series formula
for the local cohomology of canonical modules of normal semigroup rings (Terai, 1999;
Yanagawa, 2002), where the cellular homology was constant on large polyhedral regions
of Z

d. The accompanying notion ofstraight module(Yanagawa, 2001; Helm and Miller,
2003) abstracted this constancy; in fact, ourTheorem 5.2is really a theorem about straight
modules as inHelm and Miller (2003, Definition 5.1). In any case, once the injective
resolution has been computed using irreducible resolutions, the sector partition for local
cohomology requires the entireZd-graded structure of the injective resolution, and not just
its Q-graded part.
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1.2. Conventions and notation

In addition to the notation introduced thus far, we close this Introduction with a note on
conventions. The semigroupQ is required to be saturated inSections 5–7 because we do
notknow how to compute sector partitions in the unsaturated context (Remark 6.7). Other
than the temporary saturation requirement inSection 3.2, the semigroup can be unsaturated
in Sections 2–4 (reminders of these conventions appear in each section).

The symbolxα ∈ k[Zd] denotes a Laurent monomial in the localizationk[Zd] of the
semigroup ringk[Q]. Thek-vector space spanned by{xα | α ∈ T} for a subsetT ⊆ Z

d

will be denoted byk{T}. Thek-subalgebra ofk[Zd] will be denoted byk[T].
The faces of Q are those subsets minimizing linear functionals onQ. Theedges and

facets are the faces of dimension 1 and codimension 1. To every faceF corresponds a
prime idealPF and a quotient affine semigroup ringk[F] = k{F}.

Al l modules in this paper areZd-graded unless otherwise stated. In particular, injective
modules (defined inSection 5) areZ

d-graded injective, which means that they are usually
not injective in the category of allk[Q]-modules. Two subsetsS, T ⊆ Z

d have the
difference setT − S = {β − α | α ∈ Sandβ ∈ T} ⊆ Z

d. This allows us to write
the localization ofM along a faceF as the moduleM[ZF] := M ⊗k[Q] k[Q − F].
HomomorphismsN → N′ of modules are assumed to haveZ

d-graded degree0, so that
Nα → N′

α for all α ∈ Z
d.

We assume in this paper that standard algorithmic calculations with finitely generated
modules overk[Q] are available. In particular, we assume that the homology of any
three-term (nonexact) sequence of finitely generated modules can be calculated, as can
the submodule annihilated by a prime ideal ofk[Q]. The Z

d-grading only makes these
computations easier, and the results of all such algorithms are stillZ

d-graded.

2. Effective irreducible hulls

In this section the affine semigroupQ need not be saturated. In theZd-graded
categoryM from the Introduction, the injective modules have simple descriptions.

Definition 2.1. Let T ⊂ Z
d be closed under addition of elements of−Q, by which we

meanT − Q ⊂ T . Thenk{T} can be given the structure of ak[Q]-module by setting

xaxβ =
{

xa+β if a + β ∈ T
0 otherwise.

An indecomposable injective is any module of the formk{α + F − Q}, for some faceF
andα ∈ Z

d.

All such objects are injective inM, and every injective object ofM is isomorphic to
a finite direct sum of indecomposable injectives (Miller and Sturmfels, 2004, Chapter 11).
We shall work exclusively with objects inM. Thus the term “injective module” in the rest
of this paper will refer to modules of the above type.

Injectives are infinitely generated. For computations, we therefore work with certain
finitely generated approximations. A moduleN is called Q-graded if N equals itsQ-
graded part NQ := ⊕

a∈Q Na. A submoduleN of a moduleN′ is anessential submodule
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if N intersects every nonzero submodule ofN′ nontrivially; the inclusionN ↪→ N′ is also
called anessential extension. In particular, N must be nonzero.

Definition 2.2. An irreducible sum is a module that can be expressed as theQ-graded
part JQ of some injective moduleJ. An irreducible hull of a Q-graded moduleN is an
irreducible sumW along with an essential extensionN ↪→ W.

The existence of unique minimal injective resolutions (Miller and Sturmfels, 2004,
Corollary 11.35) includes the fact that every finitely generated module has an injective
hull (that is, an inclusion into an injective that is an essential extension) that is unique up
to isomorphism. TakingQ-graded parts yields immediately the following lemma.

Lemma 2.3. Every Q-graded module has an irreducible hull. It is unique up to
isomorphism, and isomorphic to the Q-graded part of an injective hull of M.

We call the modules ofDefinition 2.2 irreducible sums because of the next lemma,
which is Miller (2002, Lemma 2.2). An idealW is called irreducible if W cannot be
expressed as an intersection of two ideals properly containing it.

Lemma 2.4. A monomial ideal W is irreducible if and only if the Q-graded part of some
indecomposable injective module J satisfies JQ = W.

ModulesM are usually stored as data structureskeeping track of their generators and
relations—that is, as quotients of free modules. In the context of injective resolutions and
local cohomology, storingM as a submodule of an irreducible sum is also useful. Our next
definition specifies a data structure that precisely describes an irreducible sumW.

Definition 2.5. Effective data for an irreducible sumW = ⊕r
j =1 k{α j +Fj −Q}Q consist

of:

1. an orderedr -tupleF1, . . . , Fr of faces ofQ; and
2. an orderedr -tupleα1, . . . , αr , whereα j ∈ Z

d/ZFj satisfiesQ ∩ (α j + ZFj ) �= ∅.

An effective vector of degreea ∈ Q is anr -tuple (λ1, . . . , λr ) ∈ kr suchthat λ j = 0
whenevera �∈ α j + Fj − Q. Concatenation of the respective face and degree data from
two effective data yields theirdirect sum.

Note that the facesFj need not be distinct. The conditionα ∈ Z
d/ZF takes care

of the fact that two degreesα and α′ off by an element ofZF give the same module
k{α + F − Q} = k{α′ + F − Q}. Usually the α’s are recorded as elements ofZ

d, sincethe
quotient modZF can be deduced from the face data. The conditionQ ∩ (α + ZF) �=
∅ ensures thatk{α + F − Q} has nonzeroQ-graded part. The condition on theλ’s
simply requires each nonzero component to lie in a nonzero degree of the corresponding
irreducible summand.

Definition 2.6. An effective irreducible hull of a Q-graded moduleM consists of
effective data forW plus a list of finitely many effective vectors inW generating a
submodule isomorphic toM.
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An irreducible hull M ↪→ W is not quite dual to an expressionF → M as a quotient
of a free module. The generators ofF have as their dual notion the face dataF1, . . . , Fr ,
which as abstract objects associated toM are known ascogenerators. Just as the degrees
of the generators ofF need to specified, so must the degree data for the cogenerators.
However, the notion of effective vector forM as a submodule ofW is dual not to the
notion of relation forM insideF , but ratherto the notion of cogenerator forM. Relations
for M are, in actuality, dual to the notion ofcogenerators for thecokernel of M ↪→ W,
which correspond to indecomposable summands in cohomological degree 1 of the minimal
injective resolution ofM; we dub these thecorrelations of M. Thus a presentation ofM
by generators and relations is dual to a presentation ofM by cogenerators and correlations,
whereas an irreducible hull presentsM by generators and cogenerators.

3. Computing with irreducible hulls

Given aQ-graded moduleM in the usual way, via generators and relations, this section
computes an irreducible hullM ↪→ W as well as the cokernel of this inclusion.

Calculating an effective irreducible hull ofM is, by definition, equivalent to calculating
an irreducible decomposition ofM. Thinking of the caseM = k[Q]/I for a monomial
ideal I , this procedure is polyhedral in nature: it writes the set of monomials outside ofI as
aunion of convex polyhedral regions whose facets are parallel to those ofQ. The algorithm
for computing an effective irreducible hullM ↪→ W, culminating in Proposition 3.7, does
not requireQ to be saturated.

Computing the cokernel, however, is strictly easier for saturated semigroups. The main
point is the computation of generators for irreducible ideals. For saturated semigroups
this is Proposition 3.14. The harder unsaturated case, inProposition 3.16, relies on the
computation of irreducible ideals over its saturation. To highlight the simplification in the
saturated case, we state the main result ofSections 3.2and3.3here.

Proposition 3.1. Generators and relations for M and W/M are algorithmically
computable from an effective irreducible hull M↪→ W over any affine semigroup
ring k[Q].
Proof. Generators forW are already given, and relations forW constitute a direct sum
of irreducible ideals calculated as inProposition 3.14for saturated semigroups, and
Proposition 3.16in general. SinceM is specified by its generators as a submodule ofW, the
current proposition reduces to calculating submodules and quotients of modules presented
by generators and relations.�

3.1. Effective irreducible hulls from generators and relations

This subsection does not require the affine semigroupQ to be saturated. The next two
results makeAlgorithm 3.6possible to state and easier to read. The notation〈y1, . . . , yj 〉
means ‘thek[Q]-submodule generated by the elementsy1, . . . , yj in their ambient
module’, and(0 :M PF ) is the submodule ofM annihilated byPF .

Lemma 3.2. Suppose F has minimal dimension among faces of Q such that PF is
associated to M. Then the natural map(0 :M PF ) to its localization(0 :M PF )[ZF]
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along F is an inclusion. Furthermore, we can find algorithmically a set B⊂ (0 :M PF ) of
homogeneouselements that constitute ak[ZF]-basisfor (0 :M PF )[ZF].
Proof. The k[Q]-module (0 :M PF ) is naturally a torsion-freek[F]-module, by
minimality of dim F . Therefore (0 :M PF ) includes into its localization alongF , which
must be a freek[ZF]-module. Now use the following algorithm.�
Algorithm 3.3 (For Lemma3.2). Choose any element of(0 :M PF ) as the first basis
vector y1 ∈ B. Having chosenyj , let yj +1 be any element of(0 :M PF ) whose image
in (0 :M PF )/〈y1, . . . , yj 〉 generates a submodule of Krull dimension dimF (equivalently,
the image ofyj +1 has annihilatorPF ). The algorithm terminates when the Krull dimension
of the quotient(0 :M PF )/〈y1, . . . , yj 〉 is strictly less than dimF .

Lemma 3.4. In the situation ofLemma3.2, the scalar factor on the (monomial) coefficient
of y ∈ B in theuniquek[ZF]-linear combination of elements in B equaling any fixed
element z∈ (0 :M PF ) can be computed algorithmically.

We present the proof as an algorithm.

Algorithm 3.5 (For Lemma3.4). Let B(z) = {y ∈ B | deg(y) ≡ deg(z) (modZF)}. The
coefficient ofy in z is zero if y �∈ B(z). Otherwise, find elementsa and{ay | y ∈ B(z)}
in the faceF suchthat a + deg(z) = ay + deg(y) for all y ∈ B(z). By construction,
{xay · y | y ∈ B(z)} is ak-basis for the degreea + deg(z) piece of(0 :M PF ), and standard
methods allow us to calculate the syzygy withxa · z.

Write ΓF N := ΓPF N = (0 :N P∞
F ) for the set of elements inN annihilated by all high

powers ofPF .

Algorithm 3.6.
INPUT Q-graded module M given by a generating set G ⊂ M and relations

OUTPUT effective irreducible hull W of M with effective vector set Λ
indexed by G

INITIALIZE N := M
W := ({}, {}), the empty effective datum for the irreducible sum 0
λg := () for all g ∈ G; here () is the effective vector of length zero in

W
i := 1

DEFINE (F1, . . . , Fs) := an ordering of the faces of Q with dim(Fi ) ≤ dim(Fi+1)

WHILE i ≤ s DO

DEFINE F := Fi

B := k[ZF]-basis for (0 :N PF )[ZF], as in Algorithm 3.3
WHILE y ∈ B and g ∈ G DO

IF (0 :〈g〉 PF ) �= 0 in some degree ayg ≡ deg(y) (modZF)

THEN λyg := scalar coefficient of y on xayg−deg(g) · g, as
in Algorithm 3.5

ELSE λyg := 0
END IF-THEN-ELSE

END WHILE-DO
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REDEFINE λg := concatenation of the two vectors λg and (λyg)y∈B, for
g ∈ G

W := W ⊕ (#B copies of F, Z
d-degrees of vectors in B)

N := M/ΓF M
i := i + 1

END WHILE-DO

OUTPUT W along with Λ = {λg}g∈G, where λg is in degree deg(g)

Proposition 3.7. Algorithm3.6 outputs an effective irreducible hull of M, using
generators and relations for M as input.

Proof. We mustshow that thehomomorphismM → W determined byG andΛ is well-
defined and injective. More precisely: monomial combinationsz of the generators ofM are
zero if and only if the corresponding monomial combinationszλ of theλg are zero inW;
here,λg represents not a data structure but an element ofW.

The combinationz is nonzero inM if and only if the submodule〈z〉 ⊆ M generated
by z has an associated prime. The associated prime isF := Fi if and only if the image
of 〈z〉 in the successive quotientN = M/ΓF i−1 M intersects(0 :N PF ) nontrivially
(this in particular implies that(0 :N PF ) is nonzero, soPF is associated toM). This
nontriviality of 〈z〉∩(0 :N PF ) is equivalent to having at least one of the terms monomial·g
appearing inz be nonzero in the same(0 :N PF ), becauseB is a basis for(0 :N PF )[ZF].
Finally, monomial·g is nonzero precisely when the corresponding element monomial·λg

has nonzero coefficient in the appropriate summand ofW. �

Remark 3.8. Some alterations toAlgorithm 3.6may improve its running time.

1. It is possible to avoid taking the successive quotientsN/ΓF M at theREDEFINE step.
These quotients are designed to makeLemmas 3.2and3.4apply, as well as to makeN
successively simpler. However, the cost of taking thesequotients may not be worth
it, since the final sentence ofLemma 3.2holds even if F does not have minimal
dimension (so(0 :M PF ) does not include into itslocalization alongF). In fact, both of
Algorithms 3.3and3.5still work in this more general setting.

2. Of the faces on the list(F1, . . . , Fs), only those associated toM need to be tested. If
desired, these faces can be detected using homological methods.

3. Instead of computing and working with(0 :M PF ) for each face separately, one could
work with the modules(0 :M Ic) for eachc, whereIc is the intersection of all primes
PF for facesF of dimensionc.

3.2. Generators and relations from irreducible hulls: Saturated case

In this subsection we assume thatQ is saturated. Our goal is to compute relations on the
generators forM that come as part of an effective irreducible hullM ↪→ W. As we shall
see in theproof of Proposition 3.1, the computation essentially reduces to the case where
M = W is anindecomposableirreducible sumW, so we are to determine the kernel of the
surjectionk[Q] → W. More explicitly, given a faceF and a degreea ∈ Q, we must find
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generators of

W := k{Q \ (a + F − Q)} (3.1)

as an ideal ink[Q].
SinceQ is saturated, there is a unique minimal set of oriented hyperplanes insideZ

d

whose closed positive half-spaces inZ
d have intersection equal toQ. The map sending

H �→ H ∩Q gives a bijection from these hyperplanes to the facets ofQ. Denote byH+ the
closed positive half-space determined by an oriented hyperplaneH , andby H ◦+ theopen
positive half-space. ThusH ◦+ is the complement of−H+ but can also be characterized as
the lattice distance 1 translate ofH+ in the positive direction.

Lemma 3.9. Given any face F of Q and any element a∈ Q,

Q \ (a + F − Q) =
⋃

H⊇F

(a + H ◦+) ∩ Q.

Proof. We havea + F − Q = ⋂
H⊇F a − H+ becauseQ is saturated (recallF − Q =

−(Q + ZF)). ThusZ
d \ (a + F − Q) = ⋃

H⊇F a + H ◦+. Now intersect withQ. �

Lemma 3.9reduces the computation of generators forW as in (3.1) to thecase whereF
is itself a facet, at least whenQ is saturated. The next algorithm and two lemmas cover this
case by producing some rational polytopes whose integer points do the job. For notation,
R+F denotes the real cone generated byF in R

d = R ⊗ Z
d, andRH denotes the real

span of a hyperplaneH . Also, by a Q-set we mean a subset ofZd closed under addition
by elements ofQ. A setG of vectors inZ

d generates a Q-setT if T = G + Q.

Lemma 3.10. Let GQ be the zonotope that is the Minkowski sum of all primitive integer
vectors along rays of Q. Then, for allα ∈ R

d, the lattice points inα + GQ generate
(α + R+Q) ∩ Z

d as a Q-set.

Proof. Let β bea lattice point inα + R+Q. If thereis no primitive integer vectorρ along
a ray ofQ suchthatβ − ρ still lies in α + R+Q, thenβ ∈ α + GQ. �

Algorithm 3.11.
INPUT Q := a saturated semigroup

H := one of the hyperplanes bounding Q
a ∈ Q

OUTPUT finite set B ⊂ Q such that the ideal 〈xb | b ∈ B〉 equals k{(a+ H ◦+)∩ Q}
DEFINE G := the polytope GQ in Lemma 3.10

F := H ∩ Q, a facet of Q
∆ := the set of faces of Q intersecting F only at 0 ∈ Q

INITIALIZE B := {}, the empty subset of Q
WHILE D ∈ ∆ DO

DEFINE BD := lattice points in Minkowski sum
(
(a + RH ) ∩ R+D

) + G
REDEFINE B := B ∪ BD

NEXT D
END WHILE-DO

OUTPUT B
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Lemma 3.12. Algorithm3.11computes generators for the idealk{(a + H ◦+) ∩ Q}.
Proof. Supposeb ∈ (a + H ◦+) ∩ Q. The intersection(b + RH ) ∩ R+Q is apolyhedron
whose bounded faces are precisely the polytopes(b + RH ) ∩ R+D for D ∈ ∆, and
whose recession cone isR+F . Therefore b ∈ b′ + R+F for some real vectorb′ ∈
(b + RH ) ∩ R+D and some faceD ∈ ∆. Moreover,b′ lies in b′′ + R+D for some real
vectorb′′ ∈ (a + RH ) ∩ R+D. Consequently,b lies inb′′ + R+(D + F), and therefore in
b′′ + R+Q. Now xb lies in thek[Q]-module generated byk{BD}, by definition of G. �
Remark 3.13. Some alterations toAlgorithm 3.11may improve its running time.

1. Instead of computing just one polytopeG = GQ and Minkowski summing it to define
everyBD, we could defineBD with GD+F in place ofG, for each faceD ∈ ∆. This
might reduce the number of lattice points inB dramatically, but would require more
computations as inLemma 3.10.

2. Restricting to the maximal elements in∆ will speed things up.

Let us summarize the above algorithm and three lemmas. (SeeSection 7for issues
concerning the output of the algorithm in thefollowing proposition, and post-processing
for the purpose of reducing its complexity.)

Proposition 3.14. Generators of the irreducible ideal W= ker(k[Q] → W) are
algorithmically computable using as input an indecomposable effective irreducible sumW
over a normal semigroup ringk[Q].
Proof. Apply Algorithm 3.11to each of the sets(a + H ◦+) ∩ Q in Lemma 3.9. �

3.3. Generators and relations from irreducible hulls: Unsaturated case

Now we return to the general case, whereQ need not be saturated, and denote byQsat

the saturation ofQ. Thebasic idea for computing generators of irreducible ideals ink[Q] is
to intersect (ask[Q]-modules) the submodulek[Q] ⊂ k[Qsat] with the idealW ⊆ k[Qsat]
output in the saturated case,Proposition 3.14. Then it remains to find the appropriate
F-primary component ofW as ak[Q]-module, whereF is the unique face of dimension
dim(W) associated toW (as ak[Q]-module).

Every module inAlgorithm 3.15is to be considered as ak[Q]-module—even those
generated ask[Qsat]-modules. ThusF is always a face ofQ, and we considerF − Q as
opposed toF−Qsat. Note,however, thatk{F−Qsat} does equal the corresponding injective
overk[Qsat], even thoughF is a face ofQ; subtractingQsat automatically saturatesF .

Algorithm 3.15.

INPUT Q := a semigroup, not necessarily saturated
F := a face of Q
a ∈ Q

OUTPUT B ⊂ Q such that 〈xb | b ∈ B〉 equals the ideal k{Q \ (a + F − Q)} in
k[Q]

DEFINE V := k{Qsat \ (a + F − Qsat)}, an indecomposable irreducible
over k[Qsat]



384 D. Helm, E. Miller / Journal of Symbolic Computation 39 (2005) 373–395

V := the kernel of k[Qsat] → V output by Proposition 3.14
W := V ∩ k[Q], the intersection taken inside k[Qsat]
I := ⋂ {PD | D is a facet of F}, an ideal in k[Q]

INITIALIZE B := degrees of the elements generating W
W := k[Q]/W

WHILE (0 :W PF ) has a generator in some degree �≡ a (modZF) DO

DEFINE G := generators for (0 :W PF ) that lie in degrees �≡ a (modZF)

REDEFINE B := B ∪ degrees of the elements in G
W := W/G

DEFINE G′ := generators for ΓI W
REDEFINE B := B ∪ degrees of the elements in G′

W := W/G′
END WHILE-DO

OUTPUT B

Proposition 3.16. Algorithm3.15outputs generating degrees fork{Q \ (a + F − Q)}.
Proof. The moduleW gets initialized as a quotient ofk[Qsat] with dimension dim(F) as a
k[Q]-module. This much holds by the saturated versionProposition 3.14applied toV , and
the preservation of dimension (Eisenbud, 1995, Proposition 9.2) for the module-finite ring
extension k[Q] ⊆ k[Qsat] applied toV . Onepart of the output is clear: the set〈xb | b ∈ B〉
generates the kernel of the mapk[Q] → W at every stage in the algorithm. The question
is whetherW is the claimed indecomposable irreducible sum.

In the firstREDEFINE step, theannihilator ofxa ∈ W remainsPF . Indeed, any element
killed by PF that generates a submodule containing a nonzero element in degreea must
itself have degree congruent toa (modZF). The secondREDEFINE step only kills elements
with annihilators strictly larger than that ofxa; such elements cannot generate submodules
containingxa. Therefore,W has only one associated primePF after each loop ofWHILE-
DO, by dimension considerations.

When the loop terminates, the localization(0 :W PF )[ZF] alongF is indecomposable,
being isomorphic tok{a + ZF}. It follows that the kernel of the surjectionk[Q] → W is
an irreducible ideal (Vasconcelos, 1998, Proposition 3.1.7). We are done byLemma 2.4,
becausek{a + F − Q}Q is the only indecomposable irreducible sum for which the
annihilator ofxa is PF . �

Remark 3.17. Some alterations toAlgorithm 3.15may improve itsefficiency.

1. The stepW := W/ΓI W need not occur until the very last step beforeOUTPUT. Its
current placement is designed to speed the computation by simplifyingW in each loop,
but the costof taking the colon may not make up for it. Instead, the end of the algorithm
can be replaced by:

WHILE (0 :W PF ) has rank strictly larger than 1 over k[F] DO

DEFINE G := generators for (0 :W PF ) lying in degrees �≡
a (modZF)
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REDEFINE B := B ∪ degrees of the elements in G
W := W/G

END WHILE-DO

REDEFINE B := B ∪ degrees of the generators of ΓI W
OUTPUT B

2. As in Remark 3.8, it is not necessary to compute all of(0 :W PF ) in the WHILE-DO

loop. It suffices instead to letG be a basis for(0 :W PF )[ZF]. This remark also holds
for the reworkedWHILE-DO loop in the previous item.

3. The setB can become rather redundant. Since the machine will have to keep a
presentation of W in memory, the algorithm could simply spit out the relations defining
W as ak[Q]-module at the very end, without keeping track ofB at all.

4. Computing injective resolutions

In this section the semigroupQ is not required to be saturated. Our goal is the main
result (Theorem 4.7) in the first half of the paper: an algorithm to compute injective
resolutions of finitely generated modules overk[Q], in the Z

d-graded setting. That is,
given generators and relations for a finitely generatedZ

d-graded moduleM, we will
compute an exact sequence 0→ M → J0 → J1 → · · · in which Ji is a Z

d-graded
injective module for eachi . Of course, we shall only say how to calculate up to some
specified cohomological degree, as injective resolutions usually do not terminate. This will
not pose a problem for our subsequent computation inSection 7of local cohomology,
which vanishes past cohomological degreed + 1 anyway.

The upshot is to reduce the computation of injective resolutions to finding irreducible
hulls of finitely generatedQ-graded modules and computing their cokernels, which we
have already done inSection 3.

The data structures we employ forZ
d-graded injective resolutions are the matrices we

introduce in the next definition.

Definition 4.1. A monomial matrix is a matrix of constantsλqp along with

1. a vectorαq ∈ Z
d and a faceFq ∈ Q for each row, and

2. a vectorαp ∈ Z
d and a faceFp ∈ Q for each column

suchthatλqp = 0 unlessFp ⊆ Fq andαp ∈ αq + Fq − Q.

These monomial matrices generalize those inMiller (2000), which were forQ = N
d.

To any monomial matrix we can associate a mapJ �→ J ′ of injective modules in
the following manner. Each row and column label gives the data of an indecomposable
injective; we think of the row labels as giving summands ofJ and the column labels
as giving summands ofJ ′. To give amap from J to J ′ is thus the same as giving a
matrix of maps from the row indecomposables to the column indecomposables. Such
a mapk{αq + Fq − Q} �→ k{αp + Fp − Q} is necessarily zero unlessFp ⊆ Fq

and αp ∈ αq + Fq − Q. In the latter case it is determined by a single scalarλqp.
Hence
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...
...

Fq αq
...

...



· · · Fp · · ·
· · · αp · · ·

λqp




is a monomial matrix representing a map⊕
q

k{αq + Fq − Q} �→
⊕

p

k{αp + Fp − Q}.

The componentk{αq + Fq − Q} �→ k{αp + Fp − Q} of this homomorphism takesxα to
λqpxα for all α ∈ αp + Fp − Q, and iszero elsewhere.

Note that in degreeα, the mapJα �→ J ′
α given by a monomial matrix is obtained by

deleting the rows and columns labeled byαp, Fp suchthatα does not lie inαp + Fp − Q.
(This corresponds to ignoring those summands ofJ and J ′ not supported atα.) Ignoring
the labels on what remains gives us a matrix with entries ink, whichdefines thek-vector
space mapJα �→ J ′

α .
Two monomial matrices represent the same map of injectives (with given

decompositions into direct sums of indecomposable injectives) if and only if (i) their scalar
entries are equal, (ii) the corresponding facesFr are equal, wherer = p, q, and (iii) the
corresponding vectorsαr are congruent moduloZFr .

Rather than compute directly with cumbersome, infinitely generated injectives, it is
more convenient to approximate injective resolutions using irreducible sums.

Definition 4.2. An irreducible resolution of a Q-graded moduleM is an exact sequence
0 → M → W0 → W1 → · · · in which eachW j is an irreducible sum.

Irreducible resolutions are approximations to injective resolutions; indeed, theQ-
graded part of any injective resolution is an irreducible resolution (Miller , 2002,
Theorem 2.4). In particular, monomial matrices just as well represent homomorphisms of
irreducible sums, as long as the degree labelsαq andαp all can be chosen to lie inQ. The
(apparent) advantage to irreducible resolutions over injective resolutions is their finiteness.

Corollary 4.3. For any finitely generated Q-gradedk[Q]-module M,Propositions3.1and
3.7 inductively compute a minimal irreducible resolutionW. of M algorithmically.

Proof. Minimal irreducible resolutions have finite length (that is, they vanish in
all sufficiently high cohomological degrees) byMiller (2002, Theorem 2.4). The
computability therefore follows fromPropositions 3.1and3.7by induction on the highest
cohomological degree required.�

The next result demonstrates the precise manner in which irreducible resolutions
approximate injective resolutions for computational purposes.

Proposition 4.4. Let M be a finitely generated module with minimal injective resolution J.

and minimal irreducible resolutionW.. Suppose that every indecomposable summand in
the first n cohomological degrees of J. has nonzero Q-graded part. Then M is Q-graded,
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and the data contained in the first n stages ofW. constitute a finite data structure for the
first n cohomological degrees of J..

Proof. Every map inJ. can be expressed using the finite data of a monomial matrix, and
this data can be read immediately off the maps inW.. �

If we can algorithmically determine aZd-graded shift ofM so that the hypotheses of
Proposition 4.4are satisfied, then we can compute theminimal injective resolution ofM up
to cohomological degreen. This task requires a lemma, in whichm denotes the maximal
ideal P{0} generated by nonunit monomials ink[Q].
Lemma 4.5. Let J. be a minimal injective resolution of a finitely generated module M,
and F a face of Q. If every indecomposable summand ofΓmJ j +d−dim(F) has nonzero Q-
graded part, then every indecomposable summand of Jj isomorphic to aZ

d-graded shift
of k{F − Q} has nonzero Q-graded part.

Proof. Helm and Miller(2003, Proposition 3.5), in the special case of an affine semigroup
ring. �

Every indecomposable summand ofΓmJ j is a shift k{α − Q} of k{−Q}. Such an
indecomposable injective has nonzeroQ-graded part if and only ifα ∈ Q. Our final lemma
in this section describes the (standard) way to calculate the shiftsα appearing inΓmJ j . The
numberµ j ,α(M) of shifts k{α − Q} appearing as summands in cohomological degreej of
the minimal injective resolution ofM is called thej th Bass number of M in degreeα.

Lemma 4.6. LetF. be a free resolution of the residue fieldk. The Bassnumberµ j ,α(M)

is effectively computable as thek-vector space dimension of Hj (Hom(F., M)α).

Proof. This expression of Bass numbers as dimensions (overk) of Ext modules is standard;
see Bruns and Herzog(1993, Chapter 3). The computability follows because we can
calculate free resolutions, homomorphisms, and homology overk[Q]. �

Now we come toour central result. For notation,M(−a) denotes theZd-graded shift
of M up bya, so thatM(−a)b = Mb−a.

Theorem 4.7. Fix a finitely generatedk[Q]-module M and an integer i . There is an
algorithmically computable a∈ Q for whichPropositions3.1and3.7 inductively compute
the minimal injective resolution of M(−a) through cohomological degree i+ 1.

Proof. After usingLemma 4.6to compute the Bass numbers ofM up to cohomological
degreei + 1 + dim(M), choosea so that the corresponding Bass numbers ofM(−a)

haveZ
d-graded degrees lying inQ. At this point, M(−a) satisfies the hypotheses of

Proposition 4.4with n = i + 1, byLemma 4.5. Now apply Corollary 4.3. �

5. Sector partitions from injectives

We turn now to sector partitions, for which we assume henceforth that the affine
semigroup Q is saturated. As a prerequisite to producing sector partitions of local
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cohomology modules, we demonstrate in this section that injective modules admit sector
partitions, as does the homology of any complex of injective modules.

Proposition 5.1. Suppose J = ⊕r
i=1 Ji is an injective module decomposed into

summands Ji = k{αi + Fi − Q}. For eachsubset A⊆ {1, . . . , r } define SA to be the
set

SA = {α ∈ Z
d | (Ji )α ∼= k for i ∈ A}

of all degrees inZd suchthat the summands of J nonzero in that degree are precisely those
indexed by A. The sets SA canonically determine a sector partitionS(J) � J .

Proof. For eachα ∈ Z
d, either (Ji )α = {0} or (Ji )α = k · xα . ThereforeS(J) is indeed

a partition of Zd. Now we mustshow thatSA is a finiteunion of polyhedra as in part 1 of
Definition 1.2. The setα + F − Q of degrees is the set of lattice points in a polyhedron of
the desired form because the half-spaces whose intersection isα + F − Q are bounded by
hyperplanes parallel to facets ofQ, by definition. These hyperplanes divideZ

d into finitely
many disjoint regions (placethe lattice points lying on each hyperplane in the region on the
positive side of that hyperplane), each of which consists of the lattice points in a polyhedron
of the desired form. Thus the complementZ

d \ (α + F − Q) is the required kind of finite
union. We conclude thatSA is a finite union of regions, each of which is an intersection of
r polyhedral regions—one from each of the summandsJi .

For each index setA suchthat SA is nonempty, defineJSA ⊆ kr to be the subspace
spanned by the basis vectorsei suchthat i ∈ A. Then for each degreeα in SA, the map
Jα → JSA required by part 2 ofDefinition 1.2can be taken to equal the zero map on(Ji )α
for i not in A, and the map sendingxα to ei on (Ji )α for i in A.

To define the mapsxSB−SA for index setsA and B suchthat SB − SA is nonempty, as
in part 3 ofDefinition 1.2, it suffices to define the image ofei for eachi in A. We take
xSB−SA(ei ) = ei if i is in B, andxSB−SA(ei ) = 0 otherwise. Commutativity of the required
diagram follows from the definition of the module structure onk{αi +Fi −Q}. Specifically,
for α ∈ SA andβ ∈ SB with β − α ∈ Q, multiplication by xβ−α takesxα to xβ in Ji for
i ∈ B, and takesxα to zero inJi for i outsideB. �

The sector partition inProposition 5.1descends to the cohomologyH of any complex
of injectives, via monomial matrices. The forthcoming sector partition ofH is really
determined canonicallyby J. (without its direct sum decomposition), even though the
way we present things here makes it look like bases must be chosen. We chose this route
because bases are good for computation, while uniqueness is immaterial.

Theorem 5.2. If H is a module that can be expressed as the (middle) homology of a
complex J. : J ′ → J → J ′′ in which all three modules are injective, or all three modules
are flat, then there is a sector partitionS(J.

) � H determined by J..

Proof. Choose direct sum decompositions to write

J ′ =
r ′⊕

i=1

J ′
i , J =

r⊕
i=1

Ji , and J ′′=
r ′′⊕

i=1

J ′′
i .
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Let Φ andΨ be the monomial matrices representing the mapsJ ′ �→ J and J �→ J ′′,
respectively. The sectors in the sector partitionS(J ′ ⊕ J ⊕ J ′′) � J ′ ⊕ J ⊕ J ′′ are indexed
by triples (A′, A, A′′) of subsets of{1, . . . , r ′}, {1, . . . , r }, {1, . . . , r ′′}, respectively,
and automatically satisfy thepolyhedrality condition in part 1 ofDefinition 1.2 by
Proposition 5.1. We takeS(J.

) to partitionZ
d into these sectors.

For each triple(A′, A, A′′) we havemapsΦA
A′ : J ′

SA′ → JSA andΨ A′′
A : JSA → J ′′

SA′′
whose monomial matrices are defined by deleting: rowi ′ of Φ for i ′ not in A′; column i
of Φ and rowi of Ψ for i not in A; and columni ′′ of Ψ for i ′′ not in A′′. Let

HSA′,A,A′′ = ker(Ψ A′′
A )/im(ΦA

A′ ). (5.1)

For anyα in SA′ ,A,A′′ , we have a commutative diagram

J ′
α −→ Jα −→ J ′′

α

↓ ↓ ↓
J ′

SA′
ΦA

A′−→ JSA

Ψ A′′
A−→ J ′′

SA′′

(5.2)

that induces the required isomorphismHα
∼= HSA′,A,A′′ . It is routine to check that the maps

HSA′,A,A′′ → HSB′,B,B′′ induced from the corresponding maps onJ ′
A′ , JA, andJ ′′

A′′ commute
with this isomorphism. �

Once we haveTheorem 5.2, theonly step remaining to proveTheorem 1.3is to exhibit
H i

I (M) as the homology of a complex of injectives.

Remark 5.3. The results in this section hold just as well forflat objects ofM, whichare
Matlis dual to injective objects and hence isomorphic to finite direct sums of modules of
the formk{α + F + Q} for someα in Z

d and some faceF of Q (Miller and Sturmfels,
2004, Chapter 11). For the proofs, simply apply Matlis duality to the results for injectives.

6. Computing sector partitions

Again lettingQ be a saturated affine semigroup, the next task is actually computing the
finitely many polyhedra whose lattice points comprise the sectors in the sector partition
S(J) � J of an injective module. That is, we need to makeProposition 5.1and its proof
into an algorithm.

Since Q is saturated, there are unique primitive integer linear functionalsτ1, . . . , τn

taking Z
d → Z, one for each facet ofQ, such that Q = ⋂n

i=1{τi ≥ 0} is the
set of lattice points in the intersection of their positive half-spaces. The degrees on
which indecomposable injectives are supported can be expressed in terms of these linear
functionals, via the following identity:

α + F − Q = {β ∈ Z
d | τi (β) ≤ τi (α) wheneverτi (F) = 0}. (6.1)

In other words,F −Q is the intersection of thenegativehalf-spaces for those functionalsτi

vanishing onF , andα + F − Q is simply a translate. By convention, we use the notation
τi (β) ≤ ∞ to mean that there is no restriction on the value ofτi (β). This allows a notation
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τF (α) ∈ (Z ∪ ∞)n for the vector whosei th coordinate satisfies

τF (α)i =
{
τi (α) if τi (F) = 0
∞ otherwise.

The point is that a vectorβ ∈ Z
d lies inα + F − Q if andonly if τ (β) ≤ τF (α), where

τ (β) = (
τ1(β), . . . , τn(β)

)
and the ‘≤’ symbol denotes componentwise comparison. We shall use the corresponding
definitions ofτF (α) andτ (β) for vectorsα, β ∈ R

d = R ⊗ Z
d, soτF (α) ∈ (R ∪ ∞)n.

For the restof this section, let

J =
r⊕

j =1

J j , with J j = k{α j + Fj − Q}, (6.2)

be an injective module, and define

τ j := τFj (α j ) for j = 1, . . . , r.

Thus fori = 1, . . . , n the vectorτ j hasi th coordinateτ j
i = τFj (α j )i , whichequals either

τi (α j ) or ∞, depending on whetherτi vanishes onFj or not. Even without calculating the
setS(J) algorithmically, the vectorsτ j specify the map fromZ

d to S(J), by definition.
We record a precise version of this statement in the next lemma.

Lemma 6.1. A degreeα ∈ Z
d lies in SA if and only if A= {

j ∈ {1, . . . , r } | τ (α) ≤ τ j
}
.

It remains to ascertain which setsSA of lattice points are nonempty, and to determine the
pairs A, B for which we must compute a mapxB−A : JA → JB. (The maps themselves,
which are canonical, are constructed in the proof ofProposition 5.1.) For each functionalτi

there is a permutationwi of {1, . . . , r } satisfyingτ
wi (1)
i ≤ · · · ≤ τ

wi (r )
i . To simplify

notation, we writẽτ �
i instead ofτwi (�)

i . Also, setτ̃0
i = −∞ andτ̃ r+1

i = ∞.
For fixedi , the parallel affine hyperplanes{τi = τ̃ �

i }r
�=1 divideZ

d into strips

{β ∈ Z
d | τ̃ �

i + 1 ≤ τi (β) ≤ τ̃ �+1
i }

for � = 0, . . . , r . At most r + 1 of these strips are nonempty, because some of the
hyperplanes may coincide. Also, the last few of theτ̃ �

i will equal ∞; we interpret any
strip whereτ �

i = τ �+1
i = ∞ as empty, and ignore it.

Proposition 6.2. Let J beas in (6.2). For any fixed�1, . . . , �n ∈ {0, . . . , r }, the lattice
points in the polyhedron

∆(�1, . . . , �n) :=
n⋂

i=1

{β ∈ R
d | τ̃

�i
i + 1 ≤ τi (β) ≤ τ̃

�i +1
i }

all lie inside a single sector inS(J). Thepartition of Z
d by the polyhedra∆(�1, . . . , �n)

refines thepartition of Z
d by the sectors inS(J).

Proof. This follows from the definitions and (6.1), which uses thatQ is saturated. �

Proposition 6.2makes way for an algorithm to compute the set of sectors.
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Algorithm 6.3.

INPUT J = ⊕r
j =1 J j , an injective module over k[Q], with J j = k{α j + Fj − Q}

OUTPUT the set S(J) of sectors, each expressed as a list of polyhedra that
partition it

DEFINE φ : Z
d → subsets of {1, . . . , r }, as in Lemma 6.1

INITIALIZE A := {}, the empty collection of subsets of {1, . . . , r }
WHILE �1, . . . , �n ∈ {0, . . . , r } DO

IF ∆(�1, . . . , �n) �= ∅
THEN DEFINE A := φ(∆(�1, . . . , �n))

ELSE NEXT (�1, . . . , �n)

END IF-THEN-ELSE

IF A ∈ A
THEN REDEFINE SA := SA ∪ {∆(�1, . . . , �n)}
ELSE INITIALIZE SA := {∆(�1, . . . , �n)}

REDEFINE A := A ∪ {A}
END IF-THEN-ELSE

NEXT (�1, . . . , �n)

END WHILE-DO

OUTPUT {SA | A ∈ A}
Note thatφ is constant on∆(�1, . . . , �n) by definition, and can easily be determined
directly from the data(�1, . . . , �n).

Next comes the determination of which mapsxB−A need computing. In the coming
algorithm, we write∆(�1, . . . , �n) ≤ ∆(�′

1, . . . , �
′
n) if (�1, . . . , �n) ≤ (�′

1, . . . , �
′
n) as

vectors in(Z ∪ ∞)n. Such notation is justified because∆(�1, . . . , �n) �≤ ∆(�′
1, . . . , �

′
n)

automatically implies that∆(�′
1, . . . , �

′
n) − ∆(�1, . . . , �n) fails to intersectQ.

Algorithm 6.4.

INPUT sectors SA and SB in S(J) from the output of Algorithm 6.3
OUTPUT the truth value of: “there exist α ∈ SA and β ∈ SB with β − α ∈ Q”

INITIALIZE val := FALSE

WHILE (∆A,∆B) ∈ SA × SB AND val = FALSE, DO

IF A ⊇ B AND ∆A ≤ ∆B

THEN DEFINE ∆B − ∆A := the Minkowski sum of ∆B and −∆A

ELSE NEXT (∆A,∆B)

END IF-THEN-ELSE

IF Q ∩ (∆B − ∆A) �= ∅
THEN REDEFINEval := TRUE

ELSE NEXT (∆A,∆B)

END IF-THEN-ELSE

END WHILE-DO

OUTPUT val
The proof of correctness forAlgorithm 6.4 is straightforward from the definitions,

except for the firstIF-THEN-ELSE procedure, which relies onLemma 6.5, below. Note
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the non-necessity inAlgorithm 6.4of actually finding a witness in∆B − ∆A for SA � SB;
as we have seen in (5.1) and (5.2) from the proof ofTheorem 5.2, the natural map on
cohomology is induced by taking submatrices of the monomial matrix, regardless of where
the witnesses lie.

Lemma 6.5. If S(J) is as inProposition5.1, then Q∩ (SB − SA) �= ∅ implies A⊇ B.

Proof. If a ∈ Q and(Ji )α = 0, then(Ji )a+α = 0, so the set of summands nonzero in
degreea + α can only be smaller. �

Unfortunately,Algorithm 6.4is necessary, because∆B −∆A �= ∅ need not always hold
when∆A ≤ ∆B, as the example to come shortly demonstrates. It does seem, however, that
the offending pairs of polytopes are usually “small”. For instance, we know of no examples
where the lattice points in either polytope affinely spanZ

d.

Example 6.6. Let Q be the subsemigroup ofN2 generated by(2, 0), (1, 1), and(0, 2).
Name the faces ofQ as0, X, Y, Q, and setEF = F − Q. Let

J = k{(0, 0) + E0} ⊕ k{(0, 1) + EX} ⊕ k{(0, 0) + EY}
⊕ k{(0,−1) + EX} ⊕ k{(−2, 0) + EY},

with the summands labeled in order asJ1, . . . , J5. Letting X be facet number 1 andY be
facet number 2, the arraysτ j

i andτ̃ �
i look like(

τ
j

1
τ

j
2

)
=
(

0 1 ∞ −1 ∞
0 ∞ 0 ∞ −2

)
and

(
τ̃ �

1
τ̃ �

2

)
=
(−∞ −1 0 1 ∞ ∞ ∞

−∞ −2 0 0 ∞ ∞ ∞
)

The sectorsS{1,2,3} and S{2,3} contain one polytope each, and both of these polytopes
contain exactly one lattice point. Specifically, identifying the sector, the polytope, and the
lattice point, we have

S{1,2,3} = ∆(−1,−2) = (0, 0) and S{2,3} = ∆(0,−2) = (−1, 1).

Now ∆(−1,−2) ≤ ∆(0,−2), but subtracting the vector inS{1,2,3} from the one inS{2,3}
yields(−1, 1), whichdoes not liein the semigroupQ.

Remark 6.7. The notion of sector partition ought to have a refinement that takes into
account the various kinds of failures of saturation for arbitrary affine semigroup. The
resulting notion would produce sector partitions for the cohomology of complexes
of injectives over nonnormal affine semigroup rings. The failures of saturation fall
into two categories: the geometric kind,arising from polyhedral “holes” in the
semigroup (as compared with its saturation), and the arithmetic kind, arising from
finite-index sublattices generated by faces. Even in the case where arithmetic failure
is absent, however, we do not know how to bound the sizes and shapes of the
“holes” sufficiently to carry out an analysis such as the one producing the algorithms
above.
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7. Computing local cohomology with monomial support

Still assuming thatQ is saturated, we have now finally developed enough tools to prove
the main theorem on local cohomology with monomial support, namelyTheorem 1.3from
the Introduction.

Proof of Theorem 1.3. Take i = d in Theorem 4.7, and let J.
(−a) be the minimal

Z
d-graded injective resolution computed there. ThenJ. is an algorithmically computed

injective resolution ofM. By definition, H i
I (M) is the middle cohomology of the complex

ΓI Ji−1 → ΓI Ji → ΓI Ji+1, where ΓI J j is the direct sum of all indecomposable
summands ofJ j whose unique associated prime containsI . Having nowexpressedH i

I (M)

as the cohomology of an effectively computed complex of injectives,Theorem 5.2says that
H i

I (M) has asector partition. The set of sectors in part 1 ofDefinition 1.2is computed by
Algorithm 6.3. The vector spaces in part 2 ofDefinition 1.2are specified in (5.1) from the
proof of Theorem 5.2, andnaturally determine the maps in part 3 ofDefinition 1.2, given
the computation inAlgorithm 6.4. �

Now we turn to issues of complexity. There is little sense in completing a formal
complexity analysis of all of the algorithmspresented in this paper, as they involve
Gröbner basis computation, which is doubly-exponential from a worst-case perspective.
However, it is worth mentioning where the complexity in our algorithms comes from,
up to a factor arising from the complexity of Gröbner basis computation, since Gröbner
basis computations are often more efficient than expected. The purpose of what follows,
therefore, is to assure the reader that our algorithms have not amplified the faux-doubly-
exponential complexity of Gröbner bases with some “honest” exponential complexity.

Let us assume that the dimensiond is fixed, and analyze the complexity of computing all
of the local cohomology of a finitely generated moduleM supported on a fixed monomial
ideal I over a normal semigroup ringk[Q]. This computation involves all of the algorithms
in the paper except the one inSection 3.3. (The complexity of Algorithm 3.15above and
beyondAlgorithm 3.6is only about as bad as that ofk[Qsat]/k[Q] as ak[Q]-module,
anyway.)

In Algorithm 3.6, the only non-Gröbner contribution to the running time comes from
the number of basis elements constructed (seeRemark 3.8.2, which can be used to ensure
that we only check faces ofQ giving rise to basis elements). This number is by definition
a Bassnumber ofM. Thus, up to Gröbner basis computation,Algorithm 3.6is only as
complex as its output.

Next we considerthe algorithm inProposition 3.14. The algorithm works by taking the
union (over a set of facets ofQ) of ideals output byAlgorithm 3.11. Theoutput presents
the generators of each such ideal as the lattice points in a union of polytopes having the
form

(
(a + RH ) ∩ R+D

) + G, whereD is a face ofQ. The computation of each such
polytope is by standard techniques to intersect polyhedra and take Minkowski sums with
the fixed zonotopeG. Hence, up to factors coming from the number of facets ofQ and
from standard procedures, we need only bound

1. the number of polytopes output byAlgorithm 3.11, and
2. the number of lattice points in each such polytope.
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The former is polynomial in the number of facets ofQ by Remark3.13.2. The latter is
polynomial in the input vectora ∈ Q by the piecewise polynomiality of the lattice point
enumeration function of(a + RH ) ∩ R+D as a function ofa (McMullen, 1977), along
with the fact thatG is fixed. Actually computing the set of lattice points in each polytope
can be accomplished using the efficient algorithms ofBarvinok and Woods(2003).

Remark 7.1. We need to do Gröbner basis computations with the irreducible idealsW
output by the algorithm inProposition 3.14. This means that, for our purposes, theshort
rational generating functionsoutput by the algorithms ofBarvinok and Woods(2003) do
not suffice: we actually require the list of lattice points explicitly, to get a generating
set ofW as a list of monomials. Thus the short generating functions must be expanded.
To reduce complexity, the short generating functions can be post-processed using the
methods ofBarvinok and Woods(2003) to yield short generating functions for theminimal
generators of the idealsW in question. Then we can expand only these “minimal” short
generating functions.

The remaining contributions to the complexity of our local cohomology computation
come fromAlgorithm 6.3, which computes the sets of polytopes whose disjoint unions
constitute the sectors, andAlgorithm 6.4. The latter is quadraticin the output of
Algorithm 6.3, times a factor coming from the Minkowski sum operations and the decision
procedure for whether each such sum contains a lattice point after intersecting withQ.
Therefore it remains only to analyzeAlgorithm 6.3.

Proposition 7.2. Thenumber of polyhedra arising inAlgorithm6.3 is polynomial in the
Bass numbers of M and the number of facets of Q.

Proof. Each Bass number ofM represents an indecomposable injective module whose
bounding hyperplanes subdivideRd into a number of regions. Consider the subdivision
of R

d obtained by taking simultaneously all of the hyperplanes corresponding to all of
the Bassnumbers ofM. The number of hyperplanes contributed by each Bass number is at
most the number of facets ofQ, so the total number of hyperplanes is at most the number of
facets ofQ times the sum of the contributing Bassnumbers. It is well known (and follows
by induction onn and the dimensiond) thatn hyperplanes subdivideRd into a number of
regions that is a polynomial inn of degreed. �

This proof shows that the number of polyhedra is exponential in the dimension.
Exponential growth as a function of dimension also occurs in the analysis before
Remark 7.1, where weapply (McMullen, 1977).

Remark 7.3. A largenumber of rational polyhedra arise in the course of computing local
cohomology modules. When the identification of all the lattice points in these polyhedra
is necessary, the complexity of this task should be drastically reduced by the fact that
most of these polyhedra have facets parallel to those ofQ itself. Results such as those in
Brion andVergne(1997) could be helpful along these lines.
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