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Let (X, B, Y ) denote a random vector such that B and Y are real-valued, and
X # R2. Local linear estimates are used in the partial regression method for estimat-
ing the regression function E(Y | X, B)=:B+m(X), where : is an unknown
parameter, and m( } ) is a smooth function. Under appropriate conditions,
asymptotic distributions of estimates of : and m( } ) are established. Moreover, it is
shown that these estimates achieve the best possible rates of convergence in the
indicated semi-parametric problems. � 1997 Academic Press

1. INTRODUCTION

Let (X, B, Y ) denote a random vector such that B and Y are real-valued,
and X # R2. In partly linear models, the regression function is given by

E(Y | X, B)=:B+m(X), (1.1)

where : is an known parameter and m( } ) is a real-valued smooth function
on R2. Model (1.1) is useful in many applications. For instance, it is an
extension of the classical analysis of covariance models (Scheffe� [17]),
where B is a linear effect of special interest, and X is a vector of covariates
that have an unspecified effect on the outcome. Alternatively, model (1.1)
can be used to alleviate the curse of dimensionality in nonparametric regres-
sion. The objective of the present paper is to find a root-n consistent
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estimate of :, and to provide a smooth estimate of m( } ) that achieves the
usual nonparametric rate of convergence.

To motivate our approach, we consider the partly linear model

Y=:B+s(X )+=,

where s( } ) is a real-valued smooth function, X is a real-valued non-random
effect and = is a random error with mean zero and finite variance. Wahba
[25] described penalized spline estimates of : and s( } ). See also, Engle et
al. [5], Green et al. [12], and Shiau et al. [18]. Using the same approach,
Heckman [13] proved the asymptotic normality of the estimate of : in a
balanced design setup. Rice [15] showed that when B and X are
correlated, the asymptotic bias of the estimate of : dominated the variance
and the root-n rate could only be achieved if the estimate of s( } ) was under-
smoothed. Consequently, the estimate was not optimal. A similar result is
reported in Eubank and Whitney [6]. On the other hand, optimal rates of
convergence can be achieved by adopting the partial regression approach
proposed independently by Denby [4] and Speckman [19], even when B
and X are related. In fact, this has been demonstrated by Speckman [19]
using the kernel method; by Chen [1] using a piecewise constant
smoother; by Chen and Shiau [2, 3] using smoothing splines; and by
Eubank, Hart and Speckman [7] using a trigonometric series approach.

The partial regression method can be improved further by using local
linear smoothers. Local linear estimates, or more generally, local polyno-
mial estimates were studied by Stone [20�22]. These estimates have been
compared favorably to the kernel-based methods since they have appealing
asymptotic bias and variance terms that are not adversely affected by
estimation at the boundary, see Fan [8, 9], and Fan and Gijbels [10].
Using a minimax argument, Fan [9] showed that within the class of linear
estimators which includes kernel and spline estimates, the local linear
estimates achieve the best possible constant and rates of convergence. In
light of these desirable properties, we modified the partial regression
method by using local linear smoothers to estimate m( } ) and :. Under (1.1)
and appropriate conditions, we show that these estimates achieve the
indicated rates of convergence, and that they also have asymptotic normal
distributions.

The rest of the paper is organized as follows. Section 2 describes the par-
tial regression method using local linear smoothers. Asymptotic properties
of the estimates are given in Section 3. In particular, root-n consistency of
the parametric estimate and the usual nonparametric rate of convergence
for smooth estimates are discussed. Proofs are given in Section 4.
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2. METHOD

Suppose (1.1) holds. Let x=(x1 , x2)$ # R2 and let u(x) denote the regres-
sion function of B on X, so that u(x)=E(B | X=x). (In this paper, A$
denote the transpose of a matrix A.) We start the method by describing the
local linear estimate of u(x).

Let (X1 , B1 , Y1), ..., (Xn , Bn , Yn) denote a random sample from the dis-
tribution of (X, B, Y ). Let K( } ) denote a kernel function on R2 and H
denotes a 2_2 symmetric, positive-definite matrix. Set KH (x)=
|H|&1 K(H&1x). Here |H| is the determinant of H, and H is referred to as
the bandwidth matrix (see Wand and Jones [26]). Let X(x) denote the
n_3 matrix with the i th row given by the vector

X$i (x)=[1, [H&1(Xi&x)]$], Xi=(Xi1 , Xi2)$, i=1, ..., n.

Let W(x) denote the n_n diagonal matrix given by

W(x)=diag[K H (X1&x), ..., KH (Xn&x)].

Set a$=(1, 0, 0) and let S$(x) denote the 1_n row vector given by

S$(x)=a$[X$(x) W(x) X(x)]&1 X$(x) W(x).

Set B$=(B1 , ..., Bn). Then the local linear estimator of u(x) is given by

û(x)=a$[X$(x) W(x) X(x)]&1 X$(x) W(x) B=S$(x) B.

See Stone [21, 22], and a sightly different formulation by Ruppert and
Wand [16].

We next describe the estimates of : and m(x). Let S denote the n_n
matrix with the jth row equal to S$(Xj), j=1, ..., n. Let I=In denote the
n_n identity matrix and Y$=(Y1 , ..., Yn). Set

B� =(I&S) B and Y� =(I&S) Y.

Let :̂ denote the solution to min:(Y� &:B� )$(Y� &:B� ), so that :̂=(B� $B� )&1

B� $Y� . Set

m̂(x)=a$[X$(x) W(x) X(x)]&1 X$(x) W(x)(Y&:̂B)=S$(x) (Y&:̂B).

We use :̂ and m̂(x) to estimate : and m(x) of model (1.1). Note that the
kernel-based method described by Speckman [19] is a special case of the
above procedure.

3LOCALLY LINEAR ESTIMATION
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3. RESULTS

In the remainder of this paper, let &v&=[�j v2
j ]1�2 denote the usual

Euclidean norm of a vector v. More generally, for a matrix A=(aij), we
denote its norm by &A&=[tr(A$A)]1�2=[�ij | aij |

2]1�2.
The following conditions are standard in nonparametric regression.

Condition 1. The functions m( } ) and u( } ) have bounded second partial
derivatives.

The above condition is required for bounding the bias terms of the local
linear estimates. The next two conditions are required for bounding the
variance terms of our estimates.

Condition 2. The random vector X$=(X1 , X2) has a continuous den-
sity function f ( } ) supported on a compact set Cf /R2. Moreover, f ( } ) is
bounded away from zero and infinity on Cf .

Set _2(b, x)=var(Y | B=b, X=x) and _2
B(x)=var(B | X=x).

Condition 3. _2
B(x) and _2(b, x) are bounded from above. That is,

sup
b, x

_2(b, x)<� and sup
x

_2
B(x)<�.

The following condition ensures that the bias and variance of our
estimates go to zero asymptotically.

Condition 4. The bandwidth matrix H is symmetric and positive-
definite. Moreover,

&H& � 0, n&1 |H| &2 � 0, and |H| &1 &H&4 � 0 as n � �.

Suppose m( } ) has a bounded second derivative. Then the above condi-
tion is easily satisfied by considering H=diag(h, h) with htn&1�6. [The
bandwidth is chosen to have the form htn&1�(2p+d ), here p is the order of
smoothness and d is the dimensionality. In our context, p=d=2.]

The following condition is required for the kernel function. It is easily
satisfied by taking products of symmetric univariate kernels with compact
support.

Condition 5. The kernel function K( } ) is a continuous bivariate kernel
function with compact support such that � K(u) du=1. Also, all odd order
moments of K vanish; that is, � us

1ut
2K(u) du=0 for non-negative integers

s, t such that their sum is odd. Moreover, � uu$K(u) du=+2(K ) I2 , where
+2(K )>0 and I2 is the 2_2 identity matrix.

4 HAMILTON AND TRUONG
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The next condition is required for proving asymptotic normality of :̂ and
m̂(x) (see Theorems 3 and 4).

Condition 6. _2
B(x) and _2(b, x) are bounded away from zero. That is,

0<inf
x

_2
B(x) and 0<inf

b, x
_2(b, x). (3.1)

Moreover, for 0<$<1�2,

sup
x

E( |B&u(X)| 2+$ | X=x)<�, (3.2)

and

sup
b, x

E( |Y&:B&m(X)| 2+$ | B=b, X=x)<�. (3.3)

Note that Condition 6 implies Condition 3.
Set

M=[m(X1), ..., m(Xn)]$, M� =S(Y&:̂B)=[m̂(X1), ..., m̂(Xn)]$,

and

V=diag[_2(X1 , B1), ..., _2(Xn , Bn)].

In a number of results below, we need to condition on X1 , ..., Xn ,
B1 , ..., Bn . In order to simplify the notation, we let En(Z) and varn(Z)
denote the conditional expectation and variance of a random variable
Z given X1 , ..., Xn , B1 , ..., Bn ; that is, En(Z)=E(Z | X1 , ..., Xn , B1 , ..., Bn)
and varn(Z)=var(Z | X1 , ..., Xn , B1 , ..., Bn). We also write Pn(A)=
P(A | X1 , ..., Xn , B1 , ..., Bn).

Our first result deals with the bias and variance of :̂.

Theorem 1. Suppose Conditions 1�5 hold. Then

En(:̂&:)=(B� $B� )&1 B� $(I&S) M,

varn(:̂)=(B� $B� )&1 B� $(I&S) V(I&S)$ B� (B� $B� )&1.

Moreover,

|biasn(:̂)|# |En(:̂&:)|=Op(n&1�2 &H&2) and varn(:̂)=Op(n&1).

Proof of Theorem 1 is given in subsection 4.1; The above result shows
that the squared bias of :̂ is asymptotically negligible compared with its
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variance without requiring m( } ) to be undersmoothed, even when B and X
are correlated. The next result deals with the bias and variance of m̂( } ).

Theorem 2. Suppose Conditions 1�5 hold. Then

|En[m̂(Xi)&m(Xi)]|=Op(&H&2)

and

varn[m̂(Xi)]=Op(n&1 |H| &1) i=1, ..., n.

Proof of Theorem 2 is given in subsection 4.2; Observe that the bias is
obtained without the differentiability condition of the density function f (x).
To achieve such a bound, kernel-based estimates would require the density
function f (x) to be differentiable.

Let 8(t) denote the standard normal distribution function. Also, set
SDn(:̂)=[varn(:̂)]1�2. The next result deals with the asymptotic distribu-
tion of :̂.

Theorem 3. Suppose Conditions 1, 2, 4�6 hold. Then

Pn \ :̂&:
SDn(:̂)

�t+=8(t)+op(1).

Consequently,

P \ :̂&:
SDn(:̂)

�t+=8(t)+o(1).

Proof of Theorem 3 is given in subsection 4.3. The above result and
Theorem 1 show that the estimate :̂ achieves the desirable root-n rate of
convergence, even when it is jointly estimated with a smooth function m( } ).

Set SDn[m̂(x)]=[varn[m̂(x)]]1�2. The following result describes the
pointwise rate of convergence and the asymptotic distribution of m̂(x).

Theorem 4. Suppose Conditions 1, 2, 4�6 hold. Then

|m̂(x)&m(x)|=Op(n&1�2 |H|&1�2+&H&2). (3.4)

Moreover,

Pn \m̂(x)&En m̂(x)
SDn[m̂(x)]

�t+=8(t)+op(1). (3.5)

6 HAMILTON AND TRUONG
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Consequently,

P \m̂(x)&En m̂(x)
SDn[m̂(x)]

�t+=8(t)+o(1).

Proof of Theorem 4 is given in subsection 4.4. Note that if the bandwidth
matrix is chosen so that H=diag[h, h] and htn&1�6, then (3.4) implies
that |m̂(x)&m(x)|=Op(n&1�3), which means that m̂(x) achieves the
optimal rate of convergence. See Stone [21].

Also, if var(Y | B, X)=var(Y&:B | X)=_2(X), and if the conditional
density function of Y&:B given X=x is continuous in x. Then it can be
shown that

varn[m̂(x)]=n&1 |H|&1 f &1(x) _2(x) | K 2(v) dv(1+op(1)).

(See Fan [8], and Fan et al. [11].) This is the asymptotic variance of local
linear estimates. Thus Theorem 4 generalizes the usual asymptotic result of
local linear estimates to partly linear models.

Further Remarks. 1. Theorems 1�4 generalize the results of Speckman
[19] in several directions. First, X is a random vector of covariates.
Second, by using the local linear estimates, the improved bias term of m̂(x)
(see Theorem 2) is achieved without introducing extra smoothness condi-
tions on the density function of X. Third, the asymptotic distribution of
m̂(x) is established. Finally, our approach is applicable to regression
problems involving heteroscedasticity since the conditional variance of Y
given B, X is not required to be constant.

2. Theorems 3 and 4 show that our estimates achieve the dimension
reduction principle as discussed by Stone [23]. Namely, model (1.1) con-
tains two additive terms. The first is a linear term whose estimate has a rate
of convergence n&1�2, as described in Theorem 3. The second term is the
functional component m which is estimated by m̂ with the optimal rate of
convergence n&p�(2p+d )=n&1�3, as discussed after Theorem 4. Both rates
are faster than n&p�(2p+3)=n&2�7, which is the usual rate of convergence for
estimating E(Y | B, X) without using (1.1).

3. Theorems 1�4 also hold for X # Rd and B # Rm, provided u( } ) and
m( } ) are estimated by local polynomials of degrees p with p>d�2. Here p
is the order of smoothness of m and d is the dimension of X as discussed
previously. This constraint comes from n&1 |H|&2 � 0 given in Condi-
tion 4. To see this, suppose H is a diagonal smoothing bandwidth
diag(h, ..., h). Then |H|=hd

tn&d�(2p+d ). Hence, n&1 |H| &2 � 0 can only be
satisfied if p>d�2. A similar situation involving time series is discussed in
Truong and Stone [24].

7LOCALLY LINEAR ESTIMATION
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4. PROOFS

We start this section with a sequence of lemmas. The first lemma deals
with the existence of [X$(x) W(x) X(x)]&1.

Lemma 1. Suppose Conditions 2, 4 and 5 hold. Then there is a positive
constant c1 such that

lim
n

P(n[[X$(x) W(x) X(x)]&1]ij�c1 for x # Cf and i, j=1, 2, 3)=1.

Proof. Observe that

X$(x) W(x) X(x)

=\
:
n

i=1

K H (Xi&x)

:
n

i=1

K H(X i&x) H&1(Xi&x)

:
n

i=1

K H (X i&x) H&1(X i&x)$

:
n

i=1

K H (X i&x) H&1(X i&x)(X i&x)$ H&1+ .

It follows from Conditions 2, 4 and 5 that

E \n&1 :
n

i=1

K H (Xi&x)+= f (x) | K(v) dv(1+o(1)).

Similarly,

E \n&1 :
n

i=1

K H (Xi&x) H&1(X i&x)+= f (x) | vK(v) dv(1+o(1))=o(1),

and

E \n&1 :
n

i=1

K H (Xi&x) H&1(X i&x)(Xi&x)$ H&1+
= f (x) +2(K ) I2(1+o(1)).

According to the law of large numbers,

n&1[X$(x) W(x) X(x)] w�p \f (x)
0

0$
f (x) +2(K ) I2+ .

The desired result follows from Hoeffding's inequality [14]. (See the argu-
ment in Lemma 1 of Truong and Stone [24].) K

8 HAMILTON AND TRUONG
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Let wj, n(x), j=1, 2, denote the diagonal elements of the matrix

n&1 :
n

i=1

H&1(Xi&x)(X i&x)$ H&1KH (Xi&x).

It follows from the above argument that there are positive constants c2 and
c3 such that

lim
n

P \c&1
2 �n&1 :

n

i=1

KH (Xi&x)�c2 , x # Cf +=1, (4.1)

and

lim
n

P(c&1
3 �wj, n(x)�c3 , x # Cf , j=1, 2)=1. (4.2)

Denote the i th entry of S(x) by

S(Xi , x)=Si (x)=a$[X$(x) W(x) X(x)]&1 X i (x) KH (Xi&x), i=1, ..., n.

The next result gives an upper bound for &S(x)&.

Lemma 2. Suppose Conditions 2, 4 and 5 hold. Then there are positive
constants c4 and c5 such that

lim
n

P(9n)=1,

where

9n={max
x # Cf

:
n

i=1

S2(Xi , x)�c4n&1 |H|&1,

max
x # Cf

max
1�i�n

|S(Xi , x)|�c5 n&1 |H| &1= .

Proof. Observe that

:
n

i=1

S 2(Xi , x)=a$[X$(x) W(x) X(x)]&1 X$(x) W2(x) X(x)

_[X$(x) W(x) X(x)]&1 a.

By Condition 5 and (4.1), each entry of X$(x) W2(x) X(x) is bounded by a
constant times n |H|&1. Thus the desired result follows from Lemma 1. K

Set U=[u(X1), ..., u(Xn)]$. The next lemma will be used in the proof of
Lemma 4.

9LOCALLY LINEAR ESTIMATION
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Lemma 3. Suppose Conditions 1, 2, 4 and 5 hold. There is a positive con-
stant c6 such that

E(&S(B&U)&)2 | X1 , ..., Xn)�c6 |H|&1 on 9n .

That is, P([E(&S(B&U)&2 | X1 , ..., Xn)>c6 |H|&1] & 9n)=0.

Proof. By Lemma 2, there is a positive constant c6 such that

E(&S(B&U)& | X1 , ..., Xn)= :
n

j=1

:
n

i=1

[S(Xi , Xj)]2 _2
B(Xi)

� sup
x # Cf

_2
B(x) :

n

j=1

:
n

i=1

[S(Xi , Xj)]2

�c6 |H|&1 on 9n . K

It follows from [X$(x) W(x) X(x)]&1 [X$(x) W(x) X(x)]=I3 that

:
n

j=1

S(Xj , x)= :
n

j=1

a$[X$(x) W(x) X(x)]&1 X j (x) KH (X j&x)=1,

and

:
n

j=1

a$[X$(x) W(x) X(x)]&1 X j (x) KH (Xj&x) H&1(Xj&x)=(0, 0)$.

In particular,

:
n

j=1

S(Xj , Xi)=1 and :
n

j=1

S(Xj , Xi) H&1(Xj&Xi)=(0, 0)$, i=1, ..., n.

To prepare the next result, set

Du(x)=\�u(x)
�x1

,
�u(x)
�x2 +

$
and u*(v ; x)=u(x)+(v&x)$ Du(x).

That is, u*(v ; x) is the first order Taylor polynomial of u( } ) at x. Then

:
n

j=1

S(Xj , x) u*(Xj ; x)=u(x). (4.3)

Lemma 4. Suppose Conditions 1�5 hold. Then

n&1B� $B� w�p | _2
B(x) f (x) dx.

10 HAMILTON AND TRUONG
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Proof. Set U� =SB=[û(X1), ..., û(Xn)]$. Then B� $B� =B$(I&S)$
(I&S) B=(B&U� )$ (B&U� ). Thus

B� $B� = :
n

i=1

[Bi&u(Xi)]2+ :
n

i=1

[û(Xi)&u(Xi)]2

&2 :
n

i=1

[Bi&u(Xi)][û(Xi)&u(X i)]. (4.4)

By Condition 3 and the law of large numbers,

1
n

:
n

i=1

[Bi&u(Xi)]2 w�p | _2
B(x) f (x) dx. (4.5)

According to (4.3),

û(Xi)&u(Xi)= :
n

j=1

S(Xj , Xi)[Bj&u(X j)]

+ :
n

j=1

S(Xj , Xi)[u(Xj)&u*(Xj ; Xi)]

=S$(Xi)(B&U)+S$(Xi)(U&U*(Xi)),

where U*(x)=[u*(X1 ; x), ..., u*(Xn ; x)]$. Thus

:
n

i=1

[û(Xi)&u(X i)]2�2 :
n

i=1

[S$(Xi)(B&U)]2

+2 :
n

i=1

[S$(Xi)(U&U*(Xi))]2. (4.6)

By Lemmas 2 and 3,

1
n

:
n

i=1

[S$(Xi)(B&U)]2=
1
n

&S(B&U)&2=Op(n&1 |H| &1). (4.7)

According to Taylor expansion, Conditions 1 and 5, there is a positive
constant c7 such that

|u(Xj)&u*(Xj ; Xi)|�c7 &H&2 for H&1(Xj&Xi) # CK ,

where CK is the compact support of K( } ). By Lemma 1 and (4.1),

} :
n

j=1

S(Xj , Xi)[u(Xj)&u*(Xj ; Xi)] }=Op(&H&2).

11LOCALLY LINEAR ESTIMATION
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Thus,

1
n

:
n

i=1

[S$(Xi)(U&U*(Xi))]2=Op(&H&4). (4.8)

It follows from (4.6)�(4.8) and Condition 4 that

1
n

:
n

i=1

[û(Xi)&u(Xi)]2=Op(n&1 |H| &1)+Op(&H&4)=op(1). (4.9)

By the Cauchy�Schwarz inequality, (4.5) and (4.9),

} 1n :
n

i=1

[Bi&u(Xi)][û(Xi)&u(Xi)] }
� } 1n :

n

i=1

[Bi&u(Xi)]2 }
1�2

} 1n :
n

i=1

[û(X i)&u(Xi)]2 }
1�2

w�p 0. (4.10)

The desired result follows from (4.4), (4.5), (4.9), and (4.10). K

By applying a Taylor expansion to m( } ) in a manner similar to (4.2), the
next result follows easily from Lemma 1 and (4.1) [see the argument for
(4.8)].

Lemma 5. Suppose Conditions 1, 2 and 4 hold. Then

&(I&S) M&=Op(&H&2).

4.1. Proof of Theorem 1

Recall that :̂=(B� $B� )&1 B� $Y� . Thus

En(:̂)=(B� $B� )&1 B� $(I&S)(:B+M)=:+(B� $B� )&1 B� $(I&S) M,

and

varn(:̂)=(B� $B� )&1 B� $(I&S) V(I&S)$ B� (B� $B� )&1.

By Lemmas 4 and 5,

|biasn(:̂)|=|(B� $B� )&1 B� $(I&S) M|�(B� $B� )&1 &B� & }&(I&S) M&

=Op(n&1�2 &H&2).

According to Condition 3 and Lemma 4, there is a positive constant c8

such that

varn(:̂)=(B� $B� )&1 B� $(I&S) V(I&S)$ B� (B� $B� )&1

�c8 n&2 &(I&S)$B� &2. (4.11)

12 HAMILTON AND TRUONG
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Note that &(I&S)$ B� &2�2 &B� &2+2 &S$B� &2. By Lemma 4, &B� &2=Op(n). It
follows from

&S$B� &=&S$(I&S) B&�&S(B&U)&+&S& } &U&SB&,

Lemmas 2, 3 and (4.9) that

&S$B� &2=Op( |H|&1+|H| &1 [ |H|&1+n &H&4]).

Hence,

n&2 &(I&S)$ B� &2=Op(n&1)+Op(n&1)

_(n&1 |H|&1+n&1 |H|&2+|H|&1 &H&4). (4.12)

The conclusion of Theorem 1 follows from (4.11), (4.12) and Condi-
tion 4. K

4.2. Proof of Theorem 2

Write

m̂(Xi)=S$(Xi)(Y&:̂B)=S$(Xi)[(Y&:B)+(:̂&:) B].

Then

En[m̂(Xi)&m(Xi)]=En[S$(Xi)(Y&:B)&m(Xi)]+S$(Xi) BEn(:̂&:)

=S$(Xi) M&m(Xi)+S$(Xi) BEn(:̂&:).

According to (4.9) and Conditions 1 and 2,

|S$(Xi) B|�|û(Xi)&u(Xi)|+|u(Xi)|=Op(n&1�2 |H|&1�2+&H&2)+O(1).

It follows from Lemma 5 and Theorem 1 that

|En[m̂(Xi)&m(Xi)]|=Op(&H&2)+Op(n&1�2 &H&2).

Next we consider the variance term. Observe that

varn[S$(Xi)[(Y&:B)+(:̂&:) B]]

=varn[S$(Xi)(Y&:B)]+varn[S$(Xi)(:̂&:) B]

+covn[S$(Xi)(Y&:B), S$(Xi)(:̂&:) B]. (4.13)

13LOCALLY LINEAR ESTIMATION
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By Condition 3 and Lemma 2,

varn[S$(Xi)(Y&:B)]=S$(Xi) varn(Y&:B) S(Xi)=Op(n&1 |H|&1). (4.14)

Similarly, by Conditions 2, 3, Lemma 2 and Theorem 1,

varn[S$(Xi)(:̂&:) B]=op(n&1 |H| &1). (4.15)

By the Cauchy�Schwarz inequality,

|covn[S$(Xi)(Y&:B), S$(Xi)(:̂&:) B]|=op(n&1 |H| &1). (4.16)

The conclusion of Theorem 2 follows from (4.13)�(4.16). K

4.3. Proof of Theorem 3

We have

SD2
n(:̂)=varn(:̂)=(B� $B� )&1 B� $(I&S) V(I&S)$ B� (B� $B� )&1.

According to (4.12),

&(I&S)$ B� &2� 1
2&B� &2&&S$B� &2= 1

2&B� &2 [1+op(1)].

It follows from (3.1) that there is a positive constant c9 such that

lim
n

P(varn(:̂)�c9(B� $B� )&1)=1. (4.17)

Observe that :̂&:=(B� $B� )&1 B� (I&S)(Y&:B&M)+(B� $B� )&1 B� $(I&S)
M. By (4.17), Condition 4, Lemmas 4 and 5,

|(B� $B� )&1 B� $(I&S) M|
SDn(:̂)

=Op(&H&2)=op(1).

Thus the conditional asymptotic normality of :̂&: follows from

Pn \(B� $B� )&1 B� $(I&S)(Y&:B&M)
SDn(:̂)

�t+=Pn \ b$Z

- varn(b$Z)
�t+

=8(t)+op(1), (4.18)

where b$=(b1 , ..., bn)=B� $(I&S) and Z=(Z1 , ..., Zn)$=Y&:B&M.
Set s2

n=varn(b$Z)=� b2
i _2(Bi , Xi). Since En(b$Z)=0, then (4.18)

follows from the conditional Lindeberg's condition:

1
s2

n

:
n

i=1

En(b2
i Z2

i 1[ |bi Zi |�csn])=op(1), c>0. (4.19)

14 HAMILTON AND TRUONG
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To verify (4.19), we note that from (3.1) that there is a positive constant
c10 such that s2

n�c10 �i b2
i . Thus

1
s2

n

:
n

i=1

En(b2
i Z2

i 1[ |bi Zi |�csn])�c&1
10 En(Z2

11[Z2
1�c2c10 �i bi

2�maxi bi
2]). (4.20)

Set 0n=[maxi b2
i ��n

1 b2
i >'] for '>0. Then

lim
n

P(0n)=0, '>0. (4.21)

[Proof of (4.21) will be given shortly.] By Markov's inequality,

P(En[Z2
1 1[Z2

1�c2c10 �i bi
2�maxi bi

2]]>=)

�P(En[Z2
11[Z2

1�c2c10 �']]>=)+P(0n)

�
1
=

E[Z2
11[Z2

1�c2c10 �']]+P(0n), ', =>0.

According to (3.3), E[Z2
11[Z2

1>c2c10 �']] � 0 as ' � 0. Hence, by (4.21)

En(Z2
1 1[Z2

1>c2c10 �i bi
2�maxi bi

2])=op(1), c>0. (4.22)

It follows from (4.20) and (4.22) that (4.19) holds.
We now prove (4.21). By Lemma 4,

n&1b$b=n&1 &(I&S)$ B� &2�2n&1 &B� &2 w�p 2&1 | _2
B(x) f (x) dx.

Thus (4.21) follows from max1�i�n b2
i =op(n). For a vector v=(vi) and a

matrix A=(aij), define

&v&�=max
i

|vi | and &A&�=max
i

:
j

|aij |.

Then

max
i

|bi |=&b&��(1+&S&�)(1+&S&�) &B&� . (4.23)

It follows from

:
n

i=1

Si (x)=a$[X$(x) W(x) X(x)]&1 \
:
n

i=1

KH (Xi&x)

:
n

i=1

H(Xi&x) KH (X i&x)+ ,

15LOCALLY LINEAR ESTIMATION
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Lemma 1, (4.1) and (4.2) that

&S&�=Op(1). (4.24)

According to (3.2) and Markov's inequality,

&B&U&�=Op(n1�2�log n).

Since &U&�=O(1) by Conditions 1 and 2, we have

&B&��&B&U&�+&U&�=Op(n1�2�log n). (4.25)

It follows from (4.23)�(4.25) that maxi b2
i =op(n). Hence (4.21) is valid.

The unconditional asymptotic normality follows from the dominated
convergence theorem. This completes the proof of Theorem 3. K

4.4. Proof of Theorem 4

Write

m̂(x)&m(x)=S$(x)(Y&:B&M)+S$(x) M&m(x)

&S$(x) B(:̂&:). (4.26)

It follows from Condition 3 and Lemma 2 that there is a positive constant
c11 such that

varn[S$(x)(Y&:B&M)]�c11n&1 |H|&1 on 9n .

Thus, by Chebyshev's inequality and Lemma 2,

|S$(x)(Y&:B&M)|=Op(n&1�2 |H|&1�2). (4.27)

By Lemma 5,

|S$(x) M&m(x)|=Op(&H&2). (4.28)

It now follows from (4.26)�(4.28) and Theorem 3 that (3.4) holds.
To prove (3.5), set

m̂0(x)=a$[X$(x) W(x) X(x)]&1 X$(x) W(x)(Y&:B)=S$(x)(Y&:B).

That is, m̂0(x) is the local linear estimate of m( } ) if : were known. Then
from Theorems 1 and 2, we have

|m̂0(x)&m̂(x)|=|(:̂&:) S$(x) B|=|(:̂&:) û(x)|

=Op(n&1�2). (4.29)

|En[m̂(x)]&En[m̂0(x)]|=Op(n&1�2), (4.30)

16 HAMILTON AND TRUONG
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and

|varn[m̂(x)]&varn[m̂0(x)]|=Op(n&1 |H| &1). (4.31)

By an argument similar to showing (4.1) and (4.2), there is a positive
constant c12 such that

lim
n

P(S$(x) S(x)>c12n&1 |H|&1)=1. (4.32)

It follows from (3.1), (4.31) and (4.32) that there is a positive constant c13

such that

lim
n

P(varn[m̂(x)]>c13n&1 |H|&1)=1. (4.33)

Thus from (4.29), (4.33) and Condition 4,

|m̂(x)&m̂0(x)|
SDn[m̂(x)]

=Op( |H| 1�2)=op(1).

Similarly, by (4.30), (4.33) and Condition 4,

|En[m̂(x)]&En[m̂0(x)]|
SDn[m̂(x)]

=op(1).

Hence, in view of (4.31), it is sufficient to show that

Pn \m̂0(x)&En m̂0(x)
SDn[m̂0(x)]

�t+=8(t)+op(1). (4.34)

This will be proved by verifying the conditional Lyapounov's condition.
Note that m̂0(x)&En m̂0(x)=S$(x)(Y&:B&M). By Lemma 2 and (3.3),

:
i

|Si (x)| 2+$ E[ |Yi&:Bi&m(Xi)| 2+$ | Bi , Xi]

=O \ max
1�i�n

|S(Xi , x)|$ :
i

S 2
i (x)+

=Op(n&$ |H| &$) S$(x) S(x). (4.35)

By (3.1), there is a positive constant c14 such that

varn[S$(x)(Y&:B&M)]�c14S$(x) S(x). (4.36)

17LOCALLY LINEAR ESTIMATION
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It follows from (4.32), (4.35), (4.36) and Condition 4 that

�i |Si (x)| 2+$ E[|Yi&:Bi&m(Xi)| 2+$ | Bi , Xi]
[varn[S$(x)(Y&:B&M)]] (2+$)�2

=Op([n&1 |H| &1]$�2)=op(1).

Thus the conditional Lyapounov's condition holds. Hence, (4.34) is valid.
The unconditional result follows from the dominated convergence

theorem. This completes the proof of Theorem 4. K
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