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Theoretical Uncertainty of Measurements Using Quantitative Polymerase
Chain Reaction

Jean Peccoud* and Christine Jacob#
*TIMC-IMAG, Institut Albert Bonniot, Faculte de m6decine de Grenoble, 38706 La Tronche cedex, and #Laboratoire de biom6trie, Institut
National pour la Recherche Agronomique, 78352 Jouy-en-Josas cedex, France

ABSTRACT Current quantitative polymerase chain reaction (PCR) protocols are only indicative of the quantity of a target
sequence relative to a standard, because no means of estimating the amplification rate is yet available. The variability of PCR
performed on isolated cells has already been reported by several authors, but it could not be extensively studied, because
of lack of a system for doing kinetic data acquisition and of statistical methods suitable for analyzing this type of data. We
used the branching process theory to simulate and analyze quantitative kinetic PCR data. We computed the probability
distribution of the offspring of a single molecule. We demonstrated that the rate of amplification has a severe influence on the
shape of this distribution. For high values of the amplification rate, the distribution has several maxima of probability. A single
amplification trajectory is used to estimate the initial copy number of the target sequence as well as its confidence interval,
provided that the amplification is done over more than 20 cycles. The consequence of possible molecular fluctuations in the
early stage of amplification is that small copy numbers result in relatively larger intervals than large initial copy numbers. The
confidence interval amplitude is the theoretical uncertainty of measurements using quantitative PCR. We expect these results
to be applicable to the data produced by the next generation of thermocyclers for quantitative applications.

INTRODUCTION

To what extent can polymerase chain reaction (PCR) be
quantitative? Considering the number of experiments that
have been reported using quantitative PCR (Q-PCR) steps,
this question may sound naive. Yet, the exponential growth
of a DNA molecule population that undergoes a PCR am-
plification raises the question of possible concomitant am-
plification of fluctuations. A simple example can help to
clarify this issue. Imagine a single target DNA sequence
amplified under such conditions that the yield of the reac-
tion is 80%. After the first cycle of amplification, the
probability that two molecules will result is 80%, with a
20% probability of a single molecule remaining. Similarly,
after n cycles of amplification, the total number of mole-
cules is situated between 1 and 2'. This extreme example is
still quite realistic, because the possibility of amplifying a
single DNA sequence has long been reported (Erlich et al.,
1991; Li et al., 1988; Snabes et al., 1994; Cui et al., 1989;
Zhang et al., 1992). It underlines the necessity of a suitable
statistical treatment of Q-PCR data.

Quantitative analysis is now one major use of PCR (see
Ferre et al., 1994, for a review). Q-PCR has been done in a
variety of contexts, such as the study of gene expression
(Singer-Sam et al., 1992; Wang et al., 1989) or monitoring
the progress of a therapeutic protocol (Lion et al., 1993). It
has been particularly valuable in providing estimates of
virus load during HIV-1 infection (Semple et al., 1993;
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Piatak et al., 1993; Wood et al., 1993) and hepatitis C virus
infections (Simmonds et al., 1990). A review of all of these
topics can be found in Mullis et al. (1994).

Despite the generalized use of Q-PCR protocols in many
fields of the biological sciences, theoretical work on Q-PCR
has been very scarce so far. The ratio of the amount of
amplified target sequence over a standard (either internal or
external) has received considerable attention. In most pa-
pers, the amplification process has been modeled by a
deterministic geometric series (Santagati et al., 1993;
Wiesner et al., 1993; Raeymaekers, 1993, 1994; Shire,
1994). Nedelman conducted the most detailed theoretical
analysis of Q-PCR protocols by introducing stochastic mod-
els (Nedelman et al., 1992a,b). He designed a very detailed
branching process to compare the conditions in which the
three main quantification methodologies (external control,
internal control, kinetic data with no control) currently in
use are valid.

Like Nedelman, we have used the branching process
theory. We concentrated on Q-PCR based on a kinetic
observation of the amplification, but instead of studying
current practices, we propose a new strategy for analyzing
this type of data. The amplification can be monitored by
withdrawing aliquots of the reaction at regular intervals
(Hoof et al., 1991; Wiesner et al., 1992). This is a very
labor-intensive operation, however, which prevents its use
on large numbers of samples. It can also lead to cross-
contamination problems. It should also be noted that the
steep temperature gradient near the thermocycler is very
unfavorable for the sampling of a precise volume with the
usual liquid handling devices. A more promising approach
has been worked out by Higuchi. He used a video camera to
monitor PCR conducted in the presence of ethidium bro-
mide in 96-well microtiter plates (Higuchi et al., 1993).
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Several of the limitations of Q-PCR protocols can be
overcome by statistical analysis of a data set collected
during the amplification process. Q-PCR protocols rely on

heavy standardization procedures that compare the amount
of an amplified target sequence to the amount of a standard
introduced either internally or externally in the assay. The
standards are chosen to ensure similar rates of amplification
for the standards and the targets. The sample often has to be
split and amplified several times to compare the different
amplifications to different concentrations of the standard. In
this paper, we show that a good estimator of the amplifica-
tion rate can be computed with a set of dynamical data
collected during amplification. With this estimator, a second
estimator of the initial copy number as well as its confi-
dence interval can be computed.

These two estimators have been derived and character-
ized analytically. Details of this work will be published
elsewhere (Jacob and Peccoud, 1996a,b). In this paper we

investigate the numerical and computational consequences

of these analytical results. Because these results are asymp-

totic, their approximate validity must be verified after a

finite number of amplification cycles. Using Monte Carlo

simulations, we show that the limits are reached when the
number of cycles is greater than 20 (see Table 1 and Fig. 1).
To proceed to the analysis of simulated data, the shape of
the asymptotic distribution of probability of the normalized
number of amplified molecules requires study. In Fig. 2 we
show that this shape is dramatically affected by both the
initial copy number of the target sequence and the amplifi-
cation rate. This work provides some interesting indications
about the inherent uncertainty of PCR-based quantification
protocols, especially when the initial copy number is close
to unity.

THEORETICAL RESULTS

At the molecular level, the yield of a chemical reaction is
the probability of the molecule of committing itself to a

reaction. When the size of the molecule population is large,
the law of large numbers applies, leading to a deterministic
behavior. A predictable fraction of the population reacts,
and the fluctuations of this fraction size become negligible
as the size of population tends to infinity, whereas in con-

TABLE I Mean value and dispersion of Ifl and Nkon over the 500 simulated trajectories

Cycle Mean Range SD SE

No = 1 and m = 1.6 10 1.60006745307 6.36364 x 10-1 6.75162 x 10-2 3.01941 X 10-3
20 1.60022242210 6.56857 x 10-2 6.72448 x 10-3 3.00728 x 10-4
30 1.6000146802 4.92395 x 10-4 6.40470 x 10-4 2.86427 X 10-5

No = 1000 and m = 1.6 10 1.60018002150 1.09504 x 10-2 1.92464 X 10-4 8.60724 x 10-5
20 1.60000984656 1.05250 x 10-4 1.77414 x 10-4 7.93420 x 10-7
30 1.59999951734 1.02051 x 10-4 1.78139 x 10-5 7.96661 x 10-7

No = 1 and m = 1.8 10 1.80230389426 1.91090 X 101- 2.99130 X 10-2 1.33775 x 10-4
20 1.80000741525 1.03504 x 10-2 1.60504 x 10-4 7.17796 x 10-5
30 1.80000928590 5.58308 x 10-4 8.38251 X 10-5 3.74877 X 10-6

No = 1000 and m = 1.8 10 1.80001843029 5.83452 x 10-4 8.83768 x 10-4 3.95233 x 10-5
20 1.80000314882 2.87236 x 10-4 4.60407 X 10-5 2.05900 x 10-6
30 1.80000003152 1.50043 x 10-5 2.49009 X 10-6 1.11360 x 10-7

No = 1 and m = 1.6 10 1.10572121086 3.79481 6.15589 x 10-' 2.75300 x 10-2
= 0.50 20 1.04560248695 2.33701 5.00548 x 10-1 2.23852 x 10-2

30 1.04315214802 2.42596 4.94096 X 10-1 2.20966 x 10-2

No = 1000 and m = 1.6 10 999.080060658 1.17863 x 10-2 1.93715 x 10- 8.66321 X 10-1
= 15.80 20 1000.04500834 9.71133 x 10-' 1.57246 x 10-' 7.03226 x 10-1

30 1000.17263029 9.60037 x 10-' 1.55971 x 10-' 6.97523 x 10-1

No = 1 and m = 1.8 10 1.01795953945 1.80043 3.49498 x 10-' 1.56300 x 10-2
= 0.33 20 1.01621795726 1.42881 3.16478 x 10-' 1.41533 x 10-2

30 1.01629097804 1.38254 3.16453 x 10-' 1.41522 x 10-2

No = 1000 and m = 1.8 10 1000.05332664 6.53775 X 10-' 1.12547 X 10-' 5.03323 X 10-1
= 10.54 20 1000.08766640 6.40454 X 10-' 1.03921 x 10-' 4.64749 X 10-

30 1000.12338803 6.45903 X 10- 1.04219 X 10- 4.66081 X 10-
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FIGURE 1 Statistical analysis of a
PCR trajectory. The analysis of a
data set simulating a PCR amplifica-
tion is conducted in two steps. First,
,in is computed and plotted to verify
its convergence and to determine the
end of the exponential phase of the
reaction materialized by the vertical
line at cycle 25 on the left plot. Sec-
ond, the series of No,n is plotted and
the confidence interval is computed
for the last cycle in the exponential
phase. The parameter of this simula-
tion was m = 1.8. The numerical
values of these estimates are th25 =
1.7999 and NRo25 = 0.89855. One can
notice that in25 is very close to 1.8,
whereas N0o25 is stabilized below No.
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trast, a small population size forces us to consider the
probability of reaction for each molecule and the resulting
stochastic behavior of the population (Erdi and Toth, 1989).
The PCR is modeled by assuming that each DNA molecule
can be duplicated not more than once with a probability p
during a cycle of amplification. Thus p is also the yield of
the reaction. The amplification rate of the reaction m is
simply related to p, because m = 1 + p. The duplication of
each molecule is assumed to be independent of the dupli-
cation of other molecules. This is a fair assumption, because
PCR is usually conducted with an excess of reagents other
than the DNA template, so that DNA molecules do not
compete with each other for duplication. The number of
molecules at the end of the nth cycle is denoted by Nn. No
is the initial number of molecules to be estimated. With
these notations the series {Nn}n 2 0 fits with what is called
a branching (or Galton-Watson) process in probability.
Branching processes were first used to model the PCR for
estimating the risk of false gene diagnosis resulting from
replication errors of the Taq polymerase gene (Krawczak et
al., 1989). Later on, they were also used by Nedelman to
analyze the use of internal controls in Q-PCR experiments
(Nedelman et al., 1992b), as well as most of the other
current protocols of Q-PCR (Nedelman et al., 1992a).
The estimation of the mean value of the offspring distri-

bution is a classical problem in branching process theory
(Guttorp, 1991). In the case of PCR, the offspring mean is
the rate of amplification, which can be estimated by

Mn = Nn/Nn-l-

This estimator converges "almost surely" toward m as n

tends to infinity. This is the strongest type of convergence

for a random variable. It means that an estimate ofm can be
computed at each cycle. The random series of these esti-

mates converges toward a limit that is the real value of the
estimated parameter m.

We used this first estimator to build a second estimator
for the initial copy number:

NO,n = N /in

The convergence of this estimator is not as strong as the
convergence of Mii. It is only a convergence almost sure to
a random variable WNO,m. This means that the series N0,

tends to a limit value as n tends to infinity, but this limit is
not the real value of the estimated parameter No. The as-

ymptotic value of this series is randomly distributed. All
trajectories of No0n starting from the same initial conditions
lead to different values. Thus, the limit of No0n computed on

a trajectory of N0 is a realization of the random variable
WNO0m. It is worth emphasizing that this random variable is
a function of the amplification parameters No and m. In
particular, its expectation equals No, whereas its variance is
No * (2 - m)/m. Last, we demonstrated that it has a proba-
bility density function defined on [0, +oo[.

Because No,n does not converge to No, it would be helpful
to assess the difference between No and its estimation. A
convenient way to express this discrepancy is to compute a

confidence interval for No on the basis of its estimation.
For technical reasons that are beyond the scope of this

paper, the computation of the confidence interval requires
us to normalize the estimation of No so as to set its mean
value to 0 and its variance to 1.
The computation of the No confidence interval requires a

set of critical values that will be used to limit the interval.
The computation of the critical values is explained below.
At this stage let us introduce the notations. So, let wl(m,a),
w2(m,a) be the critical values used to compute the confi-
dence interval of level a. With these notations the confi-
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1.8 up to and including cycle 25. Starting at cycle 26, the
amplification rate looses 5% at each cycle up to cycle 30,
when the amplification is stopped. The amplification rate
estimates and the initial copy number estimates are plotted
separately. The left plot is used to determine the ultimate
cycle in the exponential phase of the reaction. This cycle
can be determined either graphically or with a simple nu-

merical criterion. Such a criterion was used here. Precisely,
the convergence criterion is that three successive differ-
ences of M6n are less than a tolerance factor set to 10-2 in this
analysis. The last cycle of this series is the end of the
exponential phase. The magnitude of this tolerance factor is
symbolized on the left plot by the thickness of the horizontal
line. The vertical line is used to materialize the ultimate
cycle of the exponential phase. The right plot makes very

clear that the convergence ofNon is not as fast as that of mn.
Thus, the best estimate of No is the one computed at the last
cycle of the exponential phase. The value of this estimate is
reported on the axis by the horizontal line, whereas its
confidence interval is materialized by the vertical bar.

FIGURE 2 Effect of the amplification rate on the shape of N1o distribu-
tion. These two plots illustrate the influence of the amplification rate on the
shape of the distribution of probability of N.. It is interesting to note that
for values of m greater than -1.82, the distribution of probability is
multimodal, as can be observed when m = 1.95. The general shape of this
distribution is not influenced very much by the number of amplification
cycles beyond cycle 10. Besides the effect of the amplification rate, the
initial copy number has a major influence on the shape of the distribution,
which tends to become gaussian as the initial copy number tends to infinity.
The thick parts of the plots are the points inside the confidence area at the
5% level. They all have a probability greater than a threshold plotted by the
horizontal line. The limits of the confidence area are represented by the
vertical lines. In case of m = 1.60, the confidence area is a single interval,
whereas for m = 1.95 the confidence region is the union of two intervals.

dence interval for No is [fn 1(w2(M,a)), fn '(w1(m,a))]
where fn (x) is the inverse function of

fn(x) (N0,n x) A( )

One can recognize the expectation and the standard devia-
tion of WN0,m in this expression. Actually, the probability
that No belongs to [fn 1(w2(m,at)), fn '(w1(m,aW))] is not 1-
a, as it usually is for confidence intervals. Rather, when n

tends to infinity, the probability that No is inside this interval
is greater than 1 -a. This is expressed by the formula

lim P(No E [fn'(w2(m,a)),fn-(w1(m, a))]) > 1 - a.

n-to

The theoretical explanations have been deliberately limited
to the minimum required to understand rest of the paper
(Jacob and Peccoud, 1996a,b).
The implementation of this statistical analysis on a sim-

ulated set of data is reported in Fig. 1. The initial molecule
number used in the simulation is 1 and the amplification is

EXPERIMENTAL EVIDENCE

This stochastic model of the PCR amplification seems to be
consistent with data published by several authors. There is
some evidence of large fluctuations of the final amount of
amplified material when the initial molecule number is very

low. The quantification of the plasma HIV-1 virion-associ-
ated RNA was attempted by reverse-transcription competi-
tive PCR. Because the sensibility of the quantification pro-

tocol is essential for monitoring the infection, the authors
determined its threshold sensitivity to be 100 copies. Posi-
tive signals could be detected for as few as 10 copies, but
results were less consistent, and thus quantitation was less
reliable (Piatak et al., 1993). Obviously, with these results
randomness cannot be assigned solely to the PCR reaction.
The other steps, such as liquid transfers or the reverse

transcription, could also be responsible for the variance of
the final result. However, in accordance with the results
plotted in Fig. 2, we suspect that the amplification step itself
is a major source of fluctuation for the final result of this
experiment.
The same kind of observations is reported in a more

recent paper (Lantz and Bendelac, 1994). This case fits
better with our model. Cells were sorted in 96-well plates at
one cell per well, and the DNA was amplified with a set of
primer specific for a genomic rearrangement of the T-cell
receptor genes. Quantitative results were individually re-

corded and displayed an amazing variability. Because the
initial conditions of the PCR are homogeneous among pos-
itive cells, it is difficult to justify the 10-fold differences
between the results by any other source of fluctuations.
These data distributions even seem to be very irregular and
to have several peaks. A rigorous statistical analysis of the
goodness of fit to our theoretical distributions should be
conducted to verify this hypothesis, but it is not immedi-
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FIGURE 3 Critical values as afunction of the amplification rate. In this
figure, the confidence region is reported for oL = 5% and m ranging from
1.7 to 1.99. The confidence region is represented by vertical lines. This
figure illustrates the influence of the amplification rate on the topology of
the confidence region. For instance, one can observe that it is split for a
value of m between 1.90 and 1.91. For m greater than 1.97, the confidence
region is the union of three intervals. Note that the size of the confidence
region is also under the control of m. It is particularly spectacular when m
is close to 2, where it seems to collapse. This behavior is related to the fact
that for m = 2 the distribution has null variance, because the process is then
deterministic.

ately possible with the published data, because the ampli-
fications were conducted beyond the exponential phase.
As far as we know, there is only one work that specifi-

cally addresses the question of large fluctuations of the final
amount of amplification products when starting from a low
number of copies (Karrer et al., 1995). Its authors named
this phenomon the "Monte Carlo effect." Part of the obser-
vations reported in this paper are specifically devoted to
demonstrating that this effect is not an artifact. However,
here again it is not possible to analyze these data using our
results, because the experiments involve serial dilutions that
certainly introduce some extra variance in the final result.

Russ Higuchi kindly provided us the data produced by the
prototype he engineered (Higuchi et al., 1993). This kind of
data fits perfectly with our model, and we could proceed to
the estimation of the amplification rate. Yet, it quickly
appeared that the dynamic range of this prototype was not
sufficient to allow recording of the data during the expo-
nential phase. There was only a twofold difference between
the background noise and the highest recorded signals. The
computation of the amplification rate estimator allowed us
to observe a smooth evolution similar to what happens to mn
after cycle 25 on Fig. 1. Since the publication of this paper,
the prototype has been refined and has been released by
Perkin-Elmer as the ABI PRISM 7700 Sequence Detector.
The sensitivity of its data acquisition hardware has been
enhanced, so that several points can be reliably recorded
during the exponential phase. No data have been available
so far, but the applicability of our results to the analysis of

the data produced by this machine will be studied as soon as
possible.

COMPUTATION OF CRITICAL VALUES

Whatever the initial copy number, the critical values
w,(m,a),w2(m,a) must be computed from the law of W1m
after normalization. Hence the computation of the distribu-
tion of Nn starting from N0 = 1 was a priority.
A PCR amplification starting from a single copy DNA

sequence leads to a random number of molecules after n
cycles of amplification. Whatever the rate of amplification,
the size of the population resulting from the amplification of
the initial target sequence is between 1 and 2n. The proba-
bility of each possible issue of an amplification can be
computed analytically and numerically with a computer
system with symbolic capabilities such as Mathematica
(Wolfram Research, 1992). The generating function of the
law of probability of the offspring number of a single
molecule is g(s) = (2 - m)s + (m -1)s2. Branching processes
have a useful property. The composition of the generating
function over itself n times, g(n)(s) - g(gfl (s)), is the gen-
erating function of the law of the offspring number of a single
molecule after n cycles of amplification. Thus, the coefficient
of sk is the probability of having k molecules after n cycles.
This algorithm has been used to compute the frequencies of the
two histograms plotted in Fig. 2.
The law of Wl,m is derived from the law of Nn by dividing

the values of Nn by mn. In a similar way, we proceed to the
normalization of Wlm. The upper and lower bounds of the
confidence interval of probability 0.95 were computed. To
do this, the mode of the distribution of probability was used
as a starting point. For each probability q between 0 and the
probability of the mode, it is possible to compute the sum of
the probabilities of the points having a probability greater
than q. The set of points having a probability greater than q,
such that its total probability is 0.95, is the confidence
region of probability 0.95. Because the distribution of Nn is
discrete, the approximation of the law of Wjim is also
discrete. We can even compute the distance between two
successive values:

m
\2-r m

For m = 1.8 and n = 12, this distance is 2.59 X 10-3. Thus,
proceeding to a local polynomial interpolation helps to
refine the critical value estimation. This procedure was
conducted with the distributions of NIo, N,1, N12, N13 to
check the convergence of these successive approximations
of the critical values. The slight trend observed among them
ensures that they are accurate to the second decimal (data
not shown). It was not possible to compute other estimates
for greater numbers of cycles, because these computations
are very intensive. The generating function of the law of
probability of Nn is a polynomial of degree 2n. For n = 13,
this means that polynomials of a degree greater than 8 X

III'I
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103 were manipulated. For instance, the computation of the
probability distribution of N13 took approximately 35 cpu

minutes on a workstation based on an Alpha
microprocessor.

Because for values ofm greater than 1.82, the distribution
of probability of N0 is multimodal (with several local max-
ima of probability), the above procedure may not lead to a

single interval, but rather to a union of intervals (see Fig. 3).
In this case each interval is limited by a pair of critical
values. This is not an artifact. The procedure was actually
designed to achieve this, because in this case this type of
confidence region is more meaningful than any single con-

fidence interval.

MONTE CARLO SIMULATIONS

Because the analytical results reported above are only as-

ymptotic properties that hold when the number of cycles
tends to infinity, it is necessary to appraise their validity
when the number of cycles is finite. Two questions in
particular require scrutiny. First, under which conditions of
n, m, and No is the variance of m' negligible in the range of

parameter values commonly used in laboratory practice?
Second, under which conditions of n, m, and No is the
confidence interval for No statistically valid?
The simulation algorithm is very easy to implement,

because the distribution of Nn, given that Nn - 1 = N, is the
binomial distribution with parameters N and p. When Nn
was greater than 1000, the gaussian approximation of the
binomial distribution was used. Simulations were per-

formed with m = 1.6 and m = 1.8 and with No = 1 and No
= 1000. For each of these sets of parameter values, 500
trajectories of the process were simulated up to cycle 30.
The series of Miin and Non were computed for each trajectory,
as were the confidence intervals at the 5% level of No. The
presence of No inside this interval was checked for.
The best way to appreciate the proximity of the asymp-

totics is to carefully examine the dispersion of the two
estimators. Thus in Table 1 we reported the mean value, the
range (the difference between the two extreme values), the
standard deviation, and the standard error (standard devia-
tion X sample size- 12) of the two estimators over the 500
trajectories recorded. This table illustrates quite well the
different kinds of convergence of Mrn and No0n. Because Mtn
almost surely converges to m, its mean value is extremely
close to the actual rate of amplification and its dispersion
indicators have extremely low values, which steadily de-
crease as n grows. Moreover, we observe that the conver-

gence is faster when No = 1000 and when m = 1.8. The first
effect is a consequence of the central limit theorem when No
tends to infinity. The second is a direct consequence of the
fact that the convergence speed is on the order of mW'2.
Because of its convergence to a random variable WNO,m and
not to No, the estimator N0on behaves differently. First, no

trend can be noticed in its mean value. No accuracy is
gained as the number of cycles grows. Here, the proximity

to the asymptotics is not indicated by the low value of the
dispersion indicators, but rather by comparing the standard
deviation computed on the 500 trajectories to the standard
deviation of WNO,m denoted by C

Coo = (NO(2 -m)lm)"2.
The numerical values of oO under the different conditions of
simulation are reported in Table 1 to make the comparison
easier. At cycle 10, the standard deviation is somewhat
greater than o- whereas at cycles 20 and 30 it is approxi-
mately equal to o-o. Actually, it is even slightly smaller than
oO. This is not an artifact, because this is consistent with
theoretical results, but these are beyond the scope of this
article.

During the theoretical part of our work, we were unable
to determine an exact level for the confidence interval and
found only its upper boundary. The Monte Carlo simula-
tions help estimate the real level of this confidence interval,
with the frequency of confidence intervals not encompass-
ing the initial number of molecules used to initiate the
simulation. This frequency, denoted 13, is an estimator of ,3,
which is the real level. Of course, 13 aa. To appreciate the
accuracy of the estimate of 13 computed on the data set
collected during the simulation, we can compute a confi-
dence interval for (3. The length of this interval is the best
indication of the estimate's precision. To avoid possible
confusion, we want to emphasize explicitly that this confi-
dence interval has nothing to do with the confidence interval
ofNo computed on each PCR trajectory. A classical formula
found in textbooks (Wonnacott and Wonnacott, 1990) al-
lows the computation of the 13 confidence interval:

P(3Pinf 13 '_ sup) . 0.95:

- (3inf = 3sup - 3

= 1.96(^3(1 - ')/Sample size)12.
The confidence intervals computed in the four simulation
conditions are reported in Table 2. From this table it is
possible to deduce that ,3 is very close to 5% when No =
1000, whereas it is approximately 2% when No = 1.

MEASUREMENT UNCERTAINTIES

The conditions under which our theoretical results can be
applied to experimental data have been clarified by the

TABLE 2 Proportion of No confidence intervals at level
a = 5% that do not contain No at cycle 30

I3inf 3sup

No= 1
m = 1.6 0.0091 0.0220 0.0348
m = 1.8 0.0077 0.0200 0.0322

No = 1000
m = 1.6 0.0276 0.0460 0.0643
m = 1.8 0.0292 0.0480 0.0667
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Monte Carlo simulations. So they can be used to evaluate
the potential of Q-PCR as a quantification method. Several
different words are used, sometimes in a confused manner,
to express the quality of a measurement. The accuracy of a

measurement is the close agreement between the result of a

measurement and the true value of the measurand. It in-
cludes some combination of both precision and bias. The
bias is the offset of a group of measurements from the true
value. The precision is the dispersion of the measurements.
A better term than "accuracy" is "uncertainty of measure-

ment," which states the expected range of values for a

measurement and includes all sources of uncertainty, i.e.,
both the precision and the bias. "Uncertainty" is easier to
use because a low numeric value of uncertainty corresponds
to a low uncertainty, whereas a low numeric value of
accuracy corresponds to a high accuracy, which may create
confusion. The International Organization for Standardiza-
tion and the National Conference of Standards Laboratories
provide very helpful documents covering these topics (In-
ternational Organization for Standardization, 1993; Na-
tional Conference of Standard Laboratories, 1994). A rig-
orous definition would be that the amplitude of the
confidence interval of No is the expanded uncertainty of the
measurement, but because we do not refer to other type of
uncertainty, we will simply use the term "uncertainty."
We can evaluate the inherent uncertainty of PCR as a

quantification principle. This uncertainty is plotted in Fig. 4
for five different rates of amplification and for an initial
molecule number ranging from 1 to 100. For a low initial
number close to unity, the relative uncertainty (ratio of
uncertainty over true value) is greater than 100%. For in-
stance, the confidence interval computed with No = 1 and
m = 1.5 is [0.344, 2.901]. This means that in this case the
relative uncertainty is 255%, because the amplitude of the
confidence interval is 2.55. This example is the most ex-

treme case considered in this paper, because No has been set
to its lowest possible value and because the critical values
have not been computed for amplification rates below 1.5.
A second example can help to illustrate that high rates of
amplification can significantly reduce uncertainty when No
is close to unity. The confidence interval computed with No
= 1 and m = 1.9 is [0.606, 1.597]. Here, the relative
uncertainty is only 99.1%. The uncertainty also decreases
quickly as the initial number of molecules No grows. For No
close to 100, the relative uncertainty ranges between 10 and
25%, depending on the amplification rate. Those values are

not negligible. Of course, for larger initial quantities the
uncertainty would be smaller. For instance, a relative un-

certainty of 1% is achieved for No = 104 and m = 1.88.
It is not surprising then that large fluctuations are ob-

served when quantifications of minute quantities of target
molecules are attempted. A comparison of these experimen-
tal fluctuations to the theoretical uncertainty computed in
this paper would be of great value. The uncertainty of a real
experimental measurement is naturally greater than the un-

certainty of its simulated counterpart. The nucleic acid
extraction, the reverse transcription, or the quantification
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FIGURE 4 Initial molecule number and rate of amplification influence
on the relative uncertainty of Q-PCR. The amplitude of the confidence
interval ofNo divided by No can be regarded as an expression of the relative
uncertainty of a quantification protocol based on a PCR amplification. On
this plot, it is possible to note both the effect of the amplification rate on

this precision index and the effect of the initial number of target molecules.
This latter parameter has the most significant effect. When the initial
molecule number is 100, the relative uncertainty is between 10% and 25%,
depending on the amplification rate. This illustrates that even for relatively
large numbers of target molecules, the fluctuations are not negligible.

steps all propagate their own uncertainty in the final result.
As soon as a device is available to conduct the experiment
modeled in this paper, it would be interesting to calibrate it
precisely so as to achieve the error propagation analysis
with real data. The limit of reliability of Q-PCR is recog-

nized to be higher than the detection sensitivity of the PCR
itself. We hope that our results will contribute to the exten-
sion of the use of PCR to quantify small numbers of target
molecules by clarifying the intrinsic fluctuations of the
reaction and providing algorithms to cope with it.

Note added in proof: All of the computations reported in this paper have
been done with Mathematica (Wolfram Research, 1992). The whole set of
packages as well as documenting notebooks are available through anony-

mous FTP at ftp.imag.fr in/pub/TIMC/TIMB.

We are indebted to Pr. Jacques Demongeot for his constant encouragement
in the process of writing this paper, and to Dr. Philippe Dumas for very

stimulating discussions in the early phase of this work. Special thanks to
Mark Maxwell from McDonnell Douglas Aerospace for introducing us to
the proper vocabulary of metrology. We thank Ms. Kate Wright for reading
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