-

View metadata, citation and similar papers at core.ac.uk brought to you by .{ CORE

provided by Elsevier - Publisher Connector

Available online at www.sciencedirect.com

scuENCE@DIRECT“ Theoretical
Computer Science

ELSEVIER Theoretical Computer Science 339 (2005) 344371

www.elsevier.com/locate/tcs

A context-free and a 1-counter geodesic language
for a Baumslag—Solitar group

Murray Eldet

School of Mathematics and Statistics, University of St Andrews, North Haugh, St Andrews, Fife,
KY16 9SS, Scotland

Received 23 November 2003; received in revised form 9 November 2004; accepted 2 March 2005

Communicated by Z. Esik

Abstract

We give a language of unique geodesic normal forms for the Baumslag—Solitar group BS(1,2) that
is context-free and 1-counter. We discuss the classes of context-free, 1-counter and counter languages,
and explain how they are inter-related.
© 2005 Elsevier B.V. All rights reserved.

Keywords:Regular; Context-freez-automaton; Counter; 1-counter; Baumslag—Solitar group; Language of
geodesics

1. Introduction

In this article we give a simple combinatorial description of a language of normal forms
for the solvable Baumslag—Solitar group 8S2) with the standard generating set, such
that each normal form word is geodesic, each group element has a unique normal form
representative, and the language is accepted by a (partially blind) 1-counter automaton. It
follows that the language is context-free.

Several authors have studied geodesic languages for the (solvable) Baumslag—Solitar
groups, including Brazil [1], Collins et al. [2], Freden and McCann [6], Groves [8], Miller

E-mail addressmurray@mcs.st-and.ac.uk
URL: http://www-groups.mcs.st-andrews.ac.uk/murray/

1 Supported by EPSRC Grant GR/S53503/01.

0304-3975/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2005.03.026

https://core.ac.uk/display/82525316?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/tcs
mailto:murray@mcs.st-and.ac.uk
http://www-groups.mcs.st-andrews.ac.uk/murray/

M. Elder / Theoretical Computer Science 339 (2005) 344-371 345

(a,%:%) (b, a(x")

d, A
& &

Fig. 1. A counter automaton acceptia@b"a".

[12], and the author and Hermiller [3]. It is well known that Baumslag—Solitar groups
are asynchronously automatic but not automatic [5], and the asynchronous language is
not geodesic. Groves proved that no geodesic language of normal forms for a solvable
Baumslag—Solitar group with standard generating set can be regular [8], so we could say
that context-free or 1-counter is the next best thing.

Collins, Edjvet and Gill proved that the growth function (the formal power series where
thenth coefficient is the number of elements having a geodesic representative ofigngth
of a solvable Baumslag—Solitar group is rational [2], and Freden and McCann have studied
growth functions for the non-solvable case [6].

If Gis a group with generating st we say two words, v are equal in the group, or
u =g v, if they represent the same group element. Weltsaydv are identical if they are
equal in the free monoid, that is, they are equayin

Definition 1 (G-automatoi Let G be a group and’ a finite set. A (non-deterministic)
G-automatond; over is a finite directed graph with a distinguished stasttexgg, some
distinguishedaccept verticesand with edges labeled BE*! U {¢}) x G. If pis a path in
Ag, the element of2*1) which is the first component of the labelpis denoted byv(p),
and the element d& which is the second component of the labepa$ denoteds(p). If

p is the empty pathg(p) is the identity element o& andw(p) is the empty wordAg is
said toaccepta wordw e (X*1) if there is a patlp from the start vertex to some accept
vertex such thatv(p) = w andg(p) =¢ 1.

Definition 2 (Finite state automaton; RegularIf Gis the trivial group, them s is a (non-
deterministic)inite state automatar\ language isegularif it is the set of strings accepted
by a finite state automaton.

Definition 3 (Counter; 1-counter A language ik-counterif it is accepted by somé&*-
automaton. We call the (standard) generator&‘o€ounters A language isounterif it is
k-counter for somé > 1.

For example, the languadeb"a" | n € N} is accepted by th&2-automaton in Figl,
with alphabet:, b and counters, x».

In the case oZ-automata, we assume that the generator is 1 and the binary operation is
addition, and we may insist without loss of generality each transition changes the counter
by either Q1 or —1. We can do this by adding states and transitions to the automaton

346 M. Elder / Theoretical Computer Science 339 (2005) 344-371

(a,e —1) (b,1—¢)

9 @ A

(e.e— %) € (e,$— ©)

Fig. 2. Pushdown automaton acceptirigh” .

appropriately. That is, if some edge changes the countérsby, 1 then divide the edge
into |k| edges using more states. The symbels- indicate a change of, -1, respectively,
on a transition.

Definition 4 (Pushdown automaton; Context-fjeeA pushdown automatois a 6-tuple
(Q0,2,1,1,q0, A) whereQ, X, I' andA are all finite sets, and

(1) Qisthe set of states,

(2) 2 is the input alphabet together with the empty werd

(3) I' is the stack alphabet together witlithe empty symbol),

(4) 7 is the transition function,

(5) qois the start state,

(6) A C Q isthe set of accept states.

The transition function takes as input a state and an input letter, and outputs a state and a
stack instruction of the form — f, which means pop from the top of the stack then push
p on the top of the stack. Note that> y means pusk onto the stacky — ¢ means pop
off the stack, and — ¢ means do nothing (and in this case will be omitted).

A word is accepted by the automaton if there is a sequence of transitions starting from
the stateyg with an empty stack, pushing and popping stack symbols, to an accept state.
Note that you can always push new symbols onto the stack, but you can only pop if the
correct symbol is on top of the stack.

A language icontext-fredf it is the language of some pushdown automaton.

As an example, the langua@€’b” | n € N} is accepted by the pushdown automaton in
Fig. 2 with alphabetz, b and stack symbols,4, and this language is not regular [9,15].
Note that our definition of counter automata is not equivalent to a pushdown automata with
a stack (with one type of token) for each counter, since in our definition, we cannot test the
value of the counter until we are done reading the input. For this reason, these automata are
sometimes referred to as “partially blind” or vision-impaired counter automata, since they
cannot “see” whether the counter is non-zero except at the end.

Definition 5 (Baumslag—Solitar grogp The group with presentatiofa, 7 | rar = = a”)
is thesolvable Baumslag—Solitar grolS(1, p), for p € Z, p > 2.

In this article we will consider the group BS 2). LetG = {a, a1, 1, 11} be the inverse
closed generating set for BE 2). We give a picture of part of the Fi§. From the side the

M. Elder / Theoretical Computer Science 339 (2005) 344-371 347

Fig. 3. Part of the Cayley graph for BE 2).

Cayley graph for B&L, 2) in Cayley graph looks like a binary tree. S&¢ for a detailed
description of the Cayley graph.

The paper is organised as follows. In Sections 2 and 3 we examine the various defini-
tions of formal languages presented above, and establish their relative intersections and
inclusions, which we illustrate in Fig. 5. In particular, we prove that 1-counter languages
as defined are context-free. In Section 4, we define a normal form language r2BS
and prove that each normal form word is geodesic, and the language of normal form words
bijects to the set of group elements. In Section 5, we prove that this normal form language
is 1-counter, which implies it is context-free. Then in the last section we show that the
language of all geodesics for BS 2) is not counter.

2. 1-counter languages
Lemma 6. Everyl-counter language is context-free.

Proof. LetL be a 1-counter language accepted by a 1-counter mabhiivee will con-
struct a (non-deterministic) pushdown automdtbthat accepts the languabewith stack
symbols &, $_ and 1. LetM be a copy oM obtained by replacing transitionis, +) by
(a,e — 1) and(a, —) by (¢, 1 — ¢), and letM_ be a copy ofM obtained by replacing
transitions(a’, —) by (a’, ¢ — 1) and(a’, +) by (@', 1 — ¢).

N is constructed from these two automafa andM_ as follows. The states of consist
of two distinct stateg.., ¢g_ for each state of M, plus a new start statg and a new single
accept stat@. There is a transition labelle@, ¢ — $,) from sg to the former start state
(go)+ in M. For eachy, in M, there is a transition labelle@, $, — $_) from ¢, to
the corresponding staie. in M_, and a transition labelle@, $_— — $,) from ¢_ to ¢+
in M+.

Finally, for every accept statgin M there is a transition labelle@d, $; — &) from g
in M to the single accept stafg and(e, $_- — ¢) from g_ in M_ to the single accept
statep.

This new machine works by starting with an empty stack and pushirap&he bottom.
Then if the old machine increments the counter, the new machine adds 1 to the stack. From

348 M. Elder / Theoretical Computer Science 339 (2005) 344-371

(a,e —1) (b,1—¢€) (a,e—1) (b,1— ¢)
: : : : ®
qo (e,e— $) (5,$—9) (e,3—¢)
(a,x1) (b3t (ax) (b3

SRYRIRY

Fig. 4. Pushdown automaton and 2-counter machine acceptintja"b".

then on if the counter value never dips below zero, the new machine will stay i the
states. However, if there is ever a “pop 1" but the symbol on the stack,ip#ss over to
M_. Then the height of the stack now represents the negative value of the counter, you stay
in this side until the value of the counter comes back to zero, in which case you can switch.
It follows that the language df is precisely the language of the 1-counter machine
O

Lemma 7. The language of strings of the foutf 5" a" b" is both counter and context-free
but not1-counter.

Proof. The pushdown automaton and th&-automaton in Figd both accept this language,
so it is context-free and counter.

Suppose by way of contradiction that the language is 1-counter, akiddeta 1-counter
machine for it withp states. Assume without loss of generality that each transition changes
the counter by either,3-1 or 1.

Definea; = al’z, b1 = bl’z, az = al’z, by = bP*, and consider the word = aibiazbs
which belongs to the language.

Consider the prefixi; = aP®. Since this prefix is longer than the number of states, it
must visit some state twice, 8@ = xgyozo Whereyg represents a loop of length at mpst

If going aroundyg causes a net change of zero in the value of the counter, then going
around it twice would give a new word that is accepted/hyput not of the forna b™a" b" .

So assume the net changéaqdswith |kg| > 1.

Let s1 = xozo Which has length at leagt? — p, so must go around a loop M. So
s1 = x1y1z1 With y1 a loop of length at mogt. Again, if the net change in the counter going
aroundy is zero then we can go aroungtwice and have a word accepted ithat is not
in the language.

If the net change i%; of the opposite sign tég then there is a word that godg | times
around the loopyg then|kg| times aroundy1, which keeps the final value of the counter at

M. Elder / Theoretical Computer Science 339 (2005) 344-371 349

zero, so is accepted By, but since we are pumping toe’ prefix ofswe have a word that
is not in the language.

Thus y1 changes the counter By with |k1|>1 and having the same sign &f. Let
so = x1z1 With length at leasp? — 2p.

Iteratively we can writg; = x; y;z; with y; aloop which changes the value of the counter
by an amount; of the same sign ds), until there are no loops left ik z;, which does not
happen until at leagt iterations (since; has length at leagi? — ip).

Sincex; z; has no loops, it has length at mgst- 1. So it changes the value of the counter
by at most; where|l1| < p. Whereas, the sum of the; | changes the value of the counter
by at leasp since each one contributes at least 1 to the sum.

Now repeat this analysis for the subwoids a, andbo.

If all the loops in each subword change the counter by the same sign, then we have a
contradiction, since the net change of all the loops is greater tharhéreas the net change
of the four remaining:;z; segments is less thamp4so they cannot cancel each other.

Thus at least two subwords have loops of opposite signs. If the loepdiave the same
sign as the loops inx andb2, then the loops ih1 must have the opposite sign. So suppose
that some loop iy changes the counter llyand some loop i, changes the counter by
| of the opposite sign tk. Then pumping the first loop by| and the second bik| gives a
word that is accepted by and not in the language.

Otherwise if the loops i1 have the opposite sign to the loops in eithgror b7, then
take a loop inz; which changes the counter liyand a loop i or b, that changes the
counter byl of the opposite sign tk. Then pumping the first loop by| and the second by
|k| gives a word that is accepted Byand not in the language.[J

Corollary 8. 1-counter languages are not closed under concatenation or intersection.

Proof. The language” = {a"b" |n € N} is 1-counter buCC is not 1-counter by the
previous lemma (Lemma).
The language® = {a"b"c" |m,n € N} andE = {a"b"c" |m,n € N} are 1-counter,
butD N E = {a"b"c" | n € N} is not context-free [9,15] so by Lemma 6 is not 1-counter.
O

However, we have

Lemma 9 (Closure properties of k-counter language#f C, C’ are kcounter fork>1
and L is regularthenC U C’, C N L, CL and LC are all kcounter

Proof. Let M, M’ bek-counter automata faf, C’, with start statego, gy, statess, S’, and
accept stated, A’, respectively. Then constructkacounter automaton acceptidgU C’
with a new start statpo joined togo, g by two epsilon transitions.

Let N be a finite state automaton farwith statesT, start statepg and accept stated3.
Construct &-counter automaton acceptidgN L having states x T, start statéqo, po),
such thaig, p) is an accept stateif € A, p € B (they are both accept states), and if there
are transitions fromqtor in M labelled by(«, g) andptosin Nlabelled byawhereg € 7*,
then there is a transition frog, p) to (r, s) labelled(a, g).

350 M. Elder / Theoretical Computer Science 339 (2005) 344-371

Construct &-counter automaton accepti@i with start stateyg and accept statdsby
adding an epsilon transition from each accept statd & po.

Construct &-counter automaton acceptih@ with start statepg and accept statesby
adding an epsilon transition from each accept staté twfgg. [

Iterating the union operation a finite number of times gives

Corollary 10. The union of a finite number of k-counter languages is k-counter.

3. Context-free and not counter

The languagéa”b"a" |n € N} accepted by th@?-automaton in Figl is not context-
free by standard results [9,15]. In this section we show that conversely, there is a language
that is context-free but not counter.

Consider a string of letters b, c. We say a string containssgjuareif it has a subword of
the formww. An interesting result from combinatorics is that one can write out a square-free
word in a, b, ¢ of arbitrary length. This is due to Thue and Morse and described in [10,
Chapter 2]. In particular we have

Proposition 11(Thue-Morsg Defineahomomorphismfda, b, c}by f(a) = abe, f(b)
=acand f(c) = b.Then forany € N, f'(a) is square-free

For example, to computg3(a) we have
a — abc — abcacb — abcacbabcbac.
In order to show that a language is not counter we make use of the following lemma.

Lemma 12 (Swapping Lemmnja If L is counter then there is a constant- 0, the“swap-
ping length, such that ifw € L with length at leas®s + 1 then w can be divided into four
piecesw = uxyz such thafuxy| <2s + 1, |x|, |y| > Oanduyxz € L.

Proof. Let s be the number of states in the counter automaton, arlbeta path in the
zK-automaton such thai(p) = w. If p visits each state at most twice then it cannot have
length more than £ sop visits some state at least three times. udte the first part of
w(p) until it hits this state, thew a non-trivial loop back to this state the second tima,
loop back a third time, andthe rest ofv. Sow(p) = uxyz ends at an accept state, and the
second component @fequalsg(u)g(x)g(y)g(z) =z« 1. Switching the orders of andy,

the pathuyxzstill takes you to the same accept state, gadxz) =« 1 since all elements

of Z*¥ commute, sayxz € L. O

Note its similarity to the pumping lemmas for regular and context-free langy@des.
This lemma is only of any use if your wokl has no squares, otherwise you can just swap
the square and get the same word (that is y).

Theorem 13. There is a language that is context-free but not counter.

M. Elder / Theoretical Computer Science 339 (2005) 344-371 351

contextfree
counter

Y a'b"a"

aMo™a"h"

Fig. 5. Intersections of the formal languages.

Proof. Consider the language of all stringsdnb, ¢ of the formww?, wherew?® is word
obtained by reversing. It is well known that this is a context-free langud§¢l5], since

it is accepted by a pushdown automaton which uses the stack to store the first half of the
word, then checks the last half of the word matches.

Suppose by way of contradiction that this language is counter, with swapping length
asin Lemma 12. Law be a square-free word from Proposition 11 of length at least 2.
ThenwwX can be split into four subwords x, y, z such thauxyfalls in the firstw prefix.
Sincew has no squares and y are adjacent words then it must be tha y. But uyxz
will fail to be in the language because the second part will not be the reverse of the first
part. [

In Fig. 5 we have a diagram of sets of regular, 1-counter, context-free and counter lan-
guages, and by the above results we have shown the given inclusions.

The fact that there are counter languages that are not context-free and vice versa can
be observed by considering word problems for various groups. The word problem for a
groupG with generating sef is the setW P(G) = {w € G* : w = 1} of all words in the
generating set that evaluate to the identity element. By work of Muller and Schupp [14], the
word problem for the groug? is not a context-free language, whereas the word problem of
the free group on two (or more) generators is context-free. Elston and Ostheimer [4] proved
that a group has a deterministic counter word problem (with a so-called inverse property)
if and only if it is virtually abelian, so the word problem f&@? is counter. To see why
W P (F>) is not counter, consider a Thue—Morse word made up of an arbitrary number of
subwords(aaa), (aba), (ab~—1a) encoded by the letters, y, z, followed by its “reverse”
in the subwordga—1a=1a™1), (a=b~1a=1), (a1ba—1) encoded by the letters, y’, z'.

This word is in the word problem, but applying the Swapping Lemma (Lemma 12) to the
encoded word gives a word that does not encode a word in the word problem.

The first examples of languages that are counter but not context-free were given by
Mitrana and Stiebe [13]. Mitrana and Stiebe give the following lemma, called the “Inter-
change Lemma”, which they use to show that the language of palindromes and the language

352 M. Elder / Theoretical Computer Science 339 (2005) 344-371

Fig. 6. AnX word.

{a'b' |i >0} are not counter. We include it here for completeness, and to show how it
differs from the Swapping Lemma above.

Lemma 14 (Interchange LemmfL3]). If L is the language of a G-automaton where G is
an abelian groupthen there is a constant p such that for any werd L of length at least
p, and for any given subdivision of x into subworngdsvivowy ... wyv,41 With [w;| > 1,
there are some, s such that the word obtained from x by interchangingand wy is in L.

4. The normal form language

Recall that B$1,2) = (a,t|tat~t = 4?) with the (standard) inverse closed gener-
ating setG = {a,a"1,¢,t~1}. We wish to describe geodesic words with respect to this
generating set.

Definition 15 (E, N, P, X). Aword is of the formE if it is a’. A word is of the formN if
it has not letters and at least one? letter. A word is of the fornP if it has nor—? letters
and at least ontletter.

A word is of the formXif it is the concatenation of B word oft-exponenk, followed by
anNword oft-exponen{—k). Thatis, arX word is a word of typd&Nwith zeror-exponent.

Benson Farb called words of type“mesas”, since drawing aX word in the Cayley
graph resembles this land formation. See Big.

While the following fact is well known, we include an elementary proof of it here for
completeness.

Lemma 16(Commutatioh If u has zerotexponent theau = ua anda™tu = ua=1.

Proof. If uis typeXthenu =gs a' soau = a'+1 = ua.

If uis typeNP then letu = vw wherev is typeN with r-exponent-k andw is typeP
(so hag-exponenk). Each time we push’ past a1 it becomes:? sincear ! = r~1a?.
Thenau = avw = va? w. Each time we push? past a it becomes:? " sincea?t = ta.

k
Soau = avw = va® w = vwa = ua. Finally if uis any other form, first replace each
occurrence ofa’r~1 in uby a? . Thenu becomes a word of typeP with zeroz-exponent.

M. Elder / Theoretical Computer Science 339 (2005) 344-371 353

We can pasa through this word as in the previous case, and themjaick in its original
form and we are done.]

Lemma 17 (Miller [12]). Every geodesic word iG* is a subword of a word of type NPN
or PNP.

See Lemma 1 diB] for a proof. We can use this lemma to describe a subset of geodesic
words that represent every group element.

Define a typeN P< word to be a word of typ&lP with non-positiver-exponent sum,
and typeN P-. to be a word of typdP with positiver-exponent sum.

Lemma 18(Ten types Every elementaBS(1, 2) has a geodesic representativediithat
is one of ten types

E,X,N,XN,NP<, XN P havingr-exponent< 0, or

P, PX, NP., NPX havingt-exponent> 0, such that no more than three a ar? letters
can occur in succession in the geodesic.

Hermiller and the author used a similar characterisation in our work on minimal almost
convexity[3].

Proof of Lemma 18. Every group element can be represented by some geodesic word in
G*. If a geodesic word has nd! letters then it is typ&. Otherwise by Lemma 17 itis a
word of typeN, P, NP, PN, NPN or PNP.

If the geodesic is typBlPthen it either has non-positiveexponent sum, so is typéP ¢,
or positivet-exponent sum, so is typg P-..

If the geodesic is typ@N then it either has zerbexponent sum, so is typ€ negative
t-exponent sum, so is typéN, or positivet-exponent sum, so is typgex.

Suppose the geodesic is a wawbf type NPN. If w has positive-exponent sum it is
type NPX If w has zerd-exponent sum, then write it asx whereu is type NP with zero
t-exponent sum andis typeX. Sincex =ps a” for some integep then applying Lemma
16 we getw = uxpsua®? =ps a’u =ps xu which has the same length and is typP.

If w has negativé-exponent sum, thew = a1~ tuta®2txt~ta®r~1v whereu is type E
or NP with zerot-exponent sumx is typeE or X, v is typeE or N, andg; € Z. Then by
Lemma 16

w=pgs a2 tE "y xr ey
=gs atets g byt
which is not geodesic since we can cancel at the end.

Finally, suppose the geodesic is a wardf typePNP. If whas negative or zeteexponent
sum it is typeXNP. If w has positivet-exponent sum, them = a®rxt~ta®rtura®rv
wherex is typeE or X, u is typeE or NP with zerot-exponent sumy is typeE or P, and
g € Z. Then by Lemma 16

w=ps a2t~ ¢ un)ry
=gsattete ey xr Yy

which is not geodesic since we can cancélr at the end.

354 M. Elder / Theoretical Computer Science 339 (2005) 344-371

Fig. 7. TheN-run 210X —1).

The additional condition that no more than theéeare allowed in succession is obtained
by observing that® =35 ra3~1 so any power of greater than five is not geodesic, and
sincea® =gy ra?t~tanda® =ps ta’t~ta =ps ara’t~1 we choose to replageexponents
of 4 or 5 by subwords of the same length. An identical argument eliminates powers of
greater than three.d

Definition 19 (Run). An N-runis a word of the form

ater gt lgE e
A P-runis a word of the form
a®ta®r .. ta®*ta®.

We can write a run in shorthand by just writing te@xponents. For example?s —tar —1a°
t~Yar—1a~1 can be written as 210%1).

We call thea-exponent®ntriesof the run. A run isnon-trivial if it has at least one non-
zero entry. Note that a run that has at leastiooer —1 letter will have at least two entries,
since by definition a run starts and ends with a powex (@ossiblya®).

We say a geodesic has at most one non-trivial runifit can be expressed as the concatenation
of geodesidN- or P-runs such that at most one factor is non-trivial. For example, the word
2a?r~Yar =2 can be written a§r?) (a?r1ar—2), so has at most one run.

Drawing theN-run represented by 21041) in the Cayley graph we start to see what
behaviour is allowed in a geodesic. For instance, the sub-rga%)land (—1)1 are not
allowed since

afla*l — fla, ailfla — flafl.
Also, if theN-run 2101—1) were preceded by then we would have 1a? which can
be written asiz 1. In fact, the only time you could ever see an entry that is ndt@ —1

is at thestartof anN-run, or theendof aP-run (Fig. 7).

M. Elder / Theoretical Computer Science 339 (2005) 344-371 355

1 0

Fig. 8. No X—1), (-D)linarun.

Lemma 20(No|i| > 6). If a run represents a geodesic word and has an entry i that is not
one ofl, 0and(—1), then i must be one & 3, 4, 5, (—2)(—3), (—4), (—5) and occurs at
the start of an Nrun or the end of a Run.

Proof. If i >6 occurs at any point in a run thefi — ra%~1 so the run is not geodesic.
For N-runs, ifi >2 occurs after the start of the run therta? — a1 so the run is not
geodesic. If < — 2 occurs after the start of the run thenta =2 — a~1r~1 so the runis
not geodesic.
For P-runs, ifi >2 occurs before the end of the run thefr — ta so the run is not
geodesic. If < — 2 occurs before the end of the run ther?s — ta~1 so the run is not
geodesic. [

Lemma 21 (No consecutivé(—1), (—1)1). Ageodesicruncannotcontalit—1) or (—1)1.

Proof. For anN-run:

1(-1) — 01, at a7 > 1 1q,
(-1 - 0(=1), a1l ta - r1a L.

For aP-run:
1(-1) — (=10, ata ! — a1z,
(-1)1 — 10, a lta - at.
See Fig8. O

Lemma 22 (No consecutivél, (—1)(—1)). There existrewrite rules which donotincrease
length which can be applied to a geodesic run to eliminate all occurrences of consecutive
11 or (=1)(—1) after the first two entries of an-Kin and before the last two entries

of a P-run

Proof. Leti € Z.
For anN-run:

ill - (i +10(-1), a't7larta —» o't 2471,
i1 — (G — 101, at a1 a7 5 4142,

356 M. Elder / Theoretical Computer Science 339 (2005) 344-371

1 ()

Fig. 9. Noi11, i(—1)(—1) in anN-run.

These moves are illustrated in F8.We can always perform these rewrites to get a word
of the same length or shorter. That is, suppose you haeram, which is geodesic so we
assume has na41) or (—1)1. Starting at the right end of thd-run, if there is ani1l, we
know thati > 0. Replacing this byi + 1)0(—1) gives a word that is not geodesid it~ 0,
otherwise gives 1G-1). Now if the preceding entry i6—1) the word is not geodesic, so is
0, 1 or we are at the start of the run. A similar argument holds when we(s€g(—1).

Soiterate this procedure until the start of the runis reached. This eliminates all occurrences
of adjacent non-zero entries after the first two entries. That is, iNthen starts with 110
for example, the rules do not apply.

For aP-run:

11 — (=1)0G + 1), atata® — a %qi 1,
(D (-1i — 10¢ - 1), aYta Yta' — ar?a’~1.

Similarly we can always perform these rewrites to get a word of the same length or
shorter, this time starting at the left end of the word and moving right, so we can eliminate
all adjacent non-zero entries except in the last two positioris.

Next we will show that every geodesic of one of the ten types can be “pushed” into a
geodesic word for the same group element that have at most one non-trivial run. As an
example, ifw = a®ra®s ... a*ta™tta =1 .. 11"~ 1g"0 is a geodesiX word, then
we can push the inner subwaaé ra”t ~La'lx to ta”t~1a® "k and iteratively push at each
level to gettka™t—La® =1 t=1af1tm—1q%+M0, We show this in Figl0.

Lemma 23 (At most one rup Every group elementis represented by some geodesic of one
of the ten types having at most one non-trivial .run

Proof. By Lemmal8 each group element is represented by some geodesic of one of the ten
types. If the word is type, N, P then there is at most one non-trivial run. If it\§ XN

or PXthen by Lemma 16 we can pualietters to one side of th€ word to get at most one
non-trivial run, as we did in the example above. BoP< words we havey = wywnp
wherewy p has zerd-exponent, so by Lemma 16 we can puasletters to the left of the

M. Elder / Theoretical Computer Science 339 (2005) 344-371 357

1 S S S S S S S N | S S S S S S S S O A s

Fig. 10. Pushing aX word to have one non-triviall-run.

20(-1) 30(-1)

I I I I I I I I

Fig. 11. Prefixes foN-runs of anX word.

NP word to get at most one run non-trivial run. PONPwords we haver = wxwywy p
wherewy p has zerd-exponent, so by Lemmib we can push letters to one side of the
X andNP words to get at most one non-trivial run. FEP-. words we haveyr = wypwp
wherewy p has zerd-exponent, so by Lemma 16 we can padletters to the right of the
NP word to get at most one non-trivial run. FhPX words we havaw = wypwpwy
wherewy p has zerd-exponent, so by Lemma 16 we can puasletters to one side of the
X andNP words to get at most one non-trivial run.C]

Given that every word can be pushed into a word having at most one non-trivial run, and
we can choose which patterns are not allowed in a run, we are ready to define the normal
form language.

The only issue that remains is the prefix of each run. For example, a geodesic &f type
can be pushed into a word with exactly ddeun. The start of this run can be chosen to be
eithera?:=1, a3=1 a=2t=1 or a=3¢~1, for if the run starts with 1 themt~1 — a2 sois
not geodesic. If it starts with 4 or 5 then by Lemmad8— ta?+~! anda® — ra%t1a
S0 we elect to write it starting wita 2 instead, and if the run starts with 6 then it is not
geodesic.

The next few entries could be any one of the following:

200, 201, 210,300, 301, 30(—1), 310 or the negatives of these.

Note that the prefix 20-1) is not allowed since?a?:—%a~1 is not geodesic, whereas

30(—1) is allowed since?a® —2a~1 is geodesic. See Fig. 11.

358 M. Elder / Theoretical Computer Science 339 (2005) 344-371

Each case is treated separately in the following lemma. Then after these prefixes (suffixes
for P-runs) the run has only,@, (—1) with no consecutive non-zero entries.

Lemma 24 (Prefixes/suffixes of ruhsin this lemma we assume that each word has been
pushed into a word with at most one non-trivial ftand that each run has at least three
1+ letters
e The N-run in a geodesic word of type XN, X N P with non-positive-exponent sum
must start with one of
200, 201, 210 300, 301, 30(—1), 3100r the negatives of these.
e The N-run in a geodesic word of typé, N P< with non-positive t-exponent sum must
start with one of
000, 001, 010 100, 101, 10(—1), 110 200, 201, 20(—1), 210 300, 301, 30(—1), 310
or the negatives of these.
e The P-run in a geodesic word of tygg N P-. with positive t-exponent sum must end
with one of
000, 100,010 001, 101, (—1)01, 011, 002 102, (—1)02, 012 003 103 (—1)03,013
or the negatives of these
e The P-run in a geodesic word of tygeX, N P X with positive texponent sum must end
with one of
002 102 012 003 103 (—1)03, 0130r the negatives of these.

Proof. If an N-run starts with 11 ori(—1)(—1) then by Lemm&2 we can replacéll by
(i + 1)0(—-1) andi(—1)(—1) by (i — 1)01 without increasing length. Thus the first three
entries of arN-run will include a 0.

If an N-run in a word of typeX, X N or XNPstarts withi with |i| >4 then we can replace
ta**tit=1 by r?a?—1a’t~1 to get a word of the same type and preserving length. N-aon
in a word of typeX, XN or XNP starts withi with |i| <1 then we can replaceis 1 by
a? , reducing length, contradicting the fact that the word is geodesic. Thissran in a
word of typeX, XN or XNP starts with 23, (—2) or (—3).

This gives the following possibilities for the first three entries:

200 201, 20(—1), 210, 2(—1)0, 300, 301, 30(—1), 310 3(—1)0 or the negatives of these.
We can eliminate @-1)0 and 3—1)0 since they encod€ r~1a=1r=1 = a'~1r~1ar—1 for

i = 2,3 so are not geodesic. We also observe that-20 encodes2a?:—2a~1 which is
not geodesic (as seen in Fig. 11).

This leaves 20201, 210, 300, 301, 30(—1), 310 (or their negatives) as the possible pre-
fixes to theN-run in a geodesic of typ&, X N or XNP. It is easy to check that each of these
prefixes is geodesic.

If the N-run in a word of typeN, N P< starts withi with |i| >4 then we can replace
ta*tit~1 by 12a%r—1a’/ 1~ preserving length. Note that they become words of typior
XNP. If the N-run in a word of typeN, N P< starts withi with |i| <3 then we can have
prefixes of the formi0, ;10 wheni > 0 andi(—1)0 wheni < 0.

Explicitly, this gives
000,001, 010, 100, 101, 10(—1), 110, 200, 201, 20(—1), 210, 300, 301, 30(—1), 310
or their negatives. It is easy to check that each of these prefixes is geodesic. Note that in
this case we cannot eliminate 261) since there are no preceditig.

M. Elder / Theoretical Computer Science 339 (2005) 344-371 359
The proof forP-runs follows a similar argument, and is omitted.]

Lemma 25(Short run3. In this lemma we assume that each word has been pushed into a
word with at most one non-trivial ryrand that each run has no more than twie letters.
e The geodesics of type, X N and XNP are the sdt; of words of the form

tatt~al, ij = (£2)0, (£3)0, 21, 31, (—2)(—1), (=3)(—1);
ta't Yalt=Yak, ijk = (£2)00, (£3)00, 201, (£3)01, (—2)0(—1),
(£3)0(—1), 210 310, (—=2)(—=10, (—=3)(—=1)0;
2a’t Yalt~1ak, ijk = (£2)00, (£3)00, 201, (£3)01, (—2)0(—1),
(£3)0(—1), 210 310, (—=2)(—=10, (=3)(—=1)0;
ta't~Yalt=Yakt, ijk = 201 (£3)01, (—2)0(—1), (£3)0(—1).

e The geodesics of type N antlP< are the setL, of words of the form

a't~tal, ij = 00, (£1)0, (£2)0, (£3)0, 0(£1), 0(£+2), 0(£3),
_ , 11,21, 31, (=1 (-1), (=2(=1), (=3)(=D);
a't~lalt, ij = 0(£1), 0(£2), 0(+3), 11, 21, 31,

(=D(=D), (=2)(=D), (=3)(-1);

alt7Yalt=1a*, ijk = 000 (+1)00, (+£2)00, (£3)00, 0(£1)0, 0(£2)0, 0(£+3)0,
00(+1), 00(£2), 00(£3), (£1)0(+1), (+£2)0(£1), (£3)0
(£1), 110,210, 310, (=1)(-=1)0, (—=2)(=1)0, (=3)(—=1)0;

a't7Yalt=Ya*r, ijk = 00(£1), 00(£2), 00(+3), (+£1)0(£1), (£2)0(+1), (+3)0
(£1):

a't7Yalt=1a*2, ijk = 00(£1), 00(£2), 00(+3), (+£1)0(£1), (£2)0(+1), (+3)
0(+1).

e The geodesics of type P andP-. are the setl3 of words of the form

atal, ij = 00,0(£1), 0(£2), 0(+3), (£1)0, 11,12, 13,
=D (=D, (=D(=2), (=D(-3);

tLaital ij = (£1)0,11 12,13 (—1)(—1), (-1)(—=2), (-=1)(-3);

a‘taltak, ijk = 000, 00(£1), 00(£2), 00(+3), (£1)0(£1), (£1)0(+2), (£1)
0(£3), 0(+1)0, 011, 012, 013 0(—1)(—1), 0(—1)(—2),
0= (-3);

t~Yattalta®, ijk = (£1)0(%1), (£1)0(£2), (£1)0(+3);
124 talta®, ijk = (£1)0(%1), (£1)0(£2), (+£1)0(+3).

e The geodesics of type PX and NRXust have positived@xponentare the setL,4 of
words of the form

a‘taltaft—1, ijk = 00(£2), 00(+3), 012 013 0(—1)(—2), 0(—1)(—3),
102 10(£3), (—1)0(—2), (—1)0(£3).

Proof. The proof is by exhaustive search. For the first two cases we have either one or two
11 letters, so we considePa’r~1a/t9 andtPa't~1a/t~1a*t?. Thet-exponent must be

360 M. Elder / Theoretical Computer Science 339 (2005) 344-371

non-positive, sgp + ¢ <1 in the first case ang + ¢ <2 in the second case. For the
exponentsli| <3 and|j|, |k| < 1. This gives a finite set of possibilities, so we run through
each and check if it gives a geodesic. Note that the patterr D0s not a geodesic if it
appears in aiN-run preceded by g yet it is geodesic if it is in & or N P> geodesic.

By Lemma22 we choose to reject runs of the fo(im1, 1) and(i, —1, —1) in favour of
i+10, -1 and(— 1,0, 1), respectively, so that we never see three non-zero entries in
a row, even at the start of a run. The details of the exhaustive check are omitted.

For the third and fourth cases we have either one or tetters, so we consider
t~Pa'ta’t=4 andt—Pa'ta’l tak1~4. Thet-exponent must be positive, 0g = 0in the third
andp + ¢ < linthe fourth cases. For tlaeexponentsik| <3 and|j|, |k| < 1. This gives a fi-
nite set of possibilities, so we run through each and check if it gives
a geodesic.

By Lemma 22 we choose to reject runs of the faiml, i) and(—1, —1, i) in favour of
(-1,0,i +1)and(l,0,i — 1), respectively, so that we never see three non-zero entries in
a row, even at the end of a run. The details of the exhaustive check are omittéd.

Definition 26 (Normal forn). There are ten distinct types of normal form words.

e Type N F i words are precisely, a*t, a*2, a*3.

o Type N Fx, NFxy andN Fxnp, all with zero or negativé-exponent, are the words:
tkati—tat-14=1 gt —1g%0sm such thatk > 0 andi>k +m, eg # 0if m > O,
the N-run starts with one of 20201, 210, 300, 301, 30(—1), 310 or the negatives of
these, and after this has onlyQ) (—1) with no consecutive non-zero entries (that is, no
1(-1), (=11, 11 or(—1)(—1) in the run).

If there are less than three?® letters in the run, then the word is in the det of

Lemma25.

e Type NFy andN Fyp_, all with negativet-exponent, are the words:
a1t~ Laf-1171 a1~ 1q%k such that GXk <, &g # O if k > 0, theN-run starts with
one 0f000001, 010, 100, 101, 10(—1), 110, 200, 201, 20(—1), 210, 300, 301, 30(—1),
310 or the negatives of these, and after this has only G-1) with no consecutive non-
Zero entries.

If there are less than three?! letters in the run, then the word is in the dei of

Lemma25.

o Type N Fp and N Fyp_, all with positiver-exponent, are the words:
r~Kaforafiy . afi-1rq®
such that 6k < [, g9 # 0 if kK > 0, theP-run ends with one of
000, 100,010,001, 101, (—1)01, 011, 002 102 (—1)02, 012 003 103 (—1)03,013
or the negatives of these, and before this has only 0-1) with no consecutive non-zero
entries.

If there are less than thredetters in the run, then the word is in the getof Lemma25.

e Type N Fpx andN Fy px, all with positivet-exponent, are the words:
t~*a®rat1r . a®-1ta® =" suchthak > 0,m>0andk +m < [, e # 0if k > 0, the
P-run ends with one of 00202 012 003 103 (—1)03, 013 or the negatives of these,
and before this has only, @, (—1) with no consecutive non-zero entries.

TheP-run must have at least twdetters since th&-exponent of the word is positive. If
there are less than thré&etters in the run, then the word is in the g€etof Lemma25.

M. Elder / Theoretical Computer Science 339 (2005) 344-371 361

Lemma 27 (The language of normal forms surjects to the grpupvery group element is
represented by a normal form word.

Proof. By Lemma23 every group element is represented by a geodesic having at most
one run. Then by Lemma 22 we can remove any occurrences of 1¢-—dng-1) in the

run (except possibly at the start fand N P< words and the end & and N P~. words)
without lengthening the word. Then if the resulting run does not start (or end) with one of
the number patterns given in Lemma 24 relative to its type, it is not geodesic, and if it does,
the word is in normal form. [

Definition 28 (HNN-extensiop If Gis a group with presentatiof@ | R) and¢ : A — B
is an isomorphism of subgroups B € G, define theHNN-extensiorG 4 of G by ¢ to be
the group with presentatiof@, r | R, {rat ™1 = ¢(a) : a € A}). The generatoris called
thestable letterand A, B are callecassociated subgroups

The group B%L1, 2) is an HNN-extension ofz) with the isomorphisng(a) = a? between
associated subgroups) and (a?). The following fact about HNN-extensions can be read
in [11].

Lemma 29 (Britton’s Lemma. If wis a word containing a** letter in anHNN-extension
of G4 with associated subgroups$, B and if w =g, 1 then w must contain a subword

(called a pinch of the formrar—1 or t~1¢(a) for some element € A.

Corollary 30 (t-exponent For each elemeng € BS(1, 2) there is an integer k such that
every word for g has-exponent k

Proof. If wrepresents the identity and has#d letters then its-exponent sum is zero. If
w represents the identity and has' letters then by Britton’s Lemma it contains a pinch.
Removing a pinch leaves thi&xponent ofv unchanged, so either you can remove &fl
letters, in which case thteexponent sum was zero, or you cannot remove'dlletters, in
which case the word did not represent the identity.

If wandu are two words for the same group element wieixponentg& andl, respectively,
thenwu~! =35 1 and has-exponenk — I = 0, sow andu have the sameexponent. [

Lemma 31 (a-exponents The X wordw = t*a/t~1a%-1=1 1~1a% represents the el-
ementz” where

k=1 |
N=2j4+ 3 2.
i=0
Moreover if eache;|<1forall i<k — 1, |j|>2 andeg,_1 is zero or the same sign as j
then|N|>4. ‘
Also, the X wordy = a®ta®t . .. ta%-1ta’t* represents the elememt’ where

k=1
N=2Fj4+ Y 2
i=0

362 M. Elder / Theoretical Computer Science 339 (2005) 344-371

and moreover if each;| <1forall i <k — 1, |j| >2 andeg,_1 is zero or the same sign as
j, then|N|>4.

Proof. To prove the first assertion we will use induction knlf £ = 1 we havew =
talt~1ato = g2iteo,
Assuming the statement holds forthen
w =" lgl gt g1, =1 4100
=kq%itag—tgg1y =1 lgto — N

whereN = 2K(2j + &) + Y F 20 2%,
The smallest possible value fo¥| occurs whenj| = 2, &1 = 0 and each; = —
In this case

J
1

k—2 .
INI > 252+ 0+ ¥ 2(-1)
=0

k=2 .
=22 -y 2
i=0

=2@-@2"'-1
>2(2)—(1-1) =4sincek>1.
To prove the second assertion we will again use inductiok ¢k = 1 we have

w=a®talt™1 = g%+,
Assuming the statement holds farthen
w=a%r...ta%ta%tal 7+t

£k71t02j+8kl_k — N

=a®t .. .ta a,

whereN = 26(2j + &) + Y15 2ei.
The smallest possible value fg¥| occurs whenj| = 2,¢,-1 = 0 and eacl; = —‘j—.‘.
In this case

k-2 .
INI| > 25@) +0+ Y 2/(-1)
i=0

k=2 |
=2@- Y2
i=0

=222 -@1-1
>22)—(1—-1) =4sincek>1.]

Lemma 32 (Uniqueness foNN Fr UN Fx). If w,u e NFr UNFx andw =pg u then
w and u are identical.

Proof. If w,u € NFgthenw = o' andu = a/ anda’ =pg a/ means:'~/ =1, s0i = j
andw andu are identical.

M. Elder / Theoretical Computer Science 339 (2005) 344-371 363

If w e NFy then we can writew = rfa®rlat—1=1 af11~1q% with k > O,
which evaluates to the powBrwith |N| >4 by Lemma31, sow cannot be equal to a word
in NfE.

If u e NFyx andw =pgs u thenwe canwrite = rlair—lam-11=1 . 1~ 1= . gMm
t~1a"o, where without loss of generality we are assuming that/. Since both words
evaluate to the same powerafve have

Ska + Sk_lzk_l 4+ -4 e2+¢
=m2 27 2 24

Leti € N such that; = 5; forall j < i ande; # n;. Then cancelling and dividing
through by 2 we have

a2t 2T by =2 2T 1)

If i = kthen|e;| = 2 or 3and we have, = 1,2/ % 41,12/~ 1"F .. .4, 1f | = k then
& = 17, sowandu are identical. If >k + 1 then|g| = |2 %+, 2% 14 | >4
since|y;| > 2 andy,_1 is either O or the same sign#gs but|ex| < 3 so this is a contradiction.

If i < kthene;,n; are either 0+1 since they occur in the middle of a run. By Efj) (
they must be of the same parity, and they cannot both be zero so one is 1 and-ehg is
If i +1 < k theng; 11 = n;,, = 0 and we contradict the equation since one side is equal
to 1 mod 4 and the other {s-1) mod 4.

Soi + 1 = k, so the run inw starts with 210 or 310 (or their negatives). Then=
t*ast~Yaw” andu = t*u't~ta=Tw” with s = 2, 3 sou’ =ps a* 1 soisa® ora*, which by
Lemma 18 is written asz?s 1 if it occurs in a normal form word. Then the runirmust
start with either 8—1) or 20(—1), neither of which is allowed in a normal form word, o
andu are identical. O

Lemma 33(Uniqueness foN Fy UN Fxn). fw,u e NFy UNFyy andw =ps u
then w and u are identical.

Proof. If wandu are two normal form words representing the same group element, then
they have the sanmteexponent by Lemmao. If w, u € N/ Fxy with t-exponen{—k) then
t*w, t*u are iInN'Fx so by Lemma 32 they are identical. Note tdtF yy and N Fy
words have the samé-run structure, the only difference is the length of thprefix.

If we NFy thenletw = a%:~1. ..t~ 1q% and let
u=u't Yam-1=1 1~1g" whereu’ evaluates ta” and is typeX or E. The words*w
andr*u evaluate to the same powerayfvhich ise, 25 +- - 429 = n28 41, _1 2871+ 1.
Leti € Nsuchthat; =»; forall j <iande; # n;. Then cancelling and dividing through
by 2 we get

a2 g =n2 g 2y (2)

If i = k theng; = n. Now |g| <3 andu’ is anE or X word with the samea-exponent. By
Lemma3L1 if u’ is typeX then it evaluates ta”v with [N| >4, sou’ is typeE, indeed it is
exactlya®, sow andu are identical.

364 M. Elder / Theoretical Computer Science 339 (2005) 344-371

If i < ktheng;, n, = +1 since they are in the middle of a run, and have the same parity
by Eq. @). If i < k + 1 then we have a contradiction singg1 = #;,, = 0 and the
equation hasA4+ 1 on one side andy4— 1 on the other for integers y. Soi = k+ 1 and
ex2 + ex—1 = n2+ n,_q SOn = g =+ 1 sinceg_1 — y,_1 = £2, ande;_1 has the same
sign asg.

If u’ is typeXthen|n|>4 by Lemma 31 butg;| <3, so the only chance for equality is
when the run i starts with 31 and,_, = —1. Thenu’ =pg a”*which is written aga?s 1
in a normal form word, but then the runirstarts with 20—1) which is not allowed. Thus
uis also inN/ Fy. Without loss of generality assumg > 0 sog,_1 = 1 andn,_; = —1.
Thenn must be negative since the runurstarts withn(—1), and we have a contradiction.

O

Lemma 34 (Uniqueness foN Fp UN Fpx). If w,u e NFp UNFpx andw =ps u
then w and u are identical.

Proof. If w,u € NFp UNFpy thenw=Landu—tare inNVFy UN Fxy, so by Lemma
33 sincew™! =55 u~1 thenw~1 andu~1! are identical, and s andu are identical. O

Lemma 35(Uniqueness Every group element is represented by a unique normal form
word.

Proof. If wandu are two normal form words representing the same group element, then
they have the santeexponent by Lemmao.

If wandu have zerd-exponent then they are of the forBh X, N P or XNP. If neither
is NP or XNP then they are identical by Lemma 32. If oneN® or XNP then letw =
wtlat-1471 | lg%0k andu = w'r a1, 1~ 1aM0¢! wherew’, u’ evaluate to
powers ofa and assume without loss of generality that- 0 andk>1. Thenwu ! =
w'tat-1171 | lgtosk=lg ot . ta=M-1(u')~1 =pg 1. Sincek > 0 thengg = +1 so
if we replacew’ andu’ by the corresponding powersatby pinchingra®s 1 subwords) we
have a word that does not admit any pinches, contradicting Britton's Lemma.kTHauUs
Then the wordsvr—* andur—* are equal and iV Fy UN Fyy so by Lemma 33 must be
identical, sow andu are identical.

If wandu have negativé-exponent then they are of the for, XN, NP or XNP. If
neither isNP or XNP then they are identical by Lemma 33. If oneN® or XNP then let
w = w't ta%-1171 7 1a%r and letu = u't~ta"r-1t~1 . 1~ 1g"0t wherek > [, p >
q, andw’, u’ evaluate to powers af. Assume without loss of generality that- 0 and
[>q. Thenwut = w'r=tat-171 1~ Lagfori=4g=N0r . ta r-1(u')~1 =pg 1. Since
I > O0thengy = +1 so after replacing’ andu’ by the corresponding powers afwe have
a word that does not admit any more pinches, contradicting Britton’s Lemma. Fays
Then the wordsvr ! andur~! are equal and iV Fy UN Fxy so by Lemma 33 must be
identical, sow andu are identical.

If wandu have positivet-exponent then they are of the forfh PX, NP or NPX If
neither isSNP or NPXthen they are identical by Lemma 34. If onéB or NPXthen assume
thatw s, so letw = r a0t ... a%1rw’ withk > 0,k < I, g = =1 andw’ evaluates to a
power ofa, and letu = t~Pa"lor .. .a"a-1tu’ wherep < g andu’ evaluates to a power of

M. Elder / Theoretical Computer Science 339 (2005) 344-371 365

a. Assume without loss of generality thiat p (if k < p then reverse the roles of and
u). Thenutw = () "Yr~ta a1 =g =NorP—kgtor . ta¥-1w’ =pg 1. 1f k # p then
sincegy = +1 then after replacing’ andu’ by their corresponding powers afwe have a
word that cannot be pinched, contradicting Britton’s Lemma. Thgsp. Then the words
t*w andt*u are equal and iV F p U N F px so by Lemma4 must be identical, sw and
u are identical. O

Lemma 36 (Normal forms are geodegicEach normal form word is a geodesic.

Proof. Suppose that a word € N F is not geodesic. Choose a geodesic worggs w
that is one of the ten types in Lemri8. By Lemma 23 we can moweinto a wordu’ of
the same length having one run.

If u” is in normal form then since& andu’ are both normal form words that equate to the
same group element them »’ must be identical by Lemma 35.

If ' is notin normal form, it either violates the prefix rules (as in Lemma 24) or has an
adjacent pair of non-zero digits in its run.

If the run in ¥’ has an occurrence of(41) or (—1)1 thenu’ is not geodesic.
If the run inu’ has an occurrence of 11 ¢~1)(—1) that is not at the start of aN-
run or the end of &-run, then by Lemma 22 we can perform a length preserving rewrite
to eliminate it. If this causes’ to have a 1—1) thenu was not geodesic, and it causes
u’ to have a 11 of—1)(—1) then repeatedly applying Lemma 22 from right to left in an
N-run, or left to right in aP-run, we can eliminate all occurrences of pairs of
non-zero digits.

Finally, if the start or end is not one of the prefixes in Lemma 24 then eithisr not
geodesic (if the prefix is 26-1) for example), or is equal to a normal form word of the
same length, which means that the original warid geodesic. [

5. The main theorem
Theorem 37. The languagéeV ¥ is a 1-counter language.

Proof. The ten types of normal-form geodesics listed in Defini@@nbreak up into five
cases. The séf F ¢ is a 1-counter language since it is finite. We can describ@atomaton
for each of the remaining four cases to accept the remaining nine types.

Consider the set of normal forms words of tyieX N andXNP. The languagd.; of
Lemma 25 describes the set of normal form words of these types with at most two
letters in theN-run, and sincd.1 is finite, it is a regular language.

Let L) be the set of words of the forfa*a’t—2ar =1, tka/t=2a=2=1 | k = 1,2,3,i =
2,+3, j = —2,+3}. This is a finite set so is regular, and is the seKgand XN) normal
form words with three ~'’s in the N-run, that corresponds to the prefix 2801, 30(—1)
and their negatives.

The remainingX, X N and XNP normal form words (with afmN-run of 3 or morer—1
letters) are accepted by the automaton on the left of Fig. 12. The edge |latstklds for

366 M. Elder / Theoretical Computer Science 339 (2005) 344-371

-

(t,+) (t,+) (t, +)
(t™%-) =)
A
(t,+ '
Qo
(g, %) (g,+)
(g, +) (g, +)

Fig. 12. Counter automata for normal foixn X N, X N P words andV, N P< words withN-run length at least 3.

a collection of paths labeled by

a1 et et -, i =42, +3;
a1, =)t Daet 5L o), i =2, +3;
al¢t~t, =)L 5a e -t o), i=—2 43
al(t71, —ya@t, -t o), i=23
S VI (A Y (e i=-2-3.

The union of these three (regular and 1-counter) languages is 1-counter.

Next, consider the set of normal forms words of typand N P<. The languagd.,
of Lemma25 describes the set of normal form words of these types with at mosttwo
letters in theN-run, and sincd.; is finite, it is a regular language.

Let L), be the set of words of the forfa’t 2a*1t 1| i = 0, £1, £2, £3}. Thisis a finite
set so is regular, and is the set{and N P<) normal form words with three~’s in the
N-run, that corresponds to the prefix@l), 10(+1), 20(+1), 30(4+1) and their negatives.

The remainingN and N P< normal form words (with amN-run of 3 or more—? letters)
are accepted by the automaton on the right of Fig. 12. The edge laklefdnds for a
collection of paths labeled by

al(¢t=t, =)t 5L -, i=0,+1, £2, +3;
a1, 5L Dar ¢t -, i =0, %1, £2, +3;
a1 o)t 9a e et -, i =0,+1, £2, +3;
a1, 9a@et -t -, i=0,123;
al(¢t 1, —a ¢t et -, i=0, -1 -2 -3
Next, consider the set of normal forms words of typandN P-.. The languagé.3 of

Lemma25 describes the set of normal form words of these types with at mostétters
in theP-run, and sincd 3 is finite, it is a regular language.

M. Elder / Theoretical Computer Science 339 (2005) 344-371 367

(e.7)

(t, +)

Fig. 13. Counter automata for normal forfy N P~ words andP X, N P X words withP-run length at least 3.

Let L} be the set of words of the forfaa®r2a’ | i = 0, £1, £2, £3}. This is a finite set
so is regular, and is the setBf(and N P-.) normal form words with threés in the P-run,
that corresponds to the suffix1)00, (+1)01, (£1)02, (£1)03 and their negatives.

The remaining® and N P~ normal form words (with @-run of 3 or moret letters) are
accepted by the automaton on the left of Hig. The edge labeletdstands for a collection
of paths labeled by

(t, H)(t, H)(t, H)a', i =0,+1,+2, +3;
(t, +)(t, Ha(t, +)(t, +)a, i =0,41, 42 £3;
(t, +)(t, Ha 1@,)@, +)d', i =0,4+1 +2 +3;
(t, +)(t, Halt, +)a’, i=0,123;

(t, +)(t, Ha(t, +a, i=0 -1, -2 -3

Lastly, consider the set of normal forms words of typ¢ andNPX The languagé€.4
of Lemmaz25 describes the set of normal form words of these types with (at most) two
letters in theP-run, and sincd 4 is finite, it is a regular language.

Let L, be the set of words of the forfrar?a’t*, ta=1t2a/t =%, | k = 1,2,3,i =
2,143, j = —2, +3}. Thisis afinite set so is regular, and is the se®¥f{andNPX) nhormal
form words with thred’s in the P-run, that corresponds to the suffix 1®3 (—1)03 and
their negatives.

The remaining®X andNPXnormal form words (with @-run of 3 or more letters) are
accepted by the automaton on the right-hand side of Fig. 13. The edge labstadds for
a collection of paths labeled by

(t, B, H) (@, Hd', i =42, +3;
(t,), Ha(t, +)(, +)a’, i =243
(t, +)(t, Ha 1@,)@, +H)d', i=—2 43
(t,), Halt, +)a’, i=273

(t, H) (¢, Ha"t, H)a’, i=—2,-3.

By Lemma9 the union of a 1-counter and a regular language is 1-counter so each of the
ten typesis 1-counter, and by Lemma 10 the union of 1-counter languages is 1-colnter.

368 M. Elder / Theoretical Computer Science 339 (2005) 344-371

a a
a2
Jo
£30 3

Fig. 14. Afinite state automaton accepting the languagethe proof of Theoren39.

Corollary 38. The language of normal forms f@S(1, 2) with the standard generating
set is context-free.

6. Full language of geodesics

In this section we prove that the language of all geodesic words in the standard generating
set is not counter. To prove this we will mimic the proof of TheorE3nRecall that in that
proof we constructed a wordw® on three symbols whose prefix is square-free and suffix
is its reverse, and applied the Swapping Lemma (Lemma 12) to obtain a contradiction.
Letw be aword in B$1, 2) with noa ! letters. Define thé-encodingof wto be a string
of integersnins . ..n; such thatw = t"1ar"2 ... at™ . If w starts (or, respectively, ends)
with anathenny = 0 (or, respectivelyy; = 0).
As an example, the word

22.34 -9 .2 -1_ .0 .2

at?a®ta®t*at 2atar ! = t%t?ar®atat®ar®ar®

at*at 2ar?ar1
is encoded as 02010049)2(—1). Note that previously our encodings have beera-of
exponents, but this new encoding will be useful for the argument to follow.

Theorem 39. The language of all geodesic wordBS(1, 2) with respect to the generating
set{a*1, 1*1} is not counter.

Proof. Suppose thatthe fulllanguage is counter, and c@llRefinel to be the set of words
in {a, r*1} accepted by the finite state automaton in Eigy. That isL is the set oPNwords
whoset-encodings are words of the forfh0, 20, 30}{10, 20, 30}*0{—10, —20, —30}{—10,
—20, —30}*.

SincelL is regular, the intersection & andL is counter. LeMM be a counter automaton
acceptingC N L, with alphabet®1, =1, We can construct a new counter automatéh
which accepts the set tencoded words of N L as follows:

The states, start state, accept states and counters are the sani.ad®new alphabet
is {0, £10, £20, +30}. The transitions are defined as follows:

M. Elder / Theoretical Computer Science 339 (2005) 344-371 369

If there is a path labelled bya in M from p to g, then add an edge i’ frompto q
labeled byi, and the counters are changed by the same amount as they were following the
patht’a in M. Thus a word is accepted iy if and only if its encoding is accepted By’
SinceM acceptsC N L, the only subwords of the formia that appear in accepted words
are fori = 0, £10, 20 or+£30. Letp be the swapping length faw’.

Next, take a Thue—Morse word in three symbols, which we choose to [20180, of
length greater than;2 This word encodes @ word u of somet-exponent 18. We wish to
find some kind of “reverse” ofi, as we did in the proof of Theore&B. We find a word
to act as the “reverse” by the following procedure:

(1) Writeu asti0®1119%¢%2 . 104%10 whereg; = 0, 1.
(2) Reverse this word.

(3) Replace:® with a® anda® with ¢° in this word.

(4) Replace® with +~19in this word to get.

Forexample, the Thue—Morse word 2D, 30, 10, 30, 20, 10, 20, 30, 20, 10, 30 encodes
the word

10,20 .30 .10 .30

a130q11041304+20

10 .20

at10q120430

20 .10 .30

u=trat atat " at

Stepl: Writeu as
u = |a*|a®at|ala®lat|at|a®|a®ata® atat|aCata®laC ata®lat at1a®la®),

where the'10 terms are replaced by bargo make it easier to read.
Step2: Reversing this word gives
ul = |ao|a0|a1|al|a0|al|a0|ao|al|ao|al|a1|a0|al|ao|a0|al|al|ao|a0|a1|a0|al|.
Step3: Replacing:® by «! and vice versa gives
ja*lat|a®|a%lat|a®latatla®lata®a%lata®atat|a®la®at at|a®lata®).
Step4: Replacing 19 by 1 10 gives
v=ta'ta'ta®ta®ta' ta®tat ta' ta®ta' 1o td°
tatta®tattatta® ta® tat tat ta® tat tat
—;~10,,-10,,-30,,~20,,~10,,~20, ,~30,,,~20,,,~10,,,~30,,

—lOa _20611_20

t t

’

where t represents1°.
Thet-encoding for is then

(—10)(—10)(—30)(—20)(—10)(—20)(—30)(—20)(—10)(—30)(—10)(—20) (—20).

Note thatv does not have to be square-free. Note also that-thgonent ofv is —10c,
where 1@ is thet-exponent ofl.

Now to understand what motivated us to produce thi®m u, consider the wordy =
ua®v = uat%av. This word is typeX. Drawingw in a sheet of the Cayley graph we see that
at every tenth level there is aletter, either on the part going up the sheet (ihzart) or
the part going down (the part). See the left-hand side of Fitpb.

We will now show thatw is a geodesic. Consider the word obtained fromw by
commuting alla letters to the right. Since there is exactly anat every tenth level oy,

370 M. Elder / Theoretical Computer Science 339 (2005) 344-371

commute

10, 20, 30, 10, 30, 20, 10, 20, 30, 20, 10, 30

u=

02'0Z'0T'0€°0T 0C‘0€ ‘02 ‘0T '02 '0E€ ‘0T ‘0T =A

Fig. 15. The wordw = ua®v drawn in a sheet of the Cayley graph.

y swap X

Fig. 16. Swapping two subwords in tRepart ofw leads to a word with~1q2: 1.

we havew’ = 11%42;719(4~10)c=1 Thenw’ is a normal formX word, since itdN-run is
of the form 20Q . . with no consecutive non-zero entries. Thus by Len86as geodesic,
and sincew’ has the same length asthenw is geodesic. Swis in C N L, itis accepted
by the counter automatdvl, and itst-encoding is accepted by’.

Applying the Swapping Lemma (Lemma 12) to the encoding,efe switch two adjacent
subwords in the first half ok, that is, in the-encoding ofu, which is square-free.

M. Elder / Theoretical Computer Science 339 (2005) 344-371 371

This new string is d@-encoding of some other word in the group, which isXaword,
essentially the same agexcept that at some level(s) there isastep on the left- and
right-hand sides of the sheet in the Cayley graph, indicated by the thin lines joining the dots
in Fig. 16.

This causes a problem, for when we commaHetters to the right in this word, we will
seer 1?1 at some point(s) in thBl-run, and thus the swapped word is not a geodesic,
so notinC N L, and this is a contradiction. [J

Acknowledgements

My sincere thanks to Bob Gilman, Ray Cho, Walter Neumann, Jon McCammond, Susan
Hermiller, Sarah Rees, Rick Thomas, Nik Ruskuc, Kim Ruane, Mauricio Gutierrez, Sean
Cleary, Jennifer Taback and Gretchen Ostheimer for their help and suggestions that have all
contributed to this work. | wish to thank the reviewer of this paper for pointing out that the
normal form language described here is a 1-counter language, as well as many other very
useful suggestions and corrections. The labels for the figures were produced using Andrew
Rechnitzer'ssquation_edit program.

References

[1] M. Brazil, Growth functions of some nonautomatic Baumslag—Solitar groups, Trans. Amer. Math. Soc. 342
(1) (1994) 137-154.

[2] D. Collins, M. Edjvet, C. Gill, Growth series for the group, y|x~1yx = y!), Arch. Math. (Basel) 62 (1)
(1994) 1-11.

[3] M. Elder, S. Hermiller, Minimal almost convexity, J. Group Theory, to appear.

[4] G. Elston, G. Ostheimer, On groups whose word problem is solved by a counter automaton, Theoret. Comput.
Sci. 320 (2004) 175-185.

[5] D. Epstein, J. Cannon, D. Holt, S. Levy, M. Paterson, W. Thurston, Word Processing in Groups, Jones and
Bartlett Publishers, Boston, MA, 1992.

[6] E. Freden, A. McCann, Growth of the Baumslag—Solitar gr8uji2, 3), in preparation.

[7] R. Gilman, Formal languages and infinite groups, Geometric and computational perspectives on infinite
groups, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Vol. 25, 1996.

[8] J.R.J. Groves, Minimal length normal forms for some soluble groups, J. Pure Appl. Algebra 114 (1) (1996)
51-58.

[9] J. Hopcroft, J. Ullman, Introduction to Automata Theory, Languages and Computation, Addison-Wesley,
Reading, MA, 1979.

[10] M. Lothaire, Combinatorics on words, Encyclopedia of Mathematics and its Applications, Vol. 17, Addison-
Wesley Publishing Co., Reading, MA, 1983 (A collective work by Dominique Perrin, Jean Berstel, Christian
Choffrut, Robert Cori, Dominique Foata, Jean Eric Pin, Guiseppe Pirillo, Christophe Reutenauer, Marcel-P.
Schitzenberger, Jacques Sakarovitch and Imre Simon, With a foreword by Roger Lyndon, Edited and with
a preface by Perrin).

[11] R. Lyndon, P. Schupp, Combinatorial Group Theory, Springer, Berlin, Reprinted 2001.

[12] C.F. Miller, Normal forms for some Baumslag—Solitar groups, preprint, 1997.

[13] V. Mitrana, R. Stiebe, The accepting power of finite automata over groups, in New trends in formal languages,
Lecture Notes in Computer Science, Vol. 1218, 1997, pp. 39-48.

[14] D. Muller, P. Schupp, Groups the theory of ends and context-free languages, J. Comput. System Sci. 26
(1983) 295-310.

[15] M. Sipser, Introduction to the Theory of Computation, PWS Publishing Co., 1997.

