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Abstract

We give a language of unique geodesic normal forms for the Baumslag–Solitar group BS(1,2) that
is context-free and 1-counter. We discuss the classes of context-free, 1-counter and counter languages,
and explain how they are inter-related.
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1. Introduction

In this article we give a simple combinatorial description of a language of normal forms
for the solvable Baumslag–Solitar group BS(1,2) with the standard generating set, such
that each normal form word is geodesic, each group element has a unique normal form
representative, and the language is accepted by a (partially blind) 1-counter automaton. It
follows that the language is context-free.

Several authors have studied geodesic languages for the (solvable) Baumslag–Solitar
groups, including Brazil [1], Collins et al. [2], Freden and McCann [6], Groves [8], Miller
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Fig. 1. A counter automaton acceptinganbnan.

[12], and the author and Hermiller [3]. It is well known that Baumslag–Solitar groups
are asynchronously automatic but not automatic [5], and the asynchronous language is
not geodesic. Groves proved that no geodesic language of normal forms for a solvable
Baumslag–Solitar group with standard generating set can be regular [8], so we could say
that context-free or 1-counter is the next best thing.

Collins, Edjvet and Gill proved that the growth function (the formal power series where
thenth coefficient is the number of elements having a geodesic representative of lengthn)
of a solvable Baumslag–Solitar group is rational [2], and Freden and McCann have studied
growth functions for the non-solvable case [6].

If G is a group with generating setG, we say two wordsu, v are equal in the group, or
u =G v, if they represent the same group element. We sayu andv are identical if they are
equal in the free monoid, that is, they are equal inG∗.

Definition 1 (G-automaton). Let G be a group and� a finite set. A (non-deterministic)
G-automatonAG over� is a finite directed graph with a distinguished startvertexq0, some
distinguishedaccept vertices, and with edges labeled by(�±1 ∪ {�}) × G. If p is a path in
AG, the element of(�±1) which is the first component of the label ofp is denoted byw(p),
and the element ofG which is the second component of the label ofp is denotedg(p). If
p is the empty path,g(p) is the identity element ofG andw(p) is the empty word.AG is
said toaccepta wordw ∈ (�±1) if there is a pathp from the start vertex to some accept
vertex such thatw(p) = w andg(p) =G 1.

Definition 2 (Finite state automaton; Regular). If G is the trivial group, thenAG is a (non-
deterministic)finite state automaton. A language isregular if it is the set of strings accepted
by a finite state automaton.

Definition 3 (Counter; 1-counter). A language isk-counterif it is accepted by someZk-
automaton. We call the (standard) generators ofZk counters. A language iscounterif it is
k-counter for somek�1.

For example, the language{anbnan | n ∈ N} is accepted by theZ2-automaton in Fig.1,
with alphabeta, b and countersx1, x2.

In the case ofZ-automata, we assume that the generator is 1 and the binary operation is
addition, and we may insist without loss of generality each transition changes the counter
by either 0,1 or −1. We can do this by adding states and transitions to the automaton
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Fig. 2. Pushdown automaton acceptinganbn.

appropriately. That is, if some edge changes the counter byk �= 0,±1 then divide the edge
into |k| edges using more states. The symbols+,− indicate a change of 1,−1, respectively,
on a transition.

Definition 4 (Pushdown automaton; Context-free). A pushdown automatonis a 6-tuple
(Q,�,�, �, q0, A) whereQ,�,� andA are all finite sets, and
(1) Q is the set of states,
(2) � is the input alphabet together with the empty word�,
(3) � is the stack alphabet together with� (the empty symbol),
(4) � is the transition function,
(5) q0 is the start state,
(6) A ⊆ Q is the set of accept states.
The transition function takes as input a state and an input letter, and outputs a state and a
stack instruction of the form� → �, which means pop� from the top of the stack then push
� on the top of the stack. Note that� → � means push� onto the stack,� → � means pop�
off the stack, and� → � means do nothing (and in this case will be omitted).

A word is accepted by the automaton if there is a sequence of transitions starting from
the stateq0 with an empty stack, pushing and popping stack symbols, to an accept state.
Note that you can always push new symbols onto the stack, but you can only pop if the
correct symbol is on top of the stack.

A language iscontext-freeif it is the language of some pushdown automaton.

As an example, the language{anbn | n ∈ N} is accepted by the pushdown automaton in
Fig. 2 with alphabeta, b and stack symbols $,1, and this language is not regular [9,15].
Note that our definition of counter automata is not equivalent to a pushdown automata with
a stack (with one type of token) for each counter, since in our definition, we cannot test the
value of the counter until we are done reading the input. For this reason, these automata are
sometimes referred to as “partially blind” or vision-impaired counter automata, since they
cannot “see” whether the counter is non-zero except at the end.

Definition 5 (Baumslag–Solitar group). The group with presentation〈a, t | tat−1 = ap〉
is thesolvable Baumslag–Solitar groupBS(1, p), for p ∈ Z, p�2.

In this article we will consider the group BS(1,2). LetG = {a, a−1, t, t−1} be the inverse
closed generating set for BS(1,2). We give a picture of part of the Fig.3. From the side the
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Fig. 3. Part of the Cayley graph for BS(1,2).

Cayley graph for BS(1,2) in Cayley graph looks like a binary tree. See[5] for a detailed
description of the Cayley graph.

The paper is organised as follows. In Sections 2 and 3 we examine the various defini-
tions of formal languages presented above, and establish their relative intersections and
inclusions, which we illustrate in Fig. 5. In particular, we prove that 1-counter languages
as defined are context-free. In Section 4, we define a normal form language for BS(1,2)
and prove that each normal form word is geodesic, and the language of normal form words
bijects to the set of group elements. In Section 5, we prove that this normal form language
is 1-counter, which implies it is context-free. Then in the last section we show that the
language of all geodesics for BS(1,2) is not counter.

2. 1-counter languages

Lemma 6. Every1-counter language is context-free.

Proof. Let L be a 1-counter language accepted by a 1-counter machineM. We will con-
struct a (non-deterministic) pushdown automatonN that accepts the languageL, with stack
symbols $+,$− and 1. LetM+ be a copy ofM obtained by replacing transitions(a,+) by
(a, � → 1) and(a,−) by (a,1 → �), and letM− be a copy ofM obtained by replacing
transitions(a′,−) by (a′, � → 1) and(a′,+) by (a′,1 → �).

N is constructed from these two automataM+ andM− as follows. The states ofN consist
of two distinct statesq+, q− for each stateq of M, plus a new start states0 and a new single
accept statep. There is a transition labelled(�, � → $+) from s0 to the former start state
(q0)+ in M+. For eachq+ in M+ there is a transition labelled(�,$+ → $−) from q+ to
the corresponding stateq− in M−, and a transition labelled(�,$− → $+) from q− to q+
in M+.

Finally, for every accept stateq in M there is a transition labelled(�,$+ → �) from q+
in M+ to the single accept statep, and(�,$− → �) from q− in M− to the single accept
statep.

This new machine works by starting with an empty stack and pushing $+ on the bottom.
Then if the old machine increments the counter, the new machine adds 1 to the stack. From
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Fig. 4. Pushdown automaton and 2-counter machine acceptingambmanbn.

then on if the counter value never dips below zero, the new machine will stay in theM+
states. However, if there is ever a “pop 1” but the symbol on the stack is $+, pass over to
M−. Then the height of the stack now represents the negative value of the counter, you stay
in this side until the value of the counter comes back to zero, in which case you can switch.

It follows that the language ofN is precisely the language of the 1-counter machineL.
�

Lemma 7. The language of strings of the formambmanbn is both counter and context-free
but not1-counter.

Proof. The pushdown automaton and theZ2-automaton in Fig.4 both accept this language,
so it is context-free and counter.

Suppose by way of contradiction that the language is 1-counter, and letM be a 1-counter
machine for it withp states. Assume without loss of generality that each transition changes
the counter by either 0,−1 or 1.

Definea1 = ap
2
, b1 = bp

2
, a2 = ap

2
, b2 = bp

2
, and consider the words = a1b1a2b2

which belongs to the language.
Consider the prefixa1 = ap

2
. Since this prefix is longer than the number of states, it

must visit some state twice, soa1 = x0y0z0 wherey0 represents a loop of length at mostp.
If going aroundy0 causes a net change of zero in the value of the counter, then going

around it twice would give a new word that is accepted byM, but not of the formambmanbn.
So assume the net change isk0 with |k0|�1.

Let s1 = x0z0 which has length at leastp2 − p, so must go around a loop inM. So
s1 = x1y1z1 with y1 a loop of length at mostp. Again, if the net change in the counter going
aroundy is zero then we can go aroundy1 twice and have a word accepted byM that is not
in the language.

If the net change isk1 of the opposite sign tok0 then there is a word that goes|k1| times
around the loopy0 then|k0| times aroundy1, which keeps the final value of the counter at
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zero, so is accepted byM, but since we are pumping theap
2

prefix ofswe have a word that
is not in the language.

Thusy1 changes the counter byk1 with |k1|�1 and having the same sign ofk0. Let
s2 = x1z1 with length at leastp2 − 2p.

Iteratively we can writesi = xiyizi with yi a loop which changes the value of the counter
by an amountki of the same sign ask0, until there are no loops left inxizi , which does not
happen until at leastp iterations (sincesi has length at leastp2 − ip).

Sincexizi has no loops, it has length at mostp−1. So it changes the value of the counter
by at mostl1 where|l1| < p. Whereas, the sum of the|yi | changes the value of the counter
by at leastp since each one contributes at least 1 to the sum.

Now repeat this analysis for the subwordsb1, a2 andb2.
If all the loops in each subword change the counter by the same sign, then we have a

contradiction, since the net change of all the loops is greater than 4p whereas the net change
of the four remainingxizi segments is less than 4p, so they cannot cancel each other.

Thus at least two subwords have loops of opposite signs. If the loops ina1 have the same
sign as the loops ina2 andb2, then the loops inb1 must have the opposite sign. So suppose
that some loop inb1 changes the counter byk, and some loop ina2 changes the counter by
l of the opposite sign tok. Then pumping the first loop by|l| and the second by|k| gives a
word that is accepted byM and not in the language.

Otherwise if the loops ina1 have the opposite sign to the loops in eithera2 or b2, then
take a loop ina1 which changes the counter byk and a loop ina2 or b2 that changes the
counter byl of the opposite sign tok. Then pumping the first loop by|l| and the second by
|k| gives a word that is accepted byM and not in the language.�

Corollary 8. 1-counter languages are not closed under concatenation or intersection.

Proof. The languageC = {anbn | n ∈ N} is 1-counter butCC is not 1-counter by the
previous lemma (Lemma7).

The languagesD = {anbncm |m, n ∈ N} andE = {ambncn |m, n ∈ N} are 1-counter,
butD ∩ E = {anbncn | n ∈ N} is not context-free [9,15] so by Lemma 6 is not 1-counter.

�

However, we have

Lemma 9 (Closure properties of k-counter languages). If C,C′ are k-counter for k�1
and L is regular, thenC ∪ C′, C ∩ L, CL and LC are all k-counter.

Proof. LetM,M ′ bek-counter automata forC,C′, with start statesq0, q
′
0, statesS, S′, and

accept statesA,A′, respectively. Then construct ak-counter automaton acceptingC ∪ C′
with a new start statep0 joined toq0, q

′
0 by two epsilon transitions.

Let N be a finite state automaton forL with statesT, start statep0 and accept statesB.
Construct ak-counter automaton acceptingC ∩L having statesS × T , start state(q0, p0),
such that(q, p) is an accept state ifq ∈ A,p ∈ B (they are both accept states), and if there
are transitions fromq to r in M labelled by(a, g) andp to s in N labelled byawhereg ∈ Zk,
then there is a transition from(q, p) to (r, s) labelled(a, g).
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Construct ak-counter automaton acceptingCL with start stateq0 and accept statesB by
adding an epsilon transition from each accept state ofM to p0.

Construct ak-counter automaton acceptingLC with start statep0 and accept statesA by
adding an epsilon transition from each accept state ofN to q0. �

Iterating the union operation a finite number of times gives

Corollary 10. The union of a finite number of k-counter languages is k-counter.

3. Context-free and not counter

The language{anbnan | n ∈ N} accepted by theZ2-automaton in Fig.1 is not context-
free by standard results [9,15]. In this section we show that conversely, there is a language
that is context-free but not counter.

Consider a string of lettersa, b, c. We say a string contains asquareif it has a subword of
the formww. An interesting result from combinatorics is that one can write out a square-free
word in a, b, c of arbitrary length. This is due to Thue and Morse and described in [10,
Chapter 2]. In particular we have

Proposition 11(Thue–Morse). Define a homomorphism f on{a, b, c}byf (a) = abc, f (b)

= ac andf (c) = b. Then for anyi ∈ N, f i(a) is square-free.

For example, to computef 3(a) we have
a → abc → abcacb → abcacbabcbac.

In order to show that a language is not counter we make use of the following lemma.

Lemma 12(Swapping Lemma). If L is counter then there is a constants > 0, the“swap-
ping length”, such that ifw ∈ L with length at least2s + 1 then w can be divided into four
piecesw = uxyz such that|uxy|�2s + 1, |x|, |y| > 0 anduyxz ∈ L.

Proof. Let s be the number of states in the counter automaton, and letp be a path in the
Zk-automaton such thatw(p) = w. If p visits each state at most twice then it cannot have
length more than 2s, sop visits some state at least three times. Letu be the first part of
w(p) until it hits this state, thenx a non-trivial loop back to this state the second time,y a
loop back a third time, andz the rest ofw. Sow(p) = uxyz ends at an accept state, and the
second component ofp equalsg(u)g(x)g(y)g(z) =Zk 1. Switching the orders ofx andy,
the pathuyxzstill takes you to the same accept state, andg(uyxz) =Zk 1 since all elements
of Zk commute, souyxz ∈ L. �

Note its similarity to the pumping lemmas for regular and context-free languages[9,15].
This lemma is only of any use if your wordw has no squares, otherwise you can just swap
the square and get the same word (that isx = y).

Theorem 13. There is a language that is context-free but not counter.
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Fig. 5. Intersections of the formal languages.

Proof. Consider the language of all strings ina, b, c of the formwwR, wherewR is word
obtained by reversingw. It is well known that this is a context-free language[9,15], since
it is accepted by a pushdown automaton which uses the stack to store the first half of the
word, then checks the last half of the word matches.

Suppose by way of contradiction that this language is counter, with swapping lengthp
as in Lemma 12. Letw be a square-free word from Proposition 11 of length at least 2p+ 1.
ThenwwR can be split into four subwordsu, x, y, z such thatuxyfalls in the firstw prefix.
Sincew has no squares andx, y are adjacent words then it must be thatx �= y. But uyxz
will fail to be in the language because the second part will not be the reverse of the first
part. �

In Fig. 5 we have a diagram of sets of regular, 1-counter, context-free and counter lan-
guages, and by the above results we have shown the given inclusions.

The fact that there are counter languages that are not context-free and vice versa can
be observed by considering word problems for various groups. The word problem for a
groupG with generating setG is the setWP(G) = {w ∈ G∗ : w = 1} of all words in the
generating set that evaluate to the identity element. By work of Muller and Schupp [14], the
word problem for the groupZ2 is not a context-free language, whereas the word problem of
the free group on two (or more) generators is context-free. Elston and Ostheimer [4] proved
that a group has a deterministic counter word problem (with a so-called inverse property)
if and only if it is virtually abelian, so the word problem forZ2 is counter. To see why
WP(F2) is not counter, consider a Thue–Morse word made up of an arbitrary number of
subwords(aaa), (aba), (ab−1a) encoded by the lettersx, y, z, followed by its “reverse”
in the subwords(a−1a−1a−1), (a−1b−1a−1), (a−1ba−1) encoded by the lettersx′, y′, z′.
This word is in the word problem, but applying the Swapping Lemma (Lemma 12) to the
encoded word gives a word that does not encode a word in the word problem.

The first examples of languages that are counter but not context-free were given by
Mitrana and Stiebe [13]. Mitrana and Stiebe give the following lemma, called the “Inter-
change Lemma”, which they use to show that the language of palindromes and the language
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{aibi |i�0}∗ are not counter. We include it here for completeness, and to show how it
differs from the Swapping Lemma above.

Lemma 14(Interchange Lemma[13] ). If L is the language of a G-automaton where G is
an abelian group, then there is a constant p such that for any wordx ∈ L of length at least
p, and for any given subdivision of x into subwordsv1w1v2w2 . . . wpvp+1 with |wi |�1,
there are somer, s such that the word obtained from x by interchangingwr andws is in L.

4. The normal form language

Recall that BS(1,2) = 〈a, t | tat−1 = a2〉 with the (standard) inverse closed gener-
ating setG = {a, a−1, t, t−1}. We wish to describe geodesic words with respect to this
generating set.

Definition 15 (E,N,P,X). A word is of the formE if it is ai . A word is of the formN if
it has not letters and at least onet−1 letter. A word is of the formP if it has not−1 letters
and at least onet letter.

A word is of the formX if it is the concatenation of aP word of t-exponentk, followed by
anNword oft-exponent(−k). That is, anXword is a word of typePNwith zerot-exponent.

Benson Farb called words of typeX “mesas”, since drawing anX word in the Cayley
graph resembles this land formation. See Fig.6.

While the following fact is well known, we include an elementary proof of it here for
completeness.

Lemma 16(Commutation). If u has zero t-exponent thenau = ua anda−1u = ua−1.

Proof. If u is typeX thenu =BS ai soau = ai+1 = ua.
If u is typeNP then letu = vw wherev is typeN with t-exponent−k andw is typeP

(so hast-exponentk). Each time we pushai past at−1 it becomesa2i sinceat−1 = t−1a2.
Thenau = avw = va2kw. Each time we pusha2i past at it becomesa2i−1

sincea2t = ta.
Soau = avw = va2kw = vwa = ua. Finally if u is any other form, first replace each
occurrence oftai t−1 in u by a2i . Thenu becomes a word of typeNPwith zerot-exponent.
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We can passa through this word as in the previous case, and then putu back in its original
form and we are done.�

Lemma 17(Miller [12] ). Every geodesic word inG∗ is a subword of a word of type NPN
or PNP.

See Lemma 1 of[8] for a proof. We can use this lemma to describe a subset of geodesic
words that represent every group element.

Define a typeNP� word to be a word of typeNP with non-positivet-exponent sum,
and typeNP> to be a word of typeNPwith positivet-exponent sum.

Lemma 18(Ten types). Every element ofBS(1,2) has a geodesic representative inG∗ that
is one of ten types:
E,X,N,XN,NP� , XNP havingt-exponent�0, or
P,PX,NP>,NPX havingt-exponent> 0, such that no more than three a ora−1 letters
can occur in succession in the geodesic.

Hermiller and the author used a similar characterisation in our work on minimal almost
convexity[3].

Proof of Lemma 18. Every group element can be represented by some geodesic word in
G∗. If a geodesic word has not±1 letters then it is typeE. Otherwise by Lemma 17 it is a
word of typeN,P,NP, PN,NPN or PNP.

If the geodesic is typeNPthen it either has non-positivet-exponent sum, so is typeNP� ,
or positivet-exponent sum, so is typeNP>.

If the geodesic is typePN then it either has zerot-exponent sum, so is typeX, negative
t-exponent sum, so is typeXN, or positivet-exponent sum, so is typePX.

Suppose the geodesic is a wordw of type NPN. If w has positivet-exponent sum it is
typeNPX. If w has zerot-exponent sum, then write it asux whereu is typeNP with zero
t-exponent sum andx is typeX. Sincex =BS ap for some integerp then applying Lemma
16 we getw = uxBSua

p =BS apu =BS xu which has the same length and is typeXNP.
If w has negativet-exponent sum, thenw = a�1t−1uta�2txt−1a�2t−1v whereu is typeE
or NP with zerot-exponent sum,x is typeE or X, v is typeE or N, and�i ∈ Z. Then by
Lemma 16

w =BS a
�1+�2+�3(t−1ut)(txt−1)t−1v

=BS a
�1+�2+�3(txt−1)(t−1ut)t−1v

which is not geodesic since we can cancelt t−1 at the end.
Finally, suppose the geodesic is a wordwof typePNP. If whas negative or zerot-exponent

sum it is typeXNP. If w has positivet-exponent sum, thenw = a�1txt−1a�2t−1uta�3tv

wherex is typeE or X, u is typeE or NP with zerot-exponent sum,v is typeE or P, and
�i ∈ Z. Then by Lemma 16

w =BS a
�1+�2+�3(txt−1)(t−1ut)tv

=BS a
�1+�2+�3(t−1ut)(txt−1)tv

which is not geodesic since we can cancelt−1t at the end.
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Fig. 7. TheN-run 2101(−1).

The additional condition that no more than threea’s are allowed in succession is obtained
by observing thata6 =BS ta3t−1 so any power ofa greater than five is not geodesic, and
sincea4 =BS ta2t−1 anda5 =BS ta2t−1a =BS ata2t−1 we choose to replacea-exponents
of 4 or 5 by subwords of the same length. An identical argument eliminates powers ofa−1

greater than three.�

Definition 19 (Run). An N-run is a word of the form

a�k t−1a�k−1t−1 . . . t−1a�1t−1a�0.

A P-run is a word of the form

a�0ta�1t . . . ta�k−1ta�k .

We can write a run in shorthand by just writing thea-exponents. For example,a2t−1at−1a0

t−1at−1a−1 can be written as 2101(−1).
We call thea-exponentsentriesof the run. A run isnon-trivial if it has at least one non-

zero entry. Note that a run that has at least onet or t−1 letter will have at least two entries,
since by definition a run starts and ends with a power ofa (possiblya0).

We say a geodesic has at most one non-trivial run if it can be expressed as the concatenation
of geodesicN- or P-runs such that at most one factor is non-trivial. For example, the word
t2a2t−1at−2 can be written as(t2)(a2t−1at−2), so has at most one run.

Drawing theN-run represented by 2101(−1) in the Cayley graph we start to see what
behaviour is allowed in a geodesic. For instance, the sub-runs 1(−1) and(−1)1 are not
allowed since

at−1a−1 → t−1a, a−1t−1a → t−1a−1.

Also, if theN-run 2101(−1) were preceded by at−1 then we would havet−1a2 which can
be written asat−1. In fact, the only time you could ever see an entry that is not 0,1 or−1
is at thestart of anN-run, or theendof aP-run (Fig. 7).
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Fig. 8. No 1(−1), (−1)1 in a run.

Lemma 20(No |i| > 6). If a run represents a geodesic word and has an entry i that is not
one of1,0 and(−1), then i must be one of2,3,4,5, (−2)(−3), (−4), (−5) and occurs at
the start of an N-run or the end of a P-run.

Proof. If i�6 occurs at any point in a run thena6 → ta3t−1 so the run is not geodesic.
For N-runs, if i�2 occurs after the start of the run thent−1a2 → at−1 so the run is not

geodesic. Ifi� − 2 occurs after the start of the run thent−1a−2 → a−1t−1 so the run is
not geodesic.

For P-runs, if i�2 occurs before the end of the run thena2t → ta so the run is not
geodesic. Ifi� − 2 occurs before the end of the run thena−2t → ta−1 so the run is not
geodesic. �

Lemma 21(No consecutive1(−1), (−1)1). A geodesic run cannot contain1(−1)or (−1)1.

Proof. For anN-run:

1(−1) → 01, at−1a−1 → t−1a,

(−1)1 → 0(−1), a−1t−1a → t−1a−1.

For aP-run:

1(−1) → (−1)0, ata−1 → a−1t,

(−1)1 → 10, a−1ta → at.

See Fig.8. �

Lemma 22(No consecutive11, (−1)(−1)). There exist rewrite rules which do not increase
length which can be applied to a geodesic run to eliminate all occurrences of consecutive
11 or (−1)(−1) after the first two entries of an N-run and before the last two entries
of a P-run.

Proof. Let i ∈ Z.
For anN-run:

i11 → (i + 1)0(−1), ai t−1at−1a → ai+1t−2a−1,

i(−1)(−1) → (i − 1)01, ai t−1a−1t−1a−1 → ai−1t−2a.
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Fig. 9. Noi11, i(−1)(−1) in anN-run.

These moves are illustrated in Fig.9. We can always perform these rewrites to get a word
of the same length or shorter. That is, suppose you have anN-run, which is geodesic so we
assume has no 1(−1) or (−1)1. Starting at the right end of theN-run, if there is ani11, we
know thati�0. Replacing this by(i + 1)0(−1) gives a word that is not geodesic ifi > 0,
otherwise gives 10(−1). Now if the preceding entry is(−1) the word is not geodesic, so is
0,1 or we are at the start of the run. A similar argument holds when we seei(−1)(−1).

So iterate this procedure until the start of the run is reached. This eliminates all occurrences
of adjacent non-zero entries after the first two entries. That is, if theN-run starts with 110
for example, the rules do not apply.

For aP-run:

11i → (−1)0(i + 1), atatai → a−1t2ai+1,

(−1)(−1)i → 10(i − 1), a−1ta−1tai → at2ai−1.

Similarly we can always perform these rewrites to get a word of the same length or
shorter, this time starting at the left end of the word and moving right, so we can eliminate
all adjacent non-zero entries except in the last two positions.�

Next we will show that every geodesic of one of the ten types can be “pushed” into a
geodesic word for the same group element that have at most one non-trivial run. As an
example, ifw = a�0ta�1t . . . a�k tant−1a�k t−1 . . . t−1a�1t−1a�0 is a geodesicX word, then
we can push the inner subworda�k tant−1a�k to tant−1a�k+�k , and iteratively push at each
level to gettkant−1a�k+�k t−1 . . . t−1a�1+�1t−1a�0+�0. We show this in Fig.10.

Lemma 23(At most one run). Every group element is represented by some geodesic of one
of the ten types having at most one non-trivial run.

Proof. By Lemma18 each group element is represented by some geodesic of one of the ten
types. If the word is typeE,N,P then there is at most one non-trivial run. If it isX,XN
or PX then by Lemma 16 we can pusha letters to one side of theX word to get at most one
non-trivial run, as we did in the example above. ForNP� words we havew = wNwNP

wherewNP has zerot-exponent, so by Lemma 16 we can pusha letters to the left of the
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Fig. 10. Pushing anX word to have one non-trivialN-run.

20(−1) 30(−1)

Fig. 11. Prefixes forN-runs of anX word.

NP word to get at most one run non-trivial run. ForXNPwords we havew = wXwNwNP

wherewNP has zerot-exponent, so by Lemma16 we can pusha letters to one side of the
X andNPwords to get at most one non-trivial run. ForNP> words we havew = wNPwP

wherewNP has zerot-exponent, so by Lemma 16 we can pusha letters to the right of the
NP word to get at most one non-trivial run. ForNPX words we havew = wNPwPwX

wherewNP has zerot-exponent, so by Lemma 16 we can pusha letters to one side of the
X andNPwords to get at most one non-trivial run.�

Given that every word can be pushed into a word having at most one non-trivial run, and
we can choose which patterns are not allowed in a run, we are ready to define the normal
form language.

The only issue that remains is the prefix of each run. For example, a geodesic of typeX
can be pushed into a word with exactly oneN-run. The start of this run can be chosen to be
eithera2t−1, a3t−1, a−2t−1 or a−3t−1, for if the run starts with 1 thentat−1 → a2 so is
not geodesic. If it starts with 4 or 5 then by Lemma 18a4 → ta2t−1 anda5 → ta2t−1a

so we elect to write it starting with a 2 instead, and if the run starts withi�6 then it is not
geodesic.

The next few entries could be any one of the following:
200,201,210,300,301,30(−1),310 or the negatives of these.

Note that the prefix 20(−1) is not allowed sincet2a2t−2a−1 is not geodesic, whereas
30(−1) is allowed sincet2a3t−2a−1 is geodesic. See Fig. 11.
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Each case is treated separately in the following lemma. Then after these prefixes (suffixes
for P-runs) the run has only 0,1, (−1) with no consecutive non-zero entries.

Lemma 24(Prefixes/suffixes of runs). In this lemma we assume that each word has been
pushed into a word with at most one non-trivial run, and that each run has at least three
t±1 letters.
• The N-run in a geodesic word of typeX,XN,XNP with non-positive t-exponent sum

must start with one of
200,201,210,300,301,30(−1),310or the negatives of these.

• The N-run in a geodesic word of typeN,NP� with non-positive t-exponent sum must
start with one of
000,001,010,100,101,10(−1),110,200,201,20(−1),210,300,301,30(−1),310
or the negatives of these.

• The P-run in a geodesic word of typeP,NP> with positive t-exponent sum must end
with one of
000,100,010,001,101, (−1)01,011,002,102, (−1)02,012,003,103, (−1)03,013
or the negatives of these.

• The P-run in a geodesic word of typePX,NPX with positive t-exponent sum must end
with one of
002,102,012,003,103, (−1)03,013or the negatives of these.

Proof. If an N-run starts withi11 ori(−1)(−1) then by Lemma22 we can replacei11 by
(i + 1)0(−1) andi(−1)(−1) by (i − 1)01 without increasing length. Thus the first three
entries of anN-run will include a 0.

If an N-run in a word of typeX,XN or XNPstarts withi with |i|�4 then we can replace
ta4+j t−1 by t2a2t−1aj t−1 to get a word of the same type and preserving length. If anN-run
in a word of typeX,XN or XNPstarts withi with |i|�1 then we can replacetai t−1 by
a2i , reducing length, contradicting the fact that the word is geodesic. Thus anN-run in a
word of typeX,XN or XNPstarts with 2,3, (−2) or (−3).

This gives the following possibilities for the first three entries:
200,201,20(−1),210,2(−1)0,300,301,30(−1),310,3(−1)0 or the negatives of these.
We can eliminate 2(−1)0 and 3(−1)0 since they encodeait−1a−1t−1 = ai−1t−1at−1 for
i = 2,3 so are not geodesic. We also observe that 20(−1) encodest2a2t−2a−1 which is
not geodesic (as seen in Fig. 11).

This leaves 200,201,210,300,301,30(−1),310 (or their negatives) as the possible pre-
fixes to theN-run in a geodesic of typeX,XN or XNP. It is easy to check that each of these
prefixes is geodesic.

If the N-run in a word of typeN,NP� starts withi with |i|�4 then we can replace
ta4+j t−1 by t2a2t−1aj t−1 preserving length. Note that they become words of typeXN or
XNP. If the N-run in a word of typeN,NP� starts withi with |i|�3 then we can have
prefixes of the formi0, i10 wheni > 0 andi(−1)0 wheni < 0.

Explicitly, this gives
000,001,010,100,101,10(−1),110,200,201,20(−1),210,300,301,30(−1),310
or their negatives. It is easy to check that each of these prefixes is geodesic. Note that in
this case we cannot eliminate 20(−1) since there are no precedingt’s.
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The proof forP-runs follows a similar argument, and is omitted.�

Lemma 25(Short runs). In this lemma we assume that each word has been pushed into a
word with at most one non-trivial run, and that each run has no more than twot±1 letters.
• The geodesics of typeX,XN and XNP are the setL1 of words of the form

tai t−1aj , ij = (±2)0, (±3)0,21,31, (−2)(−1), (−3)(−1);
tai t−1aj t−1ak, ijk = (±2)00, (±3)00,201, (±3)01, (−2)0(−1),

(±3)0(−1),210,310, (−2)(−1)0, (−3)(−1)0;
t2ait−1aj t−1ak, ijk = (±2)00, (±3)00,201, (±3)01, (−2)0(−1),

(±3)0(−1),210,310, (−2)(−1)0, (−3)(−1)0;
tai t−1aj t−1akt, ijk = 201, (±3)01, (−2)0(−1), (±3)0(−1).

• The geodesics of type N andNP� are the setL2 of words of the form

ait−1aj , ij = 00, (±1)0, (±2)0, (±3)0,0(±1),0(±2),0(±3),
11,21,31, (−1)(−1), (−2)(−1), (−3)(−1);

ait−1aj t, ij = 0(±1),0(±2),0(±3),11,21,31,
(−1)(−1), (−2)(−1), (−3)(−1);

ait−1aj t−1ak, ijk = 000, (±1)00, (±2)00, (±3)00,0(±1)0,0(±2)0,0(±3)0,
00(±1),00(±2),00(±3), (±1)0(±1), (±2)0(±1), (±3)0
(±1),110,210,310, (−1)(−1)0, (−2)(−1)0, (−3)(−1)0;

ait−1aj t−1akt, ijk = 00(±1),00(±2),00(±3), (±1)0(±1), (±2)0(±1), (±3)0
(±1);

ait−1aj t−1akt2, ijk = 00(±1),00(±2),00(±3), (±1)0(±1), (±2)0(±1), (±3)
0(±1).

• The geodesics of type P andNP> are the setL3 of words of the form

aitaj , ij = 00,0(±1),0(±2),0(±3), (±1)0,11,12,13,
(−1)(−1), (−1)(−2), (−1)(−3);

t−1aitaj ij = (±1)0,11,12,13, (−1)(−1), (−1)(−2), (−1)(−3);
aitaj tak, ijk = 000,00(±1),00(±2),00(±3), (±1)0(±1), (±1)0(±2), (±1)

0(±3),0(±1)0,011,012,013,0(−1)(−1),0(−1)(−2),
0(−1)(−3);

t−1aitaj tak, ijk = (±1)0(±1), (±1)0(±2), (±1)0(±3);
t−2aitaj tak, ijk = (±1)0(±1), (±1)0(±2), (±1)0(±3).

• The geodesics of type PX and NPX(must have positive t-exponent) are the setL4 of
words of the form

aitaj takt−1, ijk = 00(±2),00(±3),012,013,0(−1)(−2),0(−1)(−3),
102,10(±3), (−1)0(−2), (−1)0(±3).

Proof. The proof is by exhaustive search. For the first two cases we have either one or two
t−1 letters, so we considertpai t−1aj tq and tpai t−1aj t−1aktq . The t-exponent must be
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non-positive, sop + q�1 in the first case andp + q�2 in the second case. For thea-
exponents,|i|�3 and|j |, |k|�1. This gives a finite set of possibilities, so we run through
each and check if it gives a geodesic. Note that the pattern 20(−1) is not a geodesic if it
appears in anN-run preceded by at, yet it is geodesic if it is in aN orNP� geodesic.

By Lemma22 we choose to reject runs of the form(i,1,1) and(i,−1,−1) in favour of
(i + 1,0,−1) and(i − 1,0,1), respectively, so that we never see three non-zero entries in
a row, even at the start of a run. The details of the exhaustive check are omitted.

For the third and fourth cases we have either one or twot letters, so we consider
t−pai taj t−q andt−pai taj takt−q . Thet-exponent must be positive, sop, q = 0 in the third
andp+q�1 in the fourth cases. For thea-exponents,|k|�3 and|j |, |k|�1. This gives a fi-
nite set of possibilities, so we run through each and check if it gives
a geodesic.

By Lemma 22 we choose to reject runs of the form(1,1, i) and(−1,−1, i) in favour of
(−1,0, i + 1) and(1,0, i − 1), respectively, so that we never see three non-zero entries in
a row, even at the end of a run. The details of the exhaustive check are omitted.�

Definition 26 (Normal form). There are ten distinct types of normal form words.
• TypeNFE words are precisely�, a±1, a±2, a±3.
• TypeNFX,NFXN andNFXNP , all with zero or negativet-exponent, are the words:
tka�l t−1a�l−1t−1 . . . a�1t−1a�0tm such thatk > 0 and l�k + m, �0 �= 0 if m > 0,
the N-run starts with one of 200,201,210,300,301,30(−1),310 or the negatives of
these, and after this has only 0,1, (−1) with no consecutive non-zero entries (that is, no
1(−1), (−1)1,11 or(−1)(−1) in the run).
If there are less than threet−1 letters in the run, then the word is in the setL1 of

Lemma25.
• TypeNFN andNFNP� , all with negativet-exponent, are the words:
a�l t−1a�l−1t−1 . . . a�1t−1a�0tk such that 0�k� l, �0 �= 0 if k > 0, theN-run starts with
one of 000,001,010,100,101,10(−1),110,200,201,20(−1),210,300,301,30(−1),
310 or the negatives of these, and after this has only 0,1, (−1) with no consecutive non-
zero entries.
If there are less than threet−1 letters in the run, then the word is in the setL2 of

Lemma25.
• TypeNFP andNFNP> , all with positivet-exponent, are the words:
t−ka�0ta�1t . . . a�l−1ta�l

such that 0�k < l, �0 �= 0 if k > 0, theP-run ends with one of
000,100,010,001,101, (−1)01,011,002,102, (−1)02,012,003,103, (−1)03,013
or the negatives of these, and before this has only 0,1, (−1)with no consecutive non-zero
entries.
If there are less than threet letters in the run, then the word is in the setL3 of Lemma25.

• TypeNFPX andNFNPX, all with positivet-exponent, are the words:
t−ka�0ta�1t . . . a�l−1ta�l t−m such thatk > 0,m�0 andk + m < l, �0 �= 0 if k > 0, the
P-run ends with one of 002,102,012,003,103, (−1)03,013 or the negatives of these,
and before this has only 0,1, (−1) with no consecutive non-zero entries.
TheP-run must have at least twot letters since thet-exponent of the word is positive. If

there are less than threet letters in the run, then the word is in the setL4 of Lemma25.
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Lemma 27(The language of normal forms surjects to the group). Every group element is
represented by a normal form word.

Proof. By Lemma23 every group element is represented by a geodesic having at most
one run. Then by Lemma 22 we can remove any occurrences of 11 and(−1)(−1) in the
run (except possibly at the start ofN andNP� words and the end ofP andNP> words)
without lengthening the word. Then if the resulting run does not start (or end) with one of
the number patterns given in Lemma 24 relative to its type, it is not geodesic, and if it does,
the word is in normal form. �

Definition 28 (HNN-extension). If G is a group with presentation〈G | R〉 and� : A → B

is an isomorphism of subgroupsA,B ⊆ G, define theHNN-extensionG� of G by � to be
the group with presentation〈G, t | R, {tat−1 = �(a) : a ∈ A}〉. The generatort is called
thestable letterandA,B are calledassociated subgroups.

The group BS(1,2) is an HNN-extension of〈a〉with the isomorphism�(a) = a2 between
associated subgroups〈a〉 and〈a2〉. The following fact about HNN-extensions can be read
in [11].

Lemma 29(Britton’s Lemma). If w is a word containing at±1 letter in anHNN-extension
of G� with associated subgroupsA,B and if w =G� 1 then w must contain a subword

(called a pinch) of the formtat−1 or t−1�(a)t for some elementa ∈ A.

Corollary 30 (t-exponent). For each elementg ∈ BS(1,2) there is an integer k such that
every word for g has t-exponent k.

Proof. If w represents the identity and has not±1 letters then itst-exponent sum is zero. If
w represents the identity and hast±1 letters then by Britton’s Lemma it contains a pinch.
Removing a pinch leaves thet-exponent ofw unchanged, so either you can remove allt±1

letters, in which case thet-exponent sum was zero, or you cannot remove allt±1 letters, in
which case the word did not represent the identity.

If wanduare two words for the same group element witht-exponentskandl, respectively,
thenwu−1 =BS 1 and hast-exponentk − l = 0, sow andu have the samet-exponent. �

Lemma 31(a-exponents). The X wordw = tkaj t−1a�k−1t−1 . . . t−1a�0 represents the el-
ementaN where

N = 2kj +
k−1∑

i=0
2i�i .

Moreover if each|�i |�1 for all i�k − 1, |j |�2 and �k−1 is zero or the same sign as j,
then|N |�4.

Also, the X wordw = a�0ta�1t . . . ta�k−1taj t−k represents the elementaN where

N = 2kj +
k−1∑

i=0
2i�i
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and moreover if each|�i |�1 for all i�k − 1, |j |�2 and�k−1 is zero or the same sign as
j, then|N |�4.

Proof. To prove the first assertion we will use induction onk. If k = 1 we havew =
taj t−1a�0 = a2j+�0.

Assuming the statement holds fork, then

w = tk+1aj t−1a�k t−1a�k−1t−1 . . . t−1a�0

= tka2j+�k t−1a�k−1t−1 . . . t−1a�0 = aN,

whereN = 2k(2j + �k) + ∑k−1
i=0 2i�i .

The smallest possible value for|N | occurs when|j | = 2, �k−1 = 0 and each�i = − j
|j | .

In this case

|N | � 2k(2) + 0 +
k−2∑

i=0
2i (−1)

= 2k(2) −
k−2∑

i=0
2i

= 2k(2) − (2k−1 − 1)

� 2(2) − (1 − 1) = 4 sincek�1.

To prove the second assertion we will again use induction onk. If k = 1 we have

w = a�0taj t−1 = a2j+�0.

Assuming the statement holds fork, then

w = a�0t . . . ta�k−1ta�k taj t−k−1

= a�0t . . . ta�k−1ta2j+�k t−k = aN,

whereN = 2k(2j + �k) + ∑k−1
i=0 2i�i .

The smallest possible value for|N | occurs when|j | = 2, �k−1 = 0 and each�i = − j
|j | .

In this case

|N | � 2k(2) + 0 +
k−2∑

i=0
2i (−1)

= 2k(2) −
k−2∑

i=0
2i

= 2k(2) − (2k−1 − 1)

� 2(2) − (1 − 1) = 4 sincek�1. �

Lemma 32(Uniqueness forNFE ∪ NFX). If w, u ∈ NFE ∪ NFX andw =BS u then
w and u are identical.

Proof. If w, u ∈ NFE thenw = ai andu = aj andai =BS aj meansai−j = 1, soi = j

andw andu are identical.
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If w ∈ NFX then we can writew = tka�k t−1a�k−1t−1 . . . a�1t−1a�0 with k > 0,
which evaluates to the powerN with |N |�4 by Lemma31, sow cannot be equal to a word
in NFE .

If u ∈ NFX andw =BS u then we can writeu = t la�l t−1a�l−1t−1 . . . t−1a�k t−1 . . . a�1

t−1a�0, where without loss of generality we are assuming thatk� l. Since both words
evaluate to the same power ofa we have

�k2k + �k−12k−1 + · · · + �12 + �0

= �l2
l + �l−12l−1 + · · · + �k2

k + · · · + �12 + �0.

Let i ∈ N such that�j = �j for all j < i and�i �= �i . Then cancelling and dividing
through by 2i we have

�k2k−i + �k−12k−1−i + · · · + �i = �l2
l−i + �l−12l−1−i + · · · + �i . (1)

If i = k then|�k| = 2 or 3 and we have�k = �l2
l−k+�l−12l−1−k+ . . .+�k. If l = k then

�k = �k sow andu are identical. Ifl�k+ 1 then|�k| = |�l2l−k + �l−12l−k−1 + . . . �k|�4
since|�l |�2 and�l−1 is either 0 or the same sign as�l , but|�k|�3 so this is a contradiction.

If i < k then�i , �i are either 0,±1 since they occur in the middle of a run. By Eq. (1)
they must be of the same parity, and they cannot both be zero so one is 1 and one is(−1).
If i + 1 < k then�i+1 = �i+1 = 0 and we contradict the equation since one side is equal
to 1 mod 4 and the other is(−1)mod 4.

So i + 1 = k, so the run inw starts with 210 or 310 (or their negatives). Thenw =
tkas t−1aw′′ andu = tku′t−1a−1w′′ with s = 2,3 sou′ =BS as+1 so isa3 or a4, which by
Lemma 18 is written asta2t−1 if it occurs in a normal form word. Then the run inu must
start with either 3(−1) or 20(−1), neither of which is allowed in a normal form word, sow
andu are identical. �

Lemma 33(Uniqueness forNFN ∪ NFXN ). If w, u ∈ NFN ∪ NFXN andw =BS u

then w and u are identical.

Proof. If w andu are two normal form words representing the same group element, then
they have the samet-exponent by Lemma30. If w, u ∈ NFXN with t-exponent(−k) then
tkw, tku are inNFX so by Lemma 32 they are identical. Note thatNFXN andNFX

words have the sameN-run structure, the only difference is the length of thet l prefix.
If w ∈ NFN then letw = a�k t−1 . . . t−1a�0 and let

u = u′t−1a�k−1t−1 . . . t−1a�0 whereu′ evaluates toan and is typeX or E. The wordstkw
andtkuevaluate to the same power ofa, which is�k2k+· · ·+�0 = n2k+�k−12k−1+· · ·+�0.
Let i ∈ N such that�j = �j for all j < i and�i �= �i . Then cancelling and dividing through
by 2i we get

�k2k−i + · · · + �i = n2k−i + �k−12k−i−1 + · · · + �i . (2)

If i = k then�k = n. Now |�k|�3 andu′ is anE or X word with the samea-exponent. By
Lemma31 if u′ is typeX then it evaluates toaN with |N |�4, sou′ is typeE, indeed it is
exactlya�k , sow andu are identical.
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If i < k then�i , �i = ±1 since they are in the middle of a run, and have the same parity
by Eq. (2). If i < k + 1 then we have a contradiction since�i+1 = �i+1 = 0 and the
equation has 4x + 1 on one side and 4y − 1 on the other for integersx, y. Soi = k+ 1 and
�k2 + �k−1 = n2 + �k−1 son = �k ± 1 since�k−1 − �k−1 = ±2, and�k−1 has the same
sign as�k.

If u′ is typeX then|n|�4 by Lemma 31 but|�k|�3, so the only chance for equality is
when the run inwstarts with 31 and�k−1 = −1. Thenu′ =BS a4 which is written asta2t−1

in a normal form word, but then the run inu starts with 20(−1) which is not allowed. Thus
u is also inNFN . Without loss of generality assume�k > 0 so�k−1 = 1 and�k−1 = −1.
Thenn must be negative since the run inu starts withn(−1), and we have a contradiction.

�

Lemma 34(Uniqueness forNFP ∪ NFPX). If w, u ∈ NFP ∪ NFPX andw =BS u

then w and u are identical.

Proof. If w, u ∈ NFP ∪ NFPX thenw−1 andu−1 are inNFN ∪ NFXN , so by Lemma
33 sincew−1 =BS u−1 thenw−1 andu−1 are identical, and sow andu are identical. �

Lemma 35(Uniqueness). Every group element is represented by a unique normal form
word.

Proof. If w andu are two normal form words representing the same group element, then
they have the samet-exponent by Lemma30.

If w andu have zerot-exponent then they are of the formE,X,NP or XNP. If neither
is NP or XNP then they are identical by Lemma 32. If one isNP or XNP then letw =
w′t−1a�k−1t−1 . . . t−1a�0tk andu = u′t−1a�l−1t−1 . . . t−1a�0t l wherew′, u′ evaluate to
powers ofa and assume without loss of generality thatk > 0 andk� l. Thenwu−1 =
w′t−1a�k−1t−1 . . . t−1a�0tk−la−�0t . . . ta−�l−1(u′)−1 =BS 1. Sincek > 0 then�0 = ±1 so
if we replacew′ andu′ by the corresponding powers ofa (by pinchingtas t−1 subwords) we
have a word that does not admit any pinches, contradicting Britton’s Lemma. Thusk = l.
Then the wordswt−k andut−k are equal and inNFN ∪ NFXN so by Lemma 33 must be
identical, sow andu are identical.

If w andu have negativet-exponent then they are of the formN,XN,NP or XNP. If
neither isNP or XNP then they are identical by Lemma 33. If one isNP or XNP then let
w = w′t−1a�k−1t−1 . . . t−1a�0t l and letu = u′t−1a�p−1t−1 . . . t−1a�0tq wherek > l, p >

q, andw′, u′ evaluate to powers ofa. Assume without loss of generality thatl > 0 and
l�q. Thenwu−1 = w′t−1a�k−1t−1 . . . t−1a�0t l−qa−�0t . . . ta−�p−1(u′)−1 =BS 1. Since
l > 0 then�0 = ±1 so after replacingw′ andu′ by the corresponding powers ofa, we have
a word that does not admit any more pinches, contradicting Britton’s Lemma. Thusl = q.
Then the wordswt−l andut−l are equal and inNFN ∪ NFXN so by Lemma 33 must be
identical, sow andu are identical.

If w andu have positivet-exponent then they are of the formP,PX,NP or NPX. If
neither isNPor NPXthen they are identical by Lemma 34. If one isNPor NPXthen assume
thatw is, so letw = t−ka�0t . . . a�l−1tw′ with k > 0, k < l, �0 = ±1 andw′ evaluates to a
power ofa, and letu = t−pa�0t . . . a�q−1tu′ wherep < q andu′ evaluates to a power of
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a. Assume without loss of generality thatk�p (if k < p then reverse the roles ofw and
u). Thenu−1w = (u′)−1t−1a−�q−1 . . . t−1a−�0tp−ka�0t . . . ta�l−1w′ =BS 1. If k �= p then
since�0 = ±1 then after replacingw′ andu′ by their corresponding powers ofa we have a
word that cannot be pinched, contradicting Britton’s Lemma. Thusk = p. Then the words
tkw andtku are equal and inNFP ∪ NFPX so by Lemma34 must be identical, sow and
u are identical. �

Lemma 36(Normal forms are geodesic). Each normal form word is a geodesic.

Proof. Suppose that a wordw ∈ NF is not geodesic. Choose a geodesic wordu =BS w

that is one of the ten types in Lemma18. By Lemma 23 we can moveu into a wordu′ of
the same length having one run.

If u′ is in normal form then sincew andu′ are both normal form words that equate to the
same group element thenw, u′ must be identical by Lemma 35.

If u′ is not in normal form, it either violates the prefix rules (as in Lemma 24) or has an
adjacent pair of non-zero digits in its run.

If the run in u′ has an occurrence of 1(−1) or (−1)1 then u′ is not geodesic.
If the run in u′ has an occurrence of 11 or(−1)(−1) that is not at the start of anN-
run or the end of aP-run, then by Lemma 22 we can perform a length preserving rewrite
to eliminate it. If this causesu′ to have a 1(−1) thenu was not geodesic, and it causes
u′ to have a 11 or(−1)(−1) then repeatedly applying Lemma 22 from right to left in an
N-run, or left to right in a P-run, we can eliminate all occurrences of pairs of
non-zero digits.

Finally, if the start or end is not one of the prefixes in Lemma 24 then eitheru′ is not
geodesic (if the prefix is 20(−1) for example), or is equal to a normal form word of the
same length, which means that the original wordw is geodesic. �

5. The main theorem

Theorem 37. The languageNF is a1-counter language.

Proof. The ten types of normal-form geodesics listed in Definition26 break up into five
cases. The setNFE is a 1-counter language since it is finite. We can describe aZ-automaton
for each of the remaining four cases to accept the remaining nine types.

Consider the set of normal forms words of typeX,XN andXNP. The languageL1 of
Lemma 25 describes the set of normal form words of these types with at most twot−1

letters in theN-run, and sinceL1 is finite, it is a regular language.
Let L′

1 be the set of words of the form{tkai t−2at−1, tkaj t−2a−1t−1 | k = 1,2,3, i =
2,±3, j = −2,±3}. This is a finite set so is regular, and is the set ofX (andXN) normal
form words with threet−1’s in theN-run, that corresponds to the prefix 201,301,30(−1)
and their negatives.

The remainingX,XN andXNP normal form words (with anN-run of 3 or moret−1

letters) are accepted by the automaton on the left of Fig. 12. The edge labeled	 stands for
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Fig. 12. Counter automata for normal formX,XN,XNP words andN,NP� words withN-run length at least 3.

a collection of paths labeled by

ai(t−1,−)(t−1,−)(t−1,−), i = ±2,±3;
ai(t−1,−)(t−1,−)a(t−1,−)(t−1,−), i = 2,±3;
ai(t−1,−)(t−1,−)a−1(t−1,−)(t−1,−), i = −2,±3;
ai(t−1,−)a(t−1,−)(t−1,−), i = 2,3;
ai(t−1,−)a−1(t−1,−)(t−1,−), i = −2,−3.

The union of these three (regular and 1-counter) languages is 1-counter.
Next, consider the set of normal forms words of typeN andNP� . The languageL2

of Lemma25 describes the set of normal form words of these types with at most twot−1

letters in theN-run, and sinceL2 is finite, it is a regular language.
LetL′

2 be the set of words of the form{ait−2a±1t−1 | i = 0,±1,±2,±3}. This is a finite
set so is regular, and is the set ofN (andNP� ) normal form words with threet−1’s in the
N-run, that corresponds to the prefix 00(±1),10(±1),20(±1),30(±1) and their negatives.

The remainingN andNP� normal form words (with anN-run of 3 or moret−1 letters)
are accepted by the automaton on the right of Fig. 12. The edge labeled	′ stands for a
collection of paths labeled by

ai(t−1,−)(t−1,−)(t−1,−), i = 0,±1,±2,±3;
ai(t−1,−)(t−1,−)at−1(t−1,−), i = 0,±1,±2,±3;
ai(t−1,−)(t−1,−)a−1(t−1,−)(t−1,−), i = 0,±1,±2,±3;
ai(t−1,−)a(t−1,−)(t−1,−), i = 0,1,2,3;
ai(t−1,−)a−1(t−1,−)(t−1,−), i = 0,−1,−2,−3.

Next, consider the set of normal forms words of typeP andNP>. The languageL3 of
Lemma25 describes the set of normal form words of these types with at most twot letters
in theP-run, and sinceL3 is finite, it is a regular language.
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Fig. 13. Counter automata for normal formP,NP> words andPX,NPX words withP-run length at least 3.

LetL′
3 be the set of words of the form{ta±1t2ai | i = 0,±1,±2,±3}. This is a finite set

so is regular, and is the set ofP (andNP>) normal form words with threet’s in theP-run,
that corresponds to the suffix(±1)00, (±1)01, (±1)02, (±1)03 and their negatives.

The remainingP andNP> normal form words (with aP-run of 3 or moret letters) are
accepted by the automaton on the left of Fig.13. The edge labeled
 stands for a collection
of paths labeled by

(t,+)(t,+)(t,+)ai, i = 0,±1,±2,±3;
(t,+)(t,+)a(t,+)(t,+)ai, i = 0,±1,±2,±3;
(t,+)(t,+)a−1(t,+)(t,+)ai, i = 0,±1,±2,±3;
(t,+)(t,+)a(t,+)ai, i = 0,1,2,3;
(t,+)(t,+)a−1(t,+)ai, i = 0,−1,−2,−3.

Lastly, consider the set of normal forms words of typePX andNPX. The languageL4
of Lemma25 describes the set of normal form words of these types with (at most) twot
letters in theP-run, and sinceL4 is finite, it is a regular language.

Let L′
4 be the set of words of the form{tat2ait−k, ta−1t2aj t−k, | k = 1,2,3, i =

2,±3, j = −2,±3}. This is a finite set so is regular, and is the set ofPX (andNPX) normal
form words with threet’s in theP-run, that corresponds to the suffix 102,103, (−1)03 and
their negatives.

The remainingPX andNPXnormal form words (with aP-run of 3 or moret letters) are
accepted by the automaton on the right-hand side of Fig. 13. The edge labeled
′ stands for
a collection of paths labeled by

(t,+)(t,+)(t,+)ai, i = ±2,±3;
(t,+)(t,+)a(t,+)(t,+)ai, i = 2,±3;
(t,+)(t,+)a−1(t,+)(t,+)ai, i = −2,±3;
(t,+)(t,+)a(t,+)ai, i = 2,3;
(t,+)(t,+)a−1(t,+)ai, i = −2,−3.

By Lemma9 the union of a 1-counter and a regular language is 1-counter so each of the
ten types is 1-counter, and by Lemma 10 the union of 1-counter languages is 1-counter.�
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Aq0

t10
a2

t20

t− 30

t− 20

t− 10

t30

a a

Fig. 14. A finite state automaton accepting the languageL in the proof of Theorem39.

Corollary 38. The language of normal forms forBS(1,2) with the standard generating
set is context-free.

6. Full language of geodesics

In this section we prove that the language of all geodesic words in the standard generating
set is not counter. To prove this we will mimic the proof of Theorem13. Recall that in that
proof we constructed a wordwwR on three symbols whose prefix is square-free and suffix
is its reverse, and applied the Swapping Lemma (Lemma 12) to obtain a contradiction.

Let w be a word in BS(1,2) with noa−1 letters. Define thet-encodingof w to be a string
of integersn1n2 . . . nk such thatw = tn1atn2 . . . atnk . If w starts (or, respectively, ends)
with ana thenn1 = 0 (or, respectively,nk = 0).

As an example, the word

at2a2ta3t4at−9at2at−1 = t0at2at0atat0at0at4at−9at2at−1

is encoded as 0201004(−9)2(−1). Note that previously our encodings have been ofa-
exponents, but this new encoding will be useful for the argument to follow.

Theorem 39. The language of all geodesic words inBS(1,2)with respect to the generating
set{a±1, t±1} is not counter.

Proof. Suppose that the full language is counter, and call itC. DefineL to be the set of words
in {a, t±1} accepted by the finite state automaton in Fig.14. That is,L is the set ofPNwords
whoset-encodings are words of the form{10,20,30}{10,20,30}∗0{−10,−20,−30}{−10,
−20,−30}∗.

SinceL is regular, the intersection ofC andL is counter. LetM be a counter automaton
acceptingC ∩ L, with alphabeta±1, t±1. We can construct a new counter automatonM ′
which accepts the set oft-encoded words ofC ∩ L as follows:

The states, start state, accept states and counters are the same as forM. The new alphabet
is {0,±10,±20,±30}. The transitions are defined as follows:
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If there is a path labelled byt ia in M from p to q, then add an edge inM ′ from p to q
labeled byi, and the counters are changed by the same amount as they were following the
patht ia in M. Thus a word is accepted byM if and only if its encoding is accepted byM ′.
SinceM acceptsC ∩ L, the only subwords of the formt ia that appear in accepted words
are fori = 0,±10,±20 or±30. Letp be the swapping length forM ′.

Next, take a Thue–Morse word in three symbols, which we choose to be 10,20,30, of
length greater than 2p. This word encodes aP wordu of somet-exponent 10c. We wish to
find some kind of “reverse” ofu, as we did in the proof of Theorem13. We find a wordv
to act as the “reverse” by the following procedure:
(1) Writeu ast10a�1t10a�2 . . . t10a�k t10 where�i = 0,1.
(2) Reverse this word.
(3) Replacea0 with a1 anda1 with a0 in this word.
(4) Replacet10 with t−10 in this word to getv.

For example, the Thue–Morse word 10,20,30,10,30,20,10,20,30,20,10,30 encodes
the word

u = t10at20at30at10at30at20at10at20at30at20at10at30.

Step1: Writeu as

u = |a1|a0|a1|a0|a0|a1|a1|a0|a0|a1|a0|a1|a1|a0|a1|a0|a0|a1|a0|a1|a1|a0|a0|,
where thet10 terms are replaced by bars|, to make it easier to read.

Step2: Reversing this word gives

uR = |a0|a0|a1|a1|a0|a1|a0|a0|a1|a0|a1|a1|a0|a1|a0|a0|a1|a1|a0|a0|a1|a0|a1|.
Step3: Replacinga0 by a1 and vice versa gives

|a1|a1|a0|a0|a1|a0|a1|a1|a0|a1|a0|a0|a1|a0|a1|a1|a0|a0|a1|a1|a0|a1|a0|.
Step4: Replacingt10 by t−10 gives

v = †a1 † a1 † a0 † a0 † a1 † a0 † a1 † a1 † a0 † a1 † a0 † a0

†a1 † a0 † a1 † a1 † a0 † a0 † a1 † a1 † a0 † a1 † a0†

= t−10at−10at−30at−20at−10at−20at−30at−20at−10at−30at−10at−20at−20,

where † representst−10.
Thet-encoding forv is then

(−10)(−10)(−30)(−20)(−10)(−20)(−30)(−20)(−10)(−30)(−10)(−20)(−20).

Note thatv does not have to be square-free. Note also that thet-exponent ofv is −10c,
where 10c is thet-exponent ofu.

Now to understand what motivated us to produce thisv from u, consider the wordw =
ua2v = uat0av. This word is typeX. Drawingw in a sheet of the Cayley graph we see that
at every tenth level there is ana letter, either on the part going up the sheet (theu part) or
the part going down (thev part). See the left-hand side of Fig.15.

We will now show thatw is a geodesic. Consider the wordw′ obtained fromw by
commuting alla letters to the right. Since there is exactly onea at every tenth level ofw,
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Fig. 15. The wordw = ua2v drawn in a sheet of the Cayley graph.
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swap

Fig. 16. Swapping two subwords in theP part ofw leads to a word witht−1a2t−1.

we havew′ = t10ca2t−10(at−10)c−1. Thenw′ is a normal formX word, since itsN-run is
of the form 200. . . with no consecutive non-zero entries. Thus by Lemma36 is geodesic,
and sincew′ has the same length asw thenw is geodesic. Sow is in C ∩ L, it is accepted
by the counter automatonM, and itst-encoding is accepted byM ′.

Applying the Swapping Lemma (Lemma 12) to the encoding ofw, we switch two adjacent
subwords in the first half ofw, that is, in thet-encoding ofu, which is square-free.
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This new string is at-encoding of some other word in the group, which is anX word,
essentially the same asw except that at some level(s) there is ana step on the left- and
right-hand sides of the sheet in the Cayley graph, indicated by the thin lines joining the dots
in Fig. 16.

This causes a problem, for when we commutea-letters to the right in this word, we will
seet−1a2t−1 at some point(s) in theN-run, and thus the swapped word is not a geodesic,
so not inC ∩ L, and this is a contradiction. �
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